Basic Model Theory

John L. Bell

1. Structures and First-Order Languages

A *structure* is a triple

$$\mathfrak{A} = (A, \{R_i: i \in I\}, \{e_j: j \in J\}),$$

where A, the *domain* or *universe* of \mathfrak{A} , is a *nonempty* set, $\{R_i: i \in I\}$ is an indexed family of relations on A and $\{e_j: j \in J\}$) is an indexed set of elements —the *designated elements* of A. For each $i \in I$ there is then a natural number $\lambda(i)$ —the *degree* of R_i —such that R_i is a $\lambda(i)$ -place relation on A, i.e., $R_i \subseteq A^{\lambda(i)}$. This λ may be regarded as a function from I to the set ω of natural numbers; the pair (λ, J) is called the *type* of A. Structures of the same type are said to be *similar*.

Note that since an *n*-place operation $f: A^n \to A$ can be regarded as an (n+1)-place relation on A, algebraic structures containing operations such as groups, rings, vector spaces, etc. may be construed as structures in the above sense.

The *cardinality* $\|\mathfrak{A}\|$ of a structure \mathfrak{A} is defined to be the cardinality |A| of its domain A.

The first-order language \mathcal{L} of type (λ, J) has the following categories of basic symbols:

- (i) individual variables: a denumerable sequence $v_0, v_1,...$;
- (ii) predicate symbols: for each $i \in I$, a predicate symbol P_i of degree $\lambda(i)$;
- (iii) *individual constants*: for each $i \in J$ an individual constant c_i :
- (iv) *equality symbol*: the symbol =;
- (v) *logical operators:* \neg (negation), \wedge (conjunction);
- (vi) *existential quantifier symbol*: ∃ ("there exists");
- (vii) punctuation symbols: e.g. (), [].

Predicate and constant symbols are often called *extralogical* symbols; variables and constants are collectively known as *terms*: we shall use symbols t, u, possibly with subscripts, to denote arbitrary terms.

Atomic formulas of \mathscr{L} are finite strings of basic symbols of either of the forms $P_i t_1 ... t_{\lambda(i)}$ or t = u, where $t_1, ..., t_{\lambda(i)}$, t, u are terms. Formulas of \mathscr{L} (or \mathscr{L} -formulas) are finite strings of basic symbols defined in the following recursive manner:

- (a) any atomic formula is a formula;
- (b) if φ , ψ are formulas, so also are $\neg \varphi$, $\varphi \land \psi$, and $\exists x \varphi$, where x is any variable v_n ;
- (c) a finite string of symbols is a formula exactly when it follows from finitely many applications of (a) and (b) that it is one.

We write $Form(\mathcal{L})$ for the set of all formulas of \mathcal{L} . The degree (of complexity) of a formula is

defined to be the number of occurrences of logical operators and quantifiers in it.

The symbols \vee (disjunction), \rightarrow (implication) and \forall (universal quantifier) are introduced as *abbreviations*:

$$\varphi \lor \psi \quad \text{for } \neg(\neg \varphi \land \neg \psi)$$

$$\varphi \to \psi \quad \text{for } \neg \varphi \lor \psi$$

$$\varphi \leftrightarrow \psi \quad \text{for } (\varphi \to \psi) \land (\psi \to \varphi)$$

$$\forall x \varphi \quad \text{for } \neg \exists x \neg \varphi.$$

We also write $\bigwedge_{i=1}^{n} \varphi_i$ for $\varphi_1 \wedge ... \wedge \varphi_n$.

It will be assumed that the notions of *free* and *bound* occurrence of a variable in a formula are understood. We write $\varphi(v_0, ..., v_n)$ to indicate that the free variables of φ are among $v_0, ..., v_n$. We also write $\varphi(x/t)$, or simply $\varphi(t)$, for the result of substituting t at each free occurrence of x in φ . More generally, we write $\varphi(t_0, ..., t_n)$ for the result of substituting t_i at each occurrence of v_i , for i = 0, ..., n, in $\varphi(v_0, ..., v_n)$. An \mathscr{L} - sentence is an \mathscr{L} - formula without free variables. We write $Sent(\mathscr{L})$ for the set of all \mathscr{L} -sentences.

The *cardinality* $\|\mathcal{L}\|$ of \mathcal{L} is defined to be the cardinality of its set of basic symbols.

Lemma. $\|\mathscr{L}\| = |Form(\mathscr{L})|$.

Proof. Let $\|\mathscr{L}\| = \kappa$. Since κ is infinite and each formula is a finite string of symbols, $|Form(\mathscr{L})| \leq \kappa$. The fact that κ is infinite also implies that either the set of terms or the set of predicate symbols of \mathscr{L} (or both) must have cardinality κ . In either case the set of atomic formulas of the form $P_{it...t}$ has cardinality κ , so that $|Form(\mathscr{L})| \geq \kappa$. The Lemma follows.

For $\Sigma \subseteq Sent(\mathcal{D})$ we define \mathcal{D}_{Σ} to be the language whose extralogical symbols are precisely those occurring in at least one sentence of Σ .

Lemma. $\|\mathscr{L}_{\Sigma}\| = \max(\aleph_0, |\Sigma|).$

Proof. If Σ is finite, evidently $\|\mathscr{L}_{\Sigma}\| = \aleph_0$. Now suppose that $|\Sigma| = \kappa \geq \aleph_0$. We have $|\Sigma| \leq Form(\mathscr{L}_{\Sigma})| = \|\mathscr{L}_{\Sigma}\|$ by the previous lemma. For each $\sigma \in \Sigma$ let $S(\sigma)$ be the set of (\mathscr{L}_{Σ}) symbols occurring in σ : then $S(\sigma)$ is finite. Also the set K of terms of \mathscr{L}_{Σ} is included in the union of the sets $S(\sigma)$ for $\sigma \in \Sigma$, so that

$$|K| \le |\bigcup \{S(\sigma): \sigma \in \Sigma\}| \le \sum_{\sigma \in \Sigma} |S(\sigma)| \le |\Sigma|. \aleph_0 = |\Sigma|.$$

Thus $\|\mathscr{L}_{\Sigma}\| \leq |K| + \aleph_0 + \aleph_0 \leq |\Sigma|$, and hence $\|\mathscr{L}_{\Sigma}\| = |\Sigma|$ as required.

2. Satisfaction, validity, and models.

If \mathscr{L} is a first-order language, a structure having the same type as that of \mathscr{L} is called an \mathscr{L} -

structure. Let $\mathfrak{A} = (A, \{R_i: i \in I\}, \{e_j: j \in J\})$ be an \mathscr{L} -structure, where \mathscr{L} has type (λ, J) , and let $a = (a_0, a_1, ...)$ be a countable sequence of elements of A (such a sequence will be referred to henceforth as an A-sequence). For any predicate symbol or term of \mathscr{L} , we define its *interpretation under* $(\mathfrak{A}, \mathbf{a})$ as follows:

$$P_i^{(\mathfrak{A},a)} = R_i \quad c_j^{(\mathfrak{A},a)} = e_j \quad v_n^{(\mathfrak{A},a)} = a_n.$$

Since $P_i^{(\mathfrak{A},a)}$ and $c_j^{(\mathfrak{A},a)}$ depend only on \mathfrak{A} , we usually just write $P_i^{\mathfrak{A}}$ and $c_j^{\mathfrak{A}}$ for these and call them the *interpretations* of P_i and c_j , respectively, in \mathfrak{A} .

For $n \in \omega$, $b \in A$ we define

$$[n|b]a = (a_0, a_1, ..., a_{n-1}, b, a_{n+1}, ...).$$

For $\varphi \in Form(\mathcal{L})$ we define the relation *a satisfies* φ *in* \mathfrak{A} , written

$$\mathfrak{A} \models_{a} \varphi$$

recursively on the degree of φ as follows:

1) for terms t, u,

$$\mathfrak{A} \vDash_a t = u \iff t^{(\mathfrak{A},a)} = u^{(\mathfrak{A},a)}$$

2) for terms t_1 ,..., $t_{\lambda(i)}$,

$$\mathfrak{A} \vDash_{a} P_{i}t_{1}...t_{\lambda(i)} \iff R_{i}(t_{1}^{(\mathfrak{A},a)}, ..., t_{\lambda(i)}^{(\mathfrak{A},a)});$$

- 3) $\mathfrak{A} \vDash_a \neg \varphi \Leftrightarrow \text{not } \mathfrak{A} \vDash_a \varphi$;
- 4) $\mathfrak{A} \vDash_a \phi \land \psi \Leftrightarrow \mathfrak{A} \vDash_a \phi$ and $\mathfrak{A} \vDash_a \psi$,
- 5) $\mathfrak{A} \models_{\mathbf{a}} \exists v_n \varphi \iff \text{for some } b \in A, \mathfrak{A} \models_{[n|b]\mathbf{a}} \varphi.$

The following facts are then easily established:

- (a) $\mathfrak{A} \models_{a} \forall v_{n} \varphi \Leftrightarrow \text{ for all } b \in A, \mathfrak{A} \models_{[n|b]a} \varphi;$
- (b) suppose that a, b are A-sequences such that $a_n = b_n$ whenever v_n occurs free in φ . Then

$$\mathfrak{A} \vDash_{a} \varphi \Leftrightarrow \mathfrak{A} \vDash_{b} \varphi$$

In view of fact (b), the truth of $\mathfrak{A} \models_a \varphi$ depends only on the interpretations under (\mathfrak{A},a) of the free variables of φ , that is, if these are among $v_0, ..., v_n$, only on $a_0, ..., a_n$. Accordingly, under these conditions we shall often write

$$\mathfrak{A} \vDash_{a} \varphi[a_0, ..., a_n]$$
 for $\mathfrak{A} \vDash_{a} \varphi$.

We say that a formula φ is valid in \mathfrak{A} if $\mathfrak{A} \models_a \varphi$ for every A-sequence a and satisfiable in \mathfrak{A} if $\mathfrak{A} \models_a \varphi$ for some A-sequence a. It follows from (b) above that a sentence φ is satisfiable in a given structure iff it is valid there. If φ is valid in \mathfrak{A} we write

$$\mathfrak{A} \models_{a} \Phi$$

and say that \mathfrak{A} is a model of σ , or that σ holds in \mathfrak{A} . If $\Sigma \subseteq Sent(\mathscr{L})$, we say that \mathfrak{A} is a model of Σ , and write

$$\mathfrak{A} \models \Sigma$$

if $\mathfrak A$ is a model of each member of Σ . If $\varphi \in Form(\mathscr L)$, we say that Σ *logically entails* φ , and write

$$\Sigma \models \varphi$$

if φ is valid in every model of Σ . In particular, we write

for $\emptyset \models \varphi$; a formula φ satisfying this condition is then valid in every $(\mathcal{L}$ -) structure and is called *universally valid*.

Let \mathscr{L} * be a language which is an *extension* of \mathscr{L} , i.e. obtained from \mathscr{L} by adding a set $\{P_i: i \in I^*\}$ of new predicate symbols and a set $\{c_j: j \in J^*\}$ of new constant symbols. Given an \mathscr{L} *-structure

$$\mathfrak{A}^* = (A, \{R_i: i \in I \cup I^*\}, \{e_j: j \in J \cup J^*\}),$$

the \mathscr{L} -structure

$$\mathfrak{A} = (A, \{R_i: i \in I\}, \{e_i: j \in J\})$$

is called the \mathcal{L} -reduction of \mathfrak{A}^* . Analogously, \mathfrak{A}^* is called an \mathcal{L}^* -expansion of \mathfrak{A} . Notice that, while an \mathcal{L}^* -structure always has a unique \mathcal{L} -reduction, an \mathcal{L} -structure has in general more than one \mathcal{L}^* -expansion. We write \mathfrak{A}^* - \mathcal{L} -for the \mathcal{L} -reduction of \mathfrak{A}^* . It is important to keep in mind the fact that expanding or reducing has no effect on the domain of a structure; these operations merely add or subtract relations and designated elements.

The following lemmas are routine. The first is proved by a straightforward induction on the degree of complexity of formulas, the second follows from the definition of \models .

Expansion lemma. Let $\Sigma \subseteq Sent(\mathscr{L})$, let \mathscr{L}^* be any extension of \mathscr{L} , let \mathfrak{A} be any \mathscr{L}^* -expansion of \mathfrak{A} . Then

$$\mathfrak{A} \models \Sigma \iff \mathfrak{A}^* \models \Sigma$$
.

Constants lemma. Let \mathfrak{A} be an \mathscr{L} -structure, let $\varphi(v_0, ..., v_n) \in Form(\mathscr{L})$, and let $c_0, ..., c_n$ be constant symbols of \mathscr{L} . Then

$$\mathfrak{A} \models \varphi(c_0, ..., c_n) \Leftrightarrow \mathfrak{A} \models \varphi[c_0^{\mathfrak{A}}, ..., c_n^{\mathfrak{A}}]. \blacksquare$$

3. Review of first-order predicate logic.

Let \mathscr{L} be a first-order language of type (λ, J) . We specify axioms and rules of inference for \mathscr{L} as follows. As axioms we take

- 1) all instances of propositional tautologies;
- 2) equality axioms:

$$t = t \quad t = u \to u = t \quad t = u \land u = v \to t = v$$

$$(t_1 = u_1 \land \dots \land t_{\lambda(i)} = u_{\lambda(i)}) \to [P_i t_1 \dots t_{\lambda(i)} \to P_i u_1 \dots u_{\lambda(i)}]$$

3) all formulas of the form

$$\forall x \varphi(x) \rightarrow \varphi(t) \qquad \varphi(t) \rightarrow \exists x \varphi(x)$$

where, if t is a variable, it does not occur bound in φ .

The rules of inference of Lare:

1) modus ponens:

$$\frac{\phi \quad \phi \rightarrow \psi}{\psi}$$

2) quantifier rules: if x is not free in φ ,

$$\begin{array}{ccc}
\phi \to \psi(x) & \underline{\psi}(x) \to \phi \\
\phi \to \forall x \phi(x) & \exists x \psi(x) \to \phi
\end{array}$$

A *proof* in \mathscr{L} of φ from a set $\Sigma \subseteq Sent(\mathscr{L})$ is a finite sequence $\psi_1, ..., \psi_n$ of \mathscr{L} -formulas, with $\psi_n = \varphi$, each member of which is either an axiom, a member of Σ , or else follows from previous ψ_i by one of the rules of inference. We say that φ is *provable from* Σ , and write

$$\Sigma \vdash \varphi$$
.

if there is a proof of φ from Σ . Σ is said to be *consistent* (in \mathscr{L}) if for no \mathscr{L} -formula φ do we have $\Sigma \vdash \varphi \land \neg \varphi$. If $\varnothing \vdash \varphi$, we write $\vdash \varphi$ and say that φ is a *theorem* of \mathscr{L} .

We now list a number of basic results concerning these notions. Throughout, Σ denotes an arbitrary set of \mathscr{D} -sentences.

Quantifier lemma. If x does not occur free in φ , then

$$\Sigma \vdash \exists x (\phi \land \psi) \leftrightarrow (\phi \land \exists x \psi) \qquad \Sigma \vdash \exists x (\phi \rightarrow \psi) \leftrightarrow (\phi \rightarrow \exists x \psi). \quad \blacksquare$$

Deduction theorem. If $\sigma \in Sent(\mathcal{L})$, then for any formula ϕ ,

$$\Sigma \cup \{\sigma\} \vdash \varphi \Leftrightarrow \Sigma \vdash \varphi \rightarrow \psi$$
.

Finiteness theorem. If $\Sigma \vdash \varphi$, then $\Sigma_0 \vdash \varphi$ for some finite subset Σ_0 of Σ .

Soundness theorem. If $\Sigma \vdash \varphi$, then $\Sigma \models \varphi$.

Consistency lemma. (i) Σ is consistent iff $\Sigma \nvdash \varphi$ not for some \mathscr{L} -formula φ . (ii) Σ is consistent iff every finite subset of Σ is so. (iii) If $\sigma \in Sent(\mathscr{D})$, $\Sigma \cup \{\sigma\}$ is consistent iff $\Sigma \nvdash \neg \sigma$.

Generalization lemma. If
$$\varphi(v_0, ..., v_n) \in Form(\mathcal{L})$$
, then $\Sigma \vdash \varphi \implies \Sigma \vdash \forall v_0 ... \forall v_n \varphi$.

4. The completeness and model existence theorems and some of their consequences.

Let \mathscr{L} be a first-order language of type (λ, J) . We make the following definitions.

1. An extension \mathscr{L}^* of \mathscr{L} is called a *simple* extension of \mathscr{L} if it is obtained by adding just new constant symbols.

- 2. Let $\Sigma \subseteq Sent(\mathscr{L})$ and let \mathscr{L}^* be a simple extension of \mathscr{L} . A set $\Sigma^* \subseteq Sent(\mathscr{L}^*)$ is called an \mathscr{L} -saturated extension of Σ in \mathscr{L}^* if $\Sigma \subseteq \Sigma^*$ and, for any \mathscr{L} -formula φ with at most one free variable x, there is a constant symbol c of \mathscr{L}^* such that $\Sigma^* \vdash \exists x \varphi(x) \to \varphi(c)$.
- 3. A set $\Sigma \subseteq Sent(\mathcal{L})$ is *saturated* if for any \mathcal{L} -formula φ with at most one free variable x, there is a constant c of \mathcal{L} for which

$$\Sigma \vdash \exists x \varphi(x) \rightarrow \varphi(c)$$
.

If Σ is saturated, then clearly:

$$\Sigma \vdash \exists x \varphi(x) \iff \Sigma \vdash \varphi(c)$$
 for some constant *c* of \mathscr{L} .

Notice also that if some set of \mathscr{D} -sentences is saturated, then \mathscr{D} contains at least one constant symbol.

Lemma 1. Suppose that $\Sigma \subseteq Sent(\mathscr{L})$ is consistent. Then there is a consistent \mathscr{L} -saturated extension Σ^* in a simple extension \mathscr{L}^* of \mathscr{L} for which $\|\mathscr{L}^*\| = \|\mathscr{L}\|$.

Proof. Let F be the set of \mathscr{L} -formulas with at most one free variable (which we shall denote by x). For each $\varphi \in F$ introduce a new constant symbol c_{φ} in such a way that, if φ and ψ are distinct formulas, then c_{φ} and c_{ψ} are distinct constants. In this way we obtain a simple extension \mathscr{L}^* of \mathscr{L} clearly $\|\mathscr{L}^*\| = \|\mathscr{L}\|$.

Now define

$$\Sigma^* = \Sigma \cup \{\exists x \varphi(x) \to \varphi(c_{\varphi}) : \varphi \in F\}.$$

Clearly Σ^* is an \mathscr{L} -saturated extension of Σ in \mathscr{L}^* . It remains to show that Σ^* is consistent.

Suppose, on the contrary, that Σ^* is inconsistent. Then by the consistency lemma there is a finite subset $\{\varphi_1,...,\varphi_n\}$ of F such that, writing c_i for c_{φ_i} , $\Sigma \cup \{\exists x \varphi_i \to \varphi_i(c_i): i=1,...,n\}$ is inconsistent. It follows from the consistency lemma that

$$\Sigma \vdash \neg \bigwedge_{i=1}^{n} [\exists x \varphi_i \to \varphi_i(c_i)]$$

Now choose n distinct variables $x_1,...,x_n$ which do not occur in the proof from Σ of the sentence on the right hand side of the turnstile in (*). If in this proof we change c_i at each of its occurrences to x_i for i = 1,...,n, we obtain a proof of the formula $\neg \bigwedge_{i=1}^n [\exists x \varphi_i \to \varphi_i(x_i)]$ from Σ , whence

$$\Sigma \vdash \neg \bigwedge_{i=1}^{n} [\exists x \varphi_i \to \varphi_i(x_i)].$$

By the generalization lemma,

$$\Sigma \vdash \forall v_1 ... \forall v_n \neg \bigwedge_{i=1}^n [\exists x \varphi_i \rightarrow \varphi_i(x_i)]$$

so that

$$(**) \qquad \qquad \Sigma \vdash \neg \exists v_1 ... \exists v_n \bigwedge_{i=1}^n [\exists x \varphi_i \to \varphi_i(x_i)].$$

Now the x_i have been chosen in such a way that, if $i \neq j$, then x_i does not occur in $\varphi_j(x_i)$. So it follows from the quantifier lemma that the existential quantifiers on the right hand side of the turnstile in (**) may be moved across the conjunctions and implications to yield

$$\Sigma \vdash \neg \bigwedge_{i=1}^{n} [\exists x \varphi_{i} \to \exists x_{i} \varphi_{i}(x_{i})].$$

But since, clearly, $\vdash \exists x \varphi_i \to \exists x_i \varphi_i(x_i)$ for each i, it follows that Σ is inconsistent, contradicting assumption. Accordingly Σ^* is consistent and the lemma is proved.

A set $\Sigma \subseteq Sent(\mathscr{L})$ is said to be *complete* if, for any $\sigma \in Sent(\mathscr{L})$, we have $\Sigma \vdash \sigma$ or $\Sigma \vdash \neg \sigma$.

Lemma 2. Suppose that $\Sigma \subseteq Sent(\mathscr{D})$ is consistent. Then there is a complete consistent set $\Sigma' \subseteq Sent(\mathscr{D})$ such that $\Sigma \subseteq \Sigma'$.

Proof. The family of consistent sets of sentences of \mathscr{L} containing Σ , ordered by inclusion, is easily seen to be closed under unions of chains, and so by Zorn's lemma has a maximal member Σ' . If $\sigma \in Sent(\mathscr{L})$ and $\Sigma' \nvdash \sigma$, then $\Sigma' \cup \{\neg \sigma\}$ is consistent by the consistency lemma. Since Σ' is maximal consistent, we must have $\Sigma' \cup \{\neg \sigma\} = \Sigma'$, so a fortior $\Sigma' \vdash \neg \sigma$. Thus Σ' is complete and meets the requirements of the lemma.

Theorem 1. Suppose that $\Sigma \subseteq Sent(\mathscr{L})$ is consistent. Then there is a simple extension \mathscr{L}^+ of \mathscr{L} such that $\|\mathscr{L}^+\| = \|\mathscr{L}\|$ and a complete saturated consistent set $\Sigma^+ \subseteq Sent(\mathscr{L}^+)$ such that $\Sigma \subseteq \Sigma^+$.

Proof. We construct a sequence \mathscr{L}_0 , \mathscr{L}_1 ,... of simple extensions of \mathscr{L} and a sequence Σ_0 , Σ_1 ,... of consistent sets of sentences as follows. We begin by putting $\mathscr{L}_0 = \mathscr{L}$ and $\Sigma_0 = \Sigma$. Suppose now that the consistent set $\Sigma_n \subseteq Sent(\mathscr{L}_n)$ has been defined. By Lemma 1 there is a simple extension \mathscr{L}_n^* such that $\|\mathscr{L}_n^*\| = \|\mathscr{L}_n\|$ and a consistent \mathscr{L}_n -saturated extension Σ_n^* of Σ_n in \mathscr{L}_n^* : clearly Σ_n^* is \mathscr{L}_n -saturated also. We set $\mathscr{L}_{n+1} = \mathscr{L}_n^*$, $\Sigma_{n+1} = \Sigma_n^{*'}$. Then Σ_{n+1} is a complete, consistent \mathscr{L}_n -saturated extension of Σ_n in \mathscr{L}_{n+1} .

Now we define \mathscr{L}^+ to be the union of all the languages \mathscr{L}_n and Σ^+ to be the union of all the sets Σ_n . Since $\|\mathscr{L}_n\| = \|\mathscr{L}_0\| = \|\mathscr{L}\|$ for all n, it follows that $\|\mathscr{L}^+\| = \|\mathscr{L}\|$. Also, $\Sigma^+ \subseteq Sent(\mathscr{L}^+)$, $\Sigma \subseteq \Sigma^+$ and Σ^+ , as the union of the chain $\Sigma_0 \subseteq \Sigma_1 \subseteq ...$ of consistent sets, is itself consistent. For if Σ^+ is inconsistent, let Φ be the finite set of formulas of \mathscr{L} in a proof \mathscr{P} of a formula of the form $\phi \wedge \neg \phi$ from Σ^+ . Then $\Phi \subseteq Form(\mathscr{L}_m)$ for some m, and $\Sigma^+ \cap \Phi \subseteq \Sigma_n$ for some n. Writing q for the larger of m, n, \mathscr{P} is then a proof of $\phi \wedge \neg \phi$ from Σ_q in \mathscr{L}_q , contradicting the consistency of Σ_q .

Moreover, Σ^+ is complete. for, if $\sigma \in Sent(\mathscr{D}^+)$, then $\sigma \in Sent(\mathscr{D}_n)$, for some n, and so, since Σ_n is complete, either $\Sigma_n \vdash \sigma$ or $\Sigma_n \vdash \neg \sigma$. Since $\Sigma_n \subseteq \Sigma^+$, it follows that $\Sigma^+ \vdash \sigma$ or $\Sigma^+ \vdash \neg \sigma$, proving the claim.

Finally, Σ^+ is saturated. For let $\varphi(x)$ be a formula of \mathscr{L}^+ with one free variable x. Then $\varphi(x) \in Form(\mathscr{L}_n)$ for some n. Since Σ_{n+1} is an \mathscr{L}_n -saturated extension of Σ_n in \mathscr{L}_{n+1} , there is a

constant symbol c of \mathcal{L}_{n+1} for which the sentence $\exists x \varphi(x) \to \varphi(c)$ is provable from Σ_{n+1} , and hence also, since $\Sigma_{n+1} \subseteq \Sigma^+$, from Σ^+ . Therefore the latter is saturated as claimed.

Now let Σ be a fixed consistent set of sentences of \mathscr{L} . Let C be the set of constant symbols of \mathscr{L} we shall assume that this set is nonempty. We define the relation \approx on C by

$$c \approx d \Leftrightarrow \Sigma \vdash c = d$$
.

It is easy to verify, using the equality axioms in \mathscr{L} , that \approx is an equivalence relation. For each c $\in C$ write \tilde{c} for the equivalence class of c with respect to \approx ; thus

$$\tilde{c} = \{d \in C: \Sigma \vdash c = d\}.$$

Let

$$\tilde{C} = \{\tilde{c} : c \in C\}$$

 $\widetilde{C} = \{\widetilde{c} : c \in C\}$ be the set of all such equivalence classes. Corresponding to each predicate symbol P_i of \mathscr{L} define the $\lambda(i)$ - ary relation R_i on \widetilde{C} by

$$R_i(\widetilde{c_1},...,\widetilde{c_{\lambda(i)}}) \Leftrightarrow \Sigma \vdash P_i c_1...c_{\lambda(i)}.$$

We can now frame the

Definition. The *canonical structure* determined by Σ is the \mathscr{L} -structure

$$\mathfrak{A}_{\Sigma} = (\widetilde{C}, \{R_i: i \in I\}, \{\widetilde{c_j}: j \in J\}).$$

Observe that $\|\mathfrak{A}_{\Sigma}\| < |C|$.

Theorem 2. Suppose that Σ is complete, consistent and saturated. Then \mathfrak{A}_{Σ} is a model of Σ.

Proof. We show that, for any \mathcal{L} -sentence σ ,

$$\mathfrak{A}_{\Sigma} \vDash \sigma \iff \Sigma \vdash \sigma.$$

That this holds for atomic sentences is an immediate consequence of the definition of \mathfrak{A}_{Σ} . We now argue by induction on the degree of complexity of the sentence σ .

Suppose then that n > 0 and that (*) holds for all sentences of degree < n. Let σ have degree n; then σ is either a conjunction or a negation of sentences of degree < n, or an existentialization of a formula of degree $\leq n$. Verifying (*) in the first two cases is routine (using the completeness of Σ in the negation case) and we omit the details. In the last case, σ is of the form $\exists x \varphi(x)$, where φ has degree $\leq n$. We then have

$$\mathfrak{A}_{\Sigma} \models \sigma \iff \mathfrak{A}_{\Sigma} \models \exists x \varphi(x)$$

$$\Leftrightarrow \mathfrak{A}_{\Sigma} \models \varphi[\tilde{c}] \text{ for some } c \in C$$
(by constants lemma)
$$\Leftrightarrow \mathfrak{A}_{\Sigma} \models \varphi(c) \text{ for some } c \in C$$
(by (*))
$$\Leftrightarrow \Sigma \vdash \varphi(c) \text{ for some } c \in C$$
(since Σ is saturated)
$$\Leftrightarrow \Sigma \vdash \exists x \varphi(x)$$

$$\Leftrightarrow \Sigma \vdash \sigma.$$

Therefore σ satisfies (*) and the proof is complete.

These results have the following important corollaries.

Model Existence Theorem (Gödel-Henkin). Any consistent set Σ of first-order sentences has a model of cardinality at most max(\aleph_0 , $|\Sigma|$).

Proof. Let $\kappa = \max(\aleph_0, |\Sigma|)$; then $\kappa = \|\mathscr{L}_{\Sigma}\|$ by the lemma on p. 3. By Theorem 1 we can extend Σ to a complete consistent saturated set of sentences Φ in a simple extension \mathscr{L}' of \mathscr{L}_{Σ} such that $\|\mathscr{L}'\| = \|\mathscr{L}_{\Sigma}\| = \kappa$. By Theorem 2, the canonical structure \mathfrak{A}_{Φ} is a model of Φ and hence also of Σ . The expansion theorem implies that the \mathscr{L}_{Σ} -reduction \mathscr{U}' of \mathfrak{A}_{Φ} is a model of Σ , and that any \mathscr{L} -expansion \mathfrak{A} of \mathfrak{A}' is likewise. Moreover, if C is the set of constant symbols of \mathscr{L}' , then $\|\mathfrak{A}\| = \|\mathfrak{A}_{\Phi}\| \le |C| \le \|\mathscr{L}_{\Sigma}\| = \kappa$. The proof is complete.

Completeness Theorem. If
$$\Sigma \subseteq Sent(\mathcal{L})$$
 and $\sigma \in Sent(\mathcal{L})$, then $\Sigma \vdash \sigma \Rightarrow \Sigma \vDash \sigma$.

Proof. If $\Sigma \nvDash \sigma$, then, by the consistency theorem, $\Sigma \cup \{\sigma\}$ is consistent and so, by the model existence theorem, has a model \mathfrak{A} . Since \mathfrak{A} is a model of Σ but not of σ , it follows that $\Sigma \nvDash \sigma$.

Compactness Theorem. A set of first-order sentences Σ has a model iff every finite subset of Σ has a model.

Proof. One way round is trivial. If, conversely, every finite subset of Σ has a model, then every finite subset of Σ is consistent and so Σ itself is consistent by the consistency lemma. Therefore Σ has a model by the model existence theorem.

Invariance Theorem. Provability and consistency are *invariant with respect to language*. That is, if $\Sigma \subseteq Sent(\mathcal{L})$ and $\sigma \in Sent(\mathcal{L})$, and \mathcal{L}^* is an extension of \mathcal{L} , then

- (a) $\Sigma \vdash \sigma$ in $\mathscr{L} \Leftrightarrow \Sigma \vdash \sigma$ in \mathscr{L}^*
- (b) Σ is consistent in $\mathscr{L} \Leftrightarrow \Sigma$ is consistent in \mathscr{L}^* .

Proof. We prove (a); (b) is an immediate consequence. Clearly $\Sigma \vdash \sigma$ in $\mathscr{L} \Leftrightarrow \Sigma \vdash \sigma$ in \mathscr{L}^* . Conversely, if $\Sigma \vdash \sigma$ in \mathscr{L}^* , then $\Sigma \vDash \sigma$ by the completeness theorem, that is, every \mathscr{L}^* -structure which is a model of Σ is also a model of σ . If \mathfrak{A} is any \mathscr{L} -structure which is a model of Σ , it can be expanded to an \mathscr{L}^* -structure \mathfrak{A}^* which, by the expansion lemma, is also a model of \mathscr{L} . Then \mathfrak{A}^* is a model of σ , and so, applying the expansion lemma again, \mathfrak{A} , as the \mathscr{L} -reduction of \mathfrak{A}^* , is a model of σ . Therefore, by the completeness theorem, $\Sigma \vdash \sigma$ in \mathscr{L} .

Löwenheim-Skolem Theorem. If a set Σ of first-order sentences has an infinite model, it has a model of any cardinality $\kappa \ge \max(\aleph_0, |\Sigma|)$.

Proof. For simplicity write \mathscr{L} for \mathscr{L}_{Σ} . Let \mathscr{L}^* be the simple extension of \mathscr{L} obtained by adding a set $\{d_j: j \in J\}$ of new constant symbols, where $|J| = \kappa$. Let

$$\Sigma^* = \Sigma \cup \{ \neg (d_i = d_k) : j, k \in J \& j \neq k \}.$$

If Σ_0 is any finite subset of Σ^* , only finitely many sentences of the form $\neg(d_j = d_k)$ occur in Σ_0 ; let d_{j1} , ..., d_{jn} be a list of all constant symbols occurring in such sentences in Σ_0 . If now $\mathfrak A$ is an infinite model of Σ (which we may take to be an $\mathscr L$ -structure), choose n distinct elements a_1,\ldots,a_n of its domain A. Let $\mathfrak A^*$ be the $\mathscr L$ -expansion of $\mathfrak A$ in which the interpretation of d_{jp} is a_p for $p=1,\ldots,n$ and that of d_j is an arbitrary element of A for $j \notin \{j_1,\ldots,j_n\}$. Clearly $\mathfrak A^*$ is then a model of Σ_0 .

It follows that every finite subset of Σ^* has a model. Thus every finite subset of Σ^* is consistent and so Σ^* is itself consistent. Clearly $|\Sigma^*| = \kappa$, so the model existence theorem implies that Σ^* has a model of cardinality $\leq \kappa$. Since the interpretations of the d_j in any model of Σ^* must be distinct, any such model must have cardinality $\geq \kappa$. So Σ^* has a model of cardinality κ ; its \mathscr{L} -reduction is a model of Σ of cardinality κ .

Overspill Theorem. If a set of first-order sentences has arbitrarily large finite models, it has an infinite model.

Proof. For each $n \in \omega$ let σ_n be a sentence (formulable in any first-order language with equality) asserting that there at least n individuals. Given a set Σ of first-order sentences, let $\Sigma^* = \Sigma \cup \{\sigma_n: n \in \omega\}$. If Σ has arbitrarily large finite models, then each finite subset of Σ^* has a model, so by the compactness theorem Σ^* has a model, which must evidently be an infinite model of Σ .

5. Relations between structures.

Let $\mathfrak{A} = (A, \{R_i: i \in I\}, \{e_j: j \in J\})$ and $\mathfrak{B} = (B, \{S_i: i \in I\}, \{d_j: j \in J\})$ be structures of the same type (λ, J) . We say that \mathfrak{A} is a *substructure* of \mathfrak{B} , written $\mathfrak{A} \subseteq \mathfrak{B}$, $e_j = d_j$ for all $j \in J$, and $R_i = S_i \cap A^{\lambda(i)}$ for all $i \in I$. If C is a nonempty subset of B containing all the designated elements of \mathfrak{B} , we define the substructure $\mathfrak{B} \mid C$ of \mathfrak{B} by

$$\mathfrak{B} \mid C = (C, \{S_i \cap C^{\lambda(i)}: i \in I\}, \{d_j: j \in J\}).$$

An *embedding* of a structure $\mathfrak A$ into a structure $\mathfrak B$ is an injective map $f: A \to B$ such that $f(e_j) = d_j$ for all $j \in J$, and for all $i \in I$ and $a_1, ..., a_{\lambda(i)} \in A$, we have

$$R_i(a_1, ..., a_{\lambda(i)}) \Leftrightarrow S_i(fa_1, ..., fa_{\lambda(i)}).$$

If there exists an embedding of \mathfrak{A} into \mathfrak{B} , we say that \mathfrak{A} is *embeddable* into \mathfrak{B} and write $\mathfrak{A} \sqsubseteq \mathfrak{B}$. If f is an embedding of \mathfrak{A} into \mathfrak{B} , we write $f[\mathfrak{A}]$ for the structure $\mathfrak{B}[f]$. A surjective embedding is called an *isomorphism*. If there exists an isomorphism between \mathfrak{A} and \mathfrak{B} , they are said to be *isomorphic* and we write $\mathfrak{A} \cong \mathfrak{B}$.

Let \mathscr{L} be the first-order language of type (λ, J) . We say that the \mathscr{L} -structures \mathfrak{A} and \mathfrak{B} are *elementarily equivalent*, and write $\mathfrak{A} \equiv \mathfrak{B}$, if $\mathfrak{A} \models \sigma \Leftrightarrow \mathfrak{B} \models \sigma$ for any \mathscr{L} -sentence σ . It is easily shown that isomorphic structures are elementarily equivalent, but the Löwenheim-Skolem theorem implies that the converse fails.

The \mathscr{L} -structure \mathfrak{A} is said to be an *elementary substructure* of the \mathscr{L} -structure \mathfrak{B} , and \mathfrak{B} an *elementary extension* of \mathfrak{A} , if $\mathfrak{A} \subseteq \mathfrak{B}$ and, for any \mathscr{L} -formula $\varphi(v_0,...,v_n)$ and any $a_0,...,a_n \in A$,

we have

$$\mathfrak{A} \models \varphi[a_0, ..., a_n] \Leftrightarrow \mathfrak{B} \models \varphi[a_0, ..., a_n].$$

In this situation we write $\mathfrak{A} \prec \mathfrak{B}$. Evidently $\mathfrak{A} \prec \mathfrak{B} \Rightarrow \mathfrak{A} \equiv \mathfrak{B}$, but the converse is easily seen to be false.

An embedding f of $\mathfrak A$ into $\mathfrak B$ is called an *elementary embedding* if for any $\mathscr L$ -formula $\varphi(v_0,...,v_n)$ and any $a_0,...,a_n\in A$ we have

$$\mathfrak{A} \models \varphi[a_0, ..., a_n] \Leftrightarrow \mathfrak{B} \models [fa_0, ..., fa_n].$$

In this situation we write $f: \mathfrak{A} \prec \mathfrak{B}$. If such an f exists, we write $\mathfrak{A} \preceq \mathfrak{B}$. Clearly $\mathfrak{A} \preceq \mathfrak{B} \Rightarrow \mathfrak{A} \equiv \mathfrak{B}$. It is also easily shown that any isomorphism is an elementary embedding.

Tarski-Vaught Lemma. If $\mathfrak A$ and $\mathfrak B$ are $\mathscr L$ -structures, then $\mathfrak A \prec \mathfrak B$ iff $\mathfrak A \subseteq \mathfrak B$ and, for any $\mathscr L$ -formula $\varphi(v_0, ..., v_n)$ and any $a_0, ..., a_{n-1} \in A$,

(*) if
$$\mathfrak{B} \models \exists v_n \, \varphi[a_0, ..., a_{n-1}]$$
, then, for some $a \in A$, $\mathfrak{A} \models \varphi[a_0, ..., a_{n-1}, a]$.

Proof. One direction is trivial. Conversely, suppose that (*) holds. We prove by induction on the degree of φ that, for any n, any \mathscr{L} -formula $\varphi(v_0, ..., v_n)$ and any $a_0, ..., a_n \in A$,

$$\mathfrak{A} \models \varphi[a_0, ..., a_n] \Leftrightarrow \mathfrak{B} \models \varphi[a_0, ..., a_n].$$

That (**) holds for atomic formulas is obvious, as are the induction steps for \neg and \land . It remains to show that, if it holds for φ , it also holds for $\exists v_k \varphi$. Without loss of generality we may assume that n is greater than the index of every variable (free or bound) occurring in φ , and then, by making a suitable change of variable in φ (i.e., by substituting v_n for v_k), that k = n.

If $\mathfrak{A} \models \exists v_n \varphi[a_0, ..., a_{n-1}]$, then $\mathfrak{A} \models \varphi[a_0, ..., a_{n-1}, a]$ for some $a \in A$, and it follows from (**) for φ that $\mathfrak{B} \models \varphi[a_0, ..., a_{n-1}, a]$, whence $\mathfrak{B} \models \exists v_n \varphi[a_0, ..., a_{n-1}]$. Conversely, if $\mathfrak{B} \models \exists v_n \varphi[a_0, ..., a_{n-1}]$, then, by (*), $\mathfrak{B} \models \varphi[a_0, ..., a_{n-1}, a]$ for some $a \in A$, whence $\mathfrak{A} \models \varphi[a_0, ..., a_{n-1}, a]$ by (**), so that $\mathfrak{A} \models \exists v_n \varphi[a_0, ..., a_{n-1}]$. This completes the induction step and the proof. \blacksquare

Corollary. Write \mathbf{Q} and \mathbb{R} for the sets of rational and real numbers. Then

$$(\mathbf{Q}, \leq) \prec (\mathbb{R}, \leq)$$
.

Proof. We show that the Tarski-Vaught lemma applies. Suppose that, for a formula $\varphi(v_0, ..., v_n)$ of the appropriate language, and $a_0 < ... < a_{n-1} \in \mathbf{Q}$, we have $(\mathbb{R}, \leq) \models \exists v_n \varphi[a_0, ..., a_{n-1}]$. Then there is $b \in \mathbb{R}$ such that $(\mathbb{R}, \leq) \models \varphi[a_0, ..., a_{n-1}, b]$. Say $a_i < b < a_{i+1}$ (the cases $b < \text{or } > \text{all } a_i$ being similar). Choose a to be any rational such that $a_i < a < a_{i+1}$. It is easy to construct an isomorphism $f: \mathbb{R} \to \mathbb{R}$ such that $f(a_j) = a_j$ for $0 \leq j \leq n-1$ and f(b) = a. This f is also an elementary embedding. Hence $(\mathbb{R}, \leq) \models \varphi[a_0, ..., fa_{n-1}, b]$, i.e. $(\mathbb{R}, \leq) \models \varphi[a_0, ..., a_{n-1}, a]$. Since $a \in \mathbf{Q}$, the Tarski-Vaught lemma applies to yield the required conclusion.

Given a set X, let \mathcal{G}_X be the simple extension of \mathcal{G} obtained by adding a set $\{c_x: x \in X\}$ of distinct new constant symbols indexed by X. If \mathfrak{A} is an \mathcal{G} -structure and X is a subset of its domain A, we write (\mathfrak{A}, X) for the \mathcal{G}_X -expansion of \mathfrak{A} in which the interpretation of each c_x is x. If f is a mapping of X into the domain B of an \mathcal{G} -structure \mathfrak{B} , we write $(\mathfrak{B}, f[X])$ for the \mathcal{G}_X -expansion of \mathfrak{B} in which the interpretation of each c_x is f(x).

The diagram of \mathfrak{A} , $\Delta(\mathfrak{A})$, is the set of atomic and negated atomic sentences that hold in (\mathfrak{A}, A) . The complete diagram of \mathfrak{A} , $\Gamma(\mathfrak{A})$, is the set of all sentences of \mathscr{L}_A that hold in (\mathfrak{A}, A) . The proof of the following lemma is then straightforward.

Diagram lemma. Let $\mathfrak A$ and $\mathfrak B$ be $\mathscr L$ -structures. Then:

- (i) $\mathfrak{A} \sqsubseteq \mathfrak{B}$ iff \mathfrak{B} can be expanded to a model of $\Delta(\mathfrak{A})$;
- (ii) $\mathfrak{A} \preceq \mathfrak{B}$ iff \mathfrak{B} can be expanded to a model of $\Gamma(\mathfrak{A})$;
- (iii) if $\mathfrak{A} \subseteq \mathfrak{B}$, then $\mathfrak{A} \prec \mathfrak{B}$ iff $(\mathfrak{B}, A) \models \Gamma(\mathfrak{A})$;
- (iv) an embedding f of $\mathfrak A$ into $\mathfrak B$ is an elementary embedding iff $(\mathfrak A, A) \equiv (\mathfrak B, f[A])$.

We now show that infinite structures have elementary substructures and extensions of most cardinalities.

Theorem. Let \mathfrak{A} be an infinite \mathscr{L} -structure.

- (i) If $X \subseteq A$, then for any cardinal satisfying $\max(|X|, ||\mathcal{L}|) \le \kappa \le |A|$, there is an elementary substructure \mathfrak{B} of \mathfrak{A} such that $|B| = \kappa$ and $X \subset B$.
 - (ii) \mathfrak{A} has an elementary extension of any cardinality $\geq \max(|X|, ||\mathscr{L}||)$.
- **Proof.** (i) Let < be some fixed well-ordering of A. We define a sequence B_0 , B_1 ,... of subsets of A recursively as follows. Choose B_0 to be any subset of A such that $|B_0| = \kappa$ and $X \subseteq B_0$. If B_n has been defined, put
- $B_{n+1} = \{b: \text{ for some } \mathscr{G}\text{-formula } \varphi(v_0, ..., v_m) \text{ and some } b_0, ..., b_{m-1} \in B_n, b \text{ is the } <\text{-least element of } A \text{ such that } \mathfrak{A} \models \varphi[b_0, ..., b_{m-1}, b]\}.$

It is easy to check that $B_n \subseteq B_{n+1}$ and that $|B_{n+1}| = \kappa$. Now define B to be the union of the B_n and $\mathfrak{B} = \mathfrak{A} | B$. Then \mathfrak{B} is a substructure of \mathfrak{A} of cardinality κ and it is easy to apply the Tarski-Vaught lemma to conclude that $\mathfrak{B} \prec \mathfrak{A}$.

(ii) Let Γ be the complete diagram of \mathfrak{A} . Then $|\Gamma| = \max(|X|, ||\mathscr{L}||)$. Since Γ is evidently consistent, the model existence theorem implies that it has a model of any cardinality $\kappa \geq |\Gamma| = \max(|A|, ||\mathscr{L}||)$. The result now follows from the diagram lemma.

6. Ultraproducts

A filter over a set I is a family \mathscr{F} of subsets of I such that (i) $X, Y \in \mathscr{F} \Leftrightarrow X \cap Y \in \mathscr{F}$, (ii) $\emptyset \notin \mathscr{F}$. It follows immediately from (i) that any filter \mathscr{F} over I satisfies; $X \in \mathscr{F}$ and $X \subseteq Y \in \mathscr{F} \Rightarrow Y \in \mathscr{F}$. An *ultrafilter* over I is a filter \mathscr{U} over I satisfying the condition: for any $X \in \mathscr{U}$, either $X \in \mathscr{U}$ or $I - X \in \mathscr{U}$. In particular, for any $i \in I$, $\mathscr{U}_i = \{X \subseteq I : i \in X\}$ is an ultrafilter over I called the *principal* ultrafilter generated by i. It is easily shown that an ultrafilter is precisely a filter that is maximal in the sense that it is included in no filter apart from itself. A straightforward application of Zorn's Lemma shows that a family \mathscr{A} of subsets of I is included in an ultrafilter over I if and only if it has the *finite intersection property:* that is, for any finite subfamily \mathscr{B} of \mathscr{A} we have $\bigcap \mathscr{B} \neq \emptyset$.

For ease of exposition we confine our attention throughout this section to structures consisting of a nonempty set and a single binary relation on that set. The appropriate language \mathscr{L} for such structures thus has a single predicate symbol of degree 2, say P_0 . The type of these structures, and of \mathscr{L} , is then $((0, 2), \varnothing)$. It should be clear that everything we do can be extended to arbitrary structures merely by complicating the notation.

Now let I be some arbitrary fixed index set, and for each $i \in I$ let $\mathfrak{A}_i = (A_i, R_i)$ be an \mathscr{L} structure. Let ΠA_i be the Cartesian product of the sets A_i : we use letters f, g, h, f', g', h' to denote elements of ΠA_i .

Given a family \mathscr{F} of subsets of I, we define the relation $\sim_{\mathscr{F}}$ on ΠA_i by

$$f \sim_{\mathcal{F}} g \iff \{i \in I : f(i) = g(i)\} \in \mathcal{F}.$$

It is easily shown that, if \mathscr{F} is a filter over I, then $\sim_{\mathscr{F}}$ is an equivalence relation on ΠA_i . From here on we shall suppose that \mathscr{F} is a filter over I. For each $f \in \Pi A_i$ we write f / \mathscr{F} for the $\sim_{\mathscr{F}}$ -equivalence class of f, and we define

$$\Pi A_i/\mathscr{F} = \{f/\mathscr{F} : f \in \Pi A_i\}.$$

We define the relation R on ΠA_i by:

$$(f, g) \in R \Leftrightarrow \{i \in I : (f(i), g(i)) \in R_i\} \in \mathscr{F}.$$

It is not difficult to show that R is compatible with $\sim_{\mathscr{F}}$ in the sense that, if $f \sim_{\mathscr{F}} f'$ and $g \sim_{\mathscr{F}} g'$, then $fRg \Rightarrow f'Rg'$. That being the case, the relation R on ΠA_i induces the relation R_F on $\Pi A_i/\mathscr{F}$ given by

$$(f/\mathscr{F}, g/\mathscr{F}) \in R_F \Leftrightarrow fRg.$$

The \mathscr{D} -structure $\Pi \mathfrak{A}_i/\mathscr{F} = (\Pi A_i/\mathscr{F}, R_F)$ is called the *reduced product* of the family $\{\mathfrak{A}_i: i \in I\}$ over the filter \mathscr{F} . if \mathscr{F} is an ultrafilter, the reduced product over \mathscr{F} is called an *ultraproduct*. If, for each $i \in I$, \mathfrak{A}_i is a fixed structure \mathfrak{A} , the reduced product is denoted by $\mathfrak{A}^I/\mathscr{F}$ and is called the *reduced power* of \mathfrak{A} over \mathscr{F} . When \mathscr{F} is an ultrafilter the reduced power is called an *ultrapower*.

Observe that if \mathscr{F} is the filter $\{I\}$, the reduced power $\Pi\mathfrak{A}_i/\mathscr{F}$ is isomorphic to $(\Pi A_i, R)$, and that, for $k \in I$, the ultraproduct $\Pi\mathfrak{A}_i/\mathscr{U}_k$ is isomorphic to \mathfrak{A}_k .

If $f = (f_0, f_1,...)$ is a sequence of elements of ΠA_i , that is, if $f \in (\Pi A_i)^{\omega}$, we write f(i) for the sequence $(f_0(i), f_1(i),...) \in A_i^{\omega}$ and, if \mathcal{U} is an ultrafilter over I, f / \mathcal{U} for the sequence

$$(f_0/\mathcal{U}, f_1/\mathcal{U}, \dots) \in (\prod A_i/\mathcal{U})^{\omega}.$$

We now prove the fundamental theorem on ultraproducts, viz.,

Łoś's Theorem. If \mathscr{U} is an ultrafilter over I, φ a formula of \mathscr{L} and f a sequence of elements of ΠA_i , then

$$(*) \qquad \qquad \Pi \mathfrak{A}_{i} / \mathscr{U} \models_{f/\mathscr{U}} \varphi \iff \{i \in I: \mathfrak{A}_{i} \models_{f(i)} \varphi\} \in \mathscr{U}.$$

Proof. The proof goes by induction on the complexity of φ . That (*) holds for atomic φ is a straightforward consequence of the definitions of $\sim_{\mathscr{F}}$ and R_F . The induction steps for \wedge and \neg follow easily from the defining properties of ultrafilters. Now suppose that (*) holds for φ (and arbitrary f); we show that it holds for $\exists v_n \varphi$.

Define

$$D = \{i \in I: \mathfrak{A}_i \models_{f(i)} \exists v_n \varphi\}.$$

We have to show that

$$\Pi \mathfrak{A}_i/\mathscr{U} \vDash_{f/\mathscr{U}} \exists v_n \varphi \iff D \in \mathscr{U}.$$

Suppose that $\Pi \mathfrak{A}_i/\mathscr{U} \models_{f/\mathscr{U}} \exists v_n \varphi$. Then there is some $b \in \Pi A_i$ for which $\Pi \mathfrak{A}_i/\mathscr{U} \models_{[n|b]f/\mathscr{U}} \varphi$. Let $E = \{i \in I: \mathfrak{A}_i \models_{([n|b]f)(i)} \varphi\}$. Then by the induction hypothesis $E \in F$. And since ([n|b]f)(i) = [n|b(i)]f(i), it follows that $E \subseteq D$, and so because \mathscr{U} is a filter, $D \in \mathscr{U}$.

Conversely suppose that $D \in \mathcal{U}$. If $i \in D$, then there is some $b_i \in A_i$ such that $\mathfrak{A}_i \models_{[n/b_i]f(i)} \varphi$. By the axiom of choice there is $c \in \Pi A_i$ for which $c(i) = b_i$ for every $i \in D$, and is an arbitrary element of A_i otherwise. Defining

$$C = \{i \in I: \mathfrak{A}_i \models_{([n|c]f)(i)} \varphi\},\$$

we have $D \subseteq C$ so that $C \in \mathcal{U}$. It now follows from the induction hypothesis that

$$\Pi \mathfrak{A}_i/\mathscr{U} \models_{([n|c]f)/\mathscr{U}} \varphi$$

i.e., since $([n|c]f)/\mathcal{U} = [n|c/\mathcal{U}]f/\mathcal{U}$,

$$\Pi \mathfrak{A}_{i}/\mathscr{U} \vDash_{[n|c/\mathfrak{u}]f/\mathfrak{u}} \varphi.$$

Therefore

$$\Pi \mathfrak{A}_i/\mathscr{U} \models_{f/\mathscr{U}} \exists v_n \varphi,$$

completing the proof of the theorem.

As an immediate consequence we have the

Corollary. For any \mathscr{L} - sentence σ we have

$$\Pi \mathfrak{A}_i / \mathfrak{U} \models \sigma \Leftrightarrow \{i \in I: \mathfrak{A}_i \models \sigma\} \in \mathfrak{U}. \blacksquare$$

Let $\mathfrak A$ be a structure and let $\mathscr W$ be an ultrafilter on the set I. For each $a \in A$ let $\hat a \in A^I$ be the function given by $\hat a(i) = a$ for all $i \in I$. The *canonical embedding* of $\mathfrak A$ into $\mathfrak A^I/\mathscr W$ is the map $d: A \to A^I/\mathscr W$ defined by $d(a) = \hat a/\mathscr W$. It is a straightforward consequence of Łoś's theorem that d is an elementary embedding.

Łoś's theorem may also be used to provide a simple direct proof of the compactness

theorem, avoiding the use of the completeness theorem. To wit, suppose that each finite subset Δ of a given set Σ of sentences has a model \mathfrak{A}_{Δ} ; for simplicity write I for the family of all finite subsets of Σ . For each $\Delta \in I$ let $\widetilde{\Delta} = \{\Phi \in I : \Delta \subseteq \Phi\}$. For any members $\Delta_1, \ldots, \Delta_n$ of I, we have

$$\Delta_1 \cup ... \cup \Delta_n \in \widetilde{\Delta_1} \cap ... \cap \widetilde{\Delta_n}$$
,

and so the collection $\{\widetilde{\Delta} : \Delta \in I\}$ has the finite intersection property. It can therefore be extended to an ultrafilter \mathscr{U} over I. The ultraproduct $\prod_{\Delta \in I} \mathfrak{A}_{\Delta} / \mathscr{U}$ is then a model of Σ . For if

 $\sigma \in \Sigma \text{, then } \{\sigma\} \in \Delta \text{, and } \mathfrak{A}_{\{\sigma\}} \vDash \sigma \text{; moreover, } \mathfrak{A}_{\Delta} \vDash \sigma \text{ whenever } \sigma \in \Delta. \text{ Hence}$

$$\widetilde{\{\sigma\}} = \{\Delta \in I : \sigma \in \Delta\} \subseteq \{\Delta \in I : \mathfrak{A}_{\Delta} \models \sigma\}.$$

Since $\widetilde{\{\sigma\}} \in \mathscr{U}$, $\{\Delta \in I : \mathfrak{A}_{\Delta} \models \sigma\} \in \mathscr{U}$ and therefore, by Łoś's theorem, $\prod_{\Delta \in I} \mathfrak{A}_{\Delta} / \mathscr{U} \models \sigma$. The proof is complete.

7. Completeness and categoricity

For simplicity, throughout this section we let \mathscr{L} be a *countable* first-order language. By a *theory* in \mathscr{L} we shall mean a set Σ of \mathscr{L} -sentences which is closed under provability, i.e such that, for each \mathscr{L} -sentence σ , if $\Sigma \vdash \sigma$, then $\sigma \in \Sigma$. A subset Γ of a theory Σ is called a *set of postulates* for Σ if $\Gamma \vdash \sigma$ for every $\sigma \in \Sigma$. Clearly each set Γ of \mathscr{L} -sentences is a set of postulates for a unique theory Σ , namely $\Sigma = \{\sigma \in Sent(\mathscr{L}): \Gamma \vdash \sigma\}$. For each \mathscr{L} -structure \mathfrak{A} let $\Theta(\mathfrak{A})$, the *theory* of \mathfrak{A} , be the set of all \mathscr{L} -sentences holding in \mathfrak{A} . Clearly $\Theta(\mathfrak{A})$ is a complete theory.

The following lemma is a straightforward consequence of the completeness theorem.

Lemma. The following conditions on a consistent theory Σ in \mathscr{L} are equivalent:

- (i) Σ is complete;
- (ii) any pair of models of Σ are elementarily equivalent;
- (iii) $\Sigma = \Theta(\mathfrak{A})$ for some \mathscr{L} -structure \mathfrak{A} .

Let κ be an infinite cardinal. A theory Σ is said to be κ -categorical if any pair of models of Σ of cardinality κ are isomorphic.

Examples. (i) Let \mathscr{L} have no extralogical symbols and let Σ be the set of all \mathscr{L} -sentences which hold in every \mathscr{L} -structure. Then Σ is κ -categorical for every infinite κ .

- (ii) Let \mathscr{L} have just one unary predicate symbol P and let Σ be the set of \mathscr{L} -sentences which hold in every \mathscr{L} -structure. Then Σ is *not* κ -categorical for any infinite κ .
- (iii) Let \mathscr{L} be as in (ii) and for each matural number m let σ_m be the first-order sentence which asserts that there are at least m individuals having the property P and at least m individuals not having P. Let Σ be the theory with the set of all σ_m as postulates. Then Σ is \aleph_0 -categorical

but not κ -categorical for any $\kappa > \aleph_0$.

(iv) Let \mathscr{L} be the language whose sole extralogical symbols are countably many constants c_0 , c_1 ,... and let Σ be the theory with postulates $\{\neg(c_m = c_n): m \neq n\}$. Then Σ is κ -categorical for every $\kappa > \aleph_0$ but not \aleph_0 -categorical.

One of the deepest results in model theory is *Morley's theorem* (whose proof is too difficult to be included here) which asserts that the four possibilities above are *exhaustive*, that is, if a theory in a countable language is κ -categorical for *some* $\kappa > \aleph_0$, it is κ -categorical for *all* $\kappa > \aleph_0$.

The next result provides a simple, but useful, sufficient condition for completeness.

Theorem. (Vaught's test.) Let Σ be a consistent theory with no finite models and which is κ -categorical for some infinite κ . Then Σ is complete.

Proof. If Σ is not complete, then there is a sentence σ such that neither σ nor $\neg \sigma$ are provable from Σ . So both $\Sigma \cup \{\sigma\}$ and $\Sigma \cup \{\neg\sigma\}$ are consistent and hence have models, which must be infinite since Σ was assumed to have no finite models. Therefore, by Löwenheim-Skolem, both $\Sigma \cup \{\sigma\}$ and $\Sigma \cup \{\neg\sigma\}$ have models of cardinality κ . Since σ holds in one of these models but not in the other, Σ is not κ -categorical.

This theorem may be applied to establish the completeness of various theories.

UDO — the theory of *unbounded dense linear orderings* — is formulated in a language with just one binary predicate symbol R and has the following postulates (where we write $x \neq y$ for $\neg (x = y)$):

- (i) $\forall xRxx \land \forall x \forall y [Rxy \land Ryx \rightarrow x = y] \land \forall x \forall y \forall z [Rxy \land Ryz \rightarrow Rxz] \land \forall x \forall y [Rxy \lor Ryx]$
- (ii) $\forall x \forall y [Rxy \land x \neq y \rightarrow \exists x [x \neq z \land y \land z \land Rxz \land Rzy]]$
- (iii) $\forall x \exists y \exists z [x \neq y \land x \neq z \land Ryx \land Rxz]$

Postulate (i) asserts that R is a linear ordering, (ii) that it is dense, and (iii) that it is unbounded below and above. Natural examples of models of **UDO** are (\mathbf{Q}, \leq) and (\mathbb{R}, \leq) .

Theorem. UDO is \aleph_0 -categorical and so, by Vaught's test, complete.

- **Proof.** Let (A, \leq) and (B, \leq) be denumerable models of **UDO**. Thus each is an unbounded dense linearly ordered set. Let $A = \{a_n : n \in \omega\}$ and $B = \{b_n : n \in \omega\}$. We define two new sequences $\{a_n^* : n \in \omega\}$ and $\{b_n^* : n \in \omega\}$ as follows. First, put $a_0^* = a_0$ and $b_0^* = b_0$. Now suppose k > 0; we consider two cases.
- (i) k = 2m is even. In this case we put $a_k^* = a_m$. If, for some j < k, $a_k^* = a_j^*$, we put $b_k^* = b_j^*$. Otherwise we let b_k^* be some element of B bearing the same order relations to b_0^* , ..., b_{k-1}^* as does a_k^* to a_0^* , ..., a_{k-1}^* ; that is, for each j < k, if $a_k^* > \text{or } < a_j^*$, then $b_k^* > \text{or } < b_j^*$. Since (B, \leq) is a dense unbounded linearly ordered set, it is clear that such an element can always be found.
- (ii) k = 2m + 1 is odd. In this case we put $b_k^* = b_m$. If $b_k^* = b_j$ for some j < k, put $a_k^* = a_j^*$. Otherwise we choose a_k^* to be some element of A bearing the same order relations to a_0^* , ..., a_{k-1}^* as does b_k^* to b_0^* , ..., b_{k-1}^* . Again such an element can always be found.

This completes our recursive definition. We now define $h: A \to B$ by putting $h(a_n^*) = b_n^*$ for each $n \in \omega$. Clearly h is an isomorphism between (A, \leq) and (B, \leq) .

The theory we consider next is most naturally formulated in a language with *operation symbols*: all our previous results extend naturally to theories in such languages.

The *language* \mathcal{F} for fields is a first-order language with constant symbols 0, 1 and binary operation symbols +, ·. The *theory* **FT** of fields has the following postulates (where we write xy for $x \cdot y$):

$$\forall x \forall y [(x + y) + z = x + (y + z)]$$

$$\forall x [x + 0 = x]$$

$$\forall x \forall y [x + y = y + x]$$

$$\forall x \exists y [x + y = 0]$$

$$\forall x \forall y \forall z [(xy)z = x(yz)]$$

$$\forall x [1x = x]$$

$$\forall x \forall y [xy = yx]$$

$$\forall x \forall y \forall x [(y + z) = xy + xz]$$

$$-(0 = 1).$$

For $p \in \omega$, write p1 for 1 + 1 + ... + 1 with p summands. If to the postulates of **FT** we add the infinite set of sentences

$$\{\neg (p1 = 0): p \in \omega\},\$$

we get the theory FT_0 of fields of characteristic 0. (Natural examples are the fields of rationals and reals.)

We now write x^n for the expression $x \cdot (x \cdot (\dots \cdot (x \cdot x) \dots))$ with n factors. The infinite list of sentences, for n > 1,

$$\forall x_0... \forall x_n [\neg (x_n = 0) \rightarrow \exists y (x_n y^n + x_{n-1} y^{n-1} + ... + x_1 y + x_0 = 0)]$$

when added to the postulates of FT_0 , yields the *theory* ACF_0 of algebraically closed fields of characteristic 0. Each new postulate asserts that all polynomials of a given degree n has a zero.

We observe that ACF_0 is *not* \aleph_0 -categorical. For the field F of algebraic numbers and the algebraic closure of the field $F[\pi]$ obtained by adjoining the transcendental π to F are countable nonisomorphic models of ACF_0 . On the other hand, a classical theorem of Steinitz asserts that ACF_0 is κ -categorical for any *uncountable* κ , so we conclude from Vaught's test that ACF_0 is complete Since the field $\mathbb C$ of complex numbers is a model of ACF_0 , it follows that ACF_0 is a set of postulates for the theory of $\mathbb C$.

8. The elementary chain theorem and some of its consequences.

Let $\mathfrak{A}_0 \subseteq \mathfrak{A}_1 \subseteq ...$ be a chain of \mathscr{D} -structures: in particular the \mathfrak{A}_i all have the same designated elements. The *union* of the chain is the structure $\mathfrak{A} = \bigcup \mathfrak{A}_n$ defined as follows. The

domain of $\mathfrak A$ is the set $A=\bigcup_{n\in\omega}A_n$. For $i\in I$, the i^{th} relation R_i of $\mathfrak A$ is the union of the corresponding i^{th} relations of the A_n . The designated elements of $\mathfrak A$ are the designated elements of the $\mathfrak A_n$. Clearly each $\mathfrak A_n$ is a substructure of $\mathfrak A$.

A chain of structures $\mathfrak{A}_0 \subseteq \mathfrak{A}_1 \subseteq ...$ in which each \mathfrak{A}_n is an elementary substructure of \mathfrak{A}_{n+1} is called an *elementary chain*. In this case we write $\mathfrak{A}_0 \prec \mathfrak{A}_1 \prec ...$.

Elementary Chain Theorem. Each member of an elementary chain of structures is an elementary substructure of the union of the chain.

Proof. Let $\mathfrak{A}_0 \prec \mathfrak{A}_1 \prec ...$ be an elementary chain, and let \mathfrak{A} be its union. We prove the following assertion by induction on the degree of a formula: for any \mathscr{L} -formula $\varphi(v_0, ..., v_n)$, any $n \in \omega$ and any $a_0, ..., a_m \in A_n$,

$$\mathfrak{A}_n \models \varphi[a_0, ..., a_m] \iff \mathfrak{A} \models \varphi[a_0, ..., a_m].$$

The proof is routine for atomic formulas, and the induction steps for \neg and \land are easy. Now suppose that φ is existential; without loss of generality we may assume that φ is $\exists v_n \psi$, and that ψ satisfies (*).

If $a_0, ..., a_{m-1} \in A_n$ and $\mathfrak{A}_n \models \varphi[a_0, ..., a_{m-1}]$, then for some $a \in A_n$ we have $\mathfrak{A}_n \models \psi[a_0, ..., a_{m-1}, a]$. So by (*) $\mathfrak{A} \models \psi[a_0, ..., a_{m-1}, a]$ whence $\mathfrak{A} \models \varphi[a_0, ..., a_{m-1}]$.

Conversely, suppose that $\mathfrak{A} \models \varphi[a_0, ..., a_{m-1}]$. Then $\mathfrak{A} \models \psi[a_0, ..., a_{m-1}, a]$ for some $a \in A$. For some $k, a \in A_k$. Let ℓ be the larger of k and n. Then $a_0, ..., a_{m-1}, a \in A_\ell$ and so, by (*), $\mathfrak{A}_\ell \models \psi[a_0, ..., a_{m-1}, a]$, whence $\mathfrak{A}_\ell \models \varphi[a_0, ..., a_{m-1}]$. But $n \leq \ell$ and so, since $\mathfrak{A}_n \prec \mathfrak{A}_\ell$, we conclude that $\mathfrak{A}_n \models \varphi[a_0, ..., a_{m-1}]$.

We use this in the proof of the

Joint Consistency Theorem. Let Σ and Π be theories in \mathscr{L} , and let \mathscr{E} be the language whose extralogical symbols are those common to \mathscr{L}_{Σ} and \mathscr{L}_{Π} . Then the following are equivalent:

- (i) $\Sigma \cup \Pi$ is consistent.;
- (ii) for no \mathscr{E} -sentence σ do we have $\Sigma \vdash \sigma$ and $\Pi \vdash \neg \sigma$;
- (iii) for some complete (consistent) theory Δ in \mathscr{E} , both $\Sigma \cup \Delta$ and $\Pi \cup \Delta$ are consistent;
- (iv) there is an \mathscr{E} -structure which can be expanded both to a model of Σ and to a model of Π .

Proof. (i) \Rightarrow (ii) is obvious.

- (ii) \Rightarrow (iii). Assume (ii) and let $\Sigma^* = \{ \sigma \in Sent(\mathscr{E}): \Sigma \vdash \sigma \}$. It follows easily from (ii) that $\Pi \cup \Sigma^*$ is consistent and so has a model \mathfrak{A} . Let Δ be the theory of the \mathscr{E} -structure $\mathfrak{A} \mid \mathscr{E}$. Since $\mathfrak{A} \models \Pi \cup \Delta$, $\Pi \cup \Delta$ is consistent. If $\Sigma \cup \Delta$ is inconsistent, there is $\sigma \in \Delta$ such that $\Sigma \vdash \neg \sigma$, i.e. $\neg \sigma \in \Sigma^*$. But then $\mathfrak{A} \models \neg \sigma$, whence $\neg \sigma \in \Delta$, a contradiction. Hence $\Sigma \cup \Delta$ is consistent.
- (iii) \Rightarrow (iv). Assume (iii), and let \mathfrak{A}_0 and \mathfrak{B}_0 be models of $\Sigma \cup \Delta$ and $\Pi \cup \Delta$, respectively. Then since $\mathfrak{A}_0 \mid \mathscr{E}$ and $\mathfrak{B}_0 \mid \mathscr{E}$ are both models of the complete theory Δ , they are elementarily equivalent. It follows easily from this that the union Γ of the complete diagram Γ^* of $\mathfrak{A}_0 \mid \mathscr{E}$ with

the complete diagram Γ^{**} of \mathfrak{B}_0 is consistent. (Observe that each finite subset of Γ^* is interpretable in \mathfrak{B}_0 .) Let \mathfrak{B}^* be a model of Γ and let \mathfrak{B}_1 be its \mathscr{L} -reduction. Then since \mathfrak{B}^* is a model of both Γ^* and Γ^{**} it follows from the diagram lemma that $\mathfrak{A}_0 \mid \mathscr{E} \preceq \mathfrak{B}_1 \mid \mathscr{E}$ and $\mathfrak{B}_0 \preceq \mathfrak{B}_1$. Identifying \mathfrak{B}_0 with its image in \mathfrak{B}_1 makes the former an elementary substructure of the latter. Let f_1 be an elementary embedding of $\mathfrak{A}_0 \mid \mathscr{E}$ into $\mathfrak{B}_1 \mid \mathscr{E}$.

Passing to the extended language \mathscr{E}_{A_0} , the diagram lemma implies that the structures $(\mathfrak{A}_0 \mid \mathscr{E}, A_0) = (\mathfrak{A}_0, A_0) \mid \mathscr{E}_{A_0}$ and $(\mathfrak{B}_1 \mid \mathscr{E}, f_1[A_0]) = (\mathfrak{B}_1, f_1[A_0])$ are elementarily equivalent. Repeating the above construction in the other direction, this time with the \mathscr{L}_{A_0} -structures (\mathfrak{A}_0, A_0) and $(\mathfrak{B}_1, f_1[A_0])$ in place of \mathfrak{A}_0 , \mathfrak{B}_0 , respectively, we obtain an elementary extension \mathfrak{A}_1 of \mathfrak{A}_0 and an elementary embedding g_1 of $(\mathfrak{B}_1, f_1[A_0]) \mid \mathscr{E}_{A_0}$ into $(\mathfrak{A}_1, A_0) \mid \mathscr{E}_{A_0}$. Then $g \circ f_1$ is the identity on A_0 , so that $f_1 \subseteq g_1^{-1}$.

Iterating this construction yields a diagram

$$\mathfrak{A}_0 \prec \mathfrak{A}_1 \prec \mathfrak{A}_2 \prec \dots$$
 $f_1 \qquad g_1 \qquad f_2 \qquad g_2 \qquad g_2 \qquad g_3 \qquad f_4 \qquad g_2 \qquad f_5 \qquad g_4 \qquad g_5 \qquad g_5$

such that, for each m, f_m is an elementary embedding of $\mathfrak{A}_{m-1} \mid \mathscr{E}$ into $\mathfrak{B}_m \mid \mathscr{E}$, g_m is an elementary embedding of $\mathfrak{B}_m \mid \mathscr{E}$ into $\mathfrak{A}_m \mid \mathscr{E}$, and $f_m \subseteq g_m^{-1} \subseteq f_{m+1}$. Let \mathfrak{A} and \mathfrak{B} be the unions of the elementary chains $\mathfrak{A}_0 \prec \mathfrak{A}_1 \prec ...$ and $\mathfrak{B}_0 \prec \mathfrak{B}_1 \prec ...$ respectively. Then, by the elementary chain theorem, \mathfrak{A} is a model of Σ and \mathfrak{B} is a model of Π . Moreover, $\bigcup_{m \in \varpi} f_m$ is an isomorphism of $\mathfrak{A} \mid \mathscr{E}$ and $\mathfrak{B} \mid \mathscr{E}$ (since, by construction, it has inverse $\bigcup_{m \in \varpi} g_m$. It follows that \mathfrak{B} is isomorphic to a structure $\mathfrak{B} \mid \mathscr{E}$ such that $\mathfrak{A} \mid \mathscr{E} = \mathfrak{B} \mid \mathscr{E}$. Accordingly the \mathscr{E} -structure $\mathfrak{A} \mid \mathscr{E}$ can be expanded both to the model \mathfrak{A} of Σ and to the model $\mathfrak{B} \mid \mathscr{E}$ of Γ .

(iv) \Rightarrow (i). Let \mathfrak{A} be an \mathscr{E} -structure expandable both to a model \mathfrak{B} of Σ and to a model \mathfrak{A} of Π . Define the \mathscr{L} -structure \mathfrak{D} as follows: the domain of \mathfrak{D} is that of \mathfrak{A} ; if s is any extralogical symbol of \mathscr{L} , then

$$s^{\mathfrak{D}} = \begin{bmatrix} s^{\mathfrak{A}} & \text{if } s \in \mathscr{E} \\ s^{\mathfrak{B}} & \text{if } s \in \mathscr{L} - \mathscr{L}_{\Pi} \\ s^{\mathfrak{C}} & \text{if } s \in \mathscr{L}_{\Pi} \end{bmatrix}$$

Clearly $\mathfrak{D} \mid \mathscr{L}_{\Sigma} = \mathfrak{B}$, so $\mathfrak{D} \models \Sigma$. Also, $\mathfrak{D} \mid \mathscr{L}_{\Pi} = \mathfrak{C}$, so $\mathfrak{D} \models \Pi$. Therefore \mathfrak{D} is a model of $\Sigma \cup \Pi$, so the latter is consistent. \blacksquare

From this we deduce

Craig's Interpolation Theorem. Suppose σ , τ are \mathscr{D} -sentences and $\vdash \sigma \to \tau$. Then there is a sentence θ such that $\vdash \sigma \to \theta$, $\vdash \theta \to \tau$, and every extralogical symbol occurring in θ occurs in both σ and τ .

Proof. Let \mathscr{E} be the language whose extralogical symbols are exactly those occurring in both σ and τ . If $\vdash \sigma \to \tau$, then $\{\sigma, \neg \tau\}$ is inconsistent, so by (ii) of the joint consistency theorem there is an \mathscr{E} -sentence θ such that $\sigma \vdash \theta$ and $\neg \tau \vdash \neg \theta$. The result now follows immediately.

Suppose that $\Sigma \subseteq Sent(\mathcal{L})$ contains the *n*-ary predicate symbol *P*. *P* is said to be *explicitly definable* from Σ if there is an \mathcal{L} -formula $\varphi(x_1, ..., x_n)$, in which *P does not occur*, such that

$$\Sigma \vdash \forall x_1 ... \forall x_n [Px_1 ... x_n \leftrightarrow \varphi].$$

Now let P^* be an *n*-ary predicate symbol *not* belonging to \mathcal{L} , and let Σ^* be the set of sentences obtained from Σ by replacing all occurrences of P by P^* . Then P is said to be *implicitly definable* from Σ if

$$\Sigma \cup \Sigma^* \vdash \forall x_1 ... \forall x_n [Px_1 ... x_n \leftrightarrow P^*x_1 ... x_n].$$

Semantically speaking, this means that any pair of \mathscr{D} -structures which are both models of Σ , have the same domain and agree on the interpretation of all extralogical symbols apart possibly from P, must also agree on the interpretation of P.

Clearly, if P is explicitly definable from Σ , it is implicitly definable from Σ . Conversely, we have

Beth's Definability Theorem. If P is implicitly definable from Σ , it is explicitly definable from Σ .

Proof. Suppose P is implicitly definable from Σ . Without loss of generality we may assume Σ to be finite, and we can then replace Σ by the conjunction of all its sentences. So we may assume that Σ consists of a single sentence σ . Let σ^* be the result of replacing each occurrence of P in σ by P^* . Then we have

$$(1) \qquad \{\sigma, \sigma^*\} \vdash \forall x_1 ... \forall x_n [Px_1 ... x_n \to P^*x_1 ... x_n].$$

Now add new constant symbols $c_1,...,c_n$ to \mathcal{L} . Then, by (1),

$$\{\sigma, \sigma^*\} \vdash Pc_1...c_n \rightarrow P^*c_1...c_n.$$

So

$$\vdash \sigma \land Pc_1...c_n \rightarrow (\sigma^* \rightarrow P^*c_1...c_n).$$

By Craig's theorem, there is a sentence θ whose extralogical symbols are common to both $\sigma \wedge Pc_1...c_n$ and $\sigma^* \to P^*c_1...c_n$, hence, in particular, not containing P or P^* such that $\vdash \sigma \wedge Pc_1...c_n \to \theta$ and $\vdash \theta \to (\sigma^* \to P^*c_1...c_n)$.

Therefore

$$(2) \sigma \vdash Pc_1...c_n \to \theta$$

and

(3)
$$\sigma^* \vdash \theta \rightarrow P^*c_1...c_n.$$

If we replace P^* by P in (3), σ^* becomes σ and θ is unchanged. So

$$(4) \sigma \vdash \theta \to Pc_1...c_n.$$

(2) and (4) now give

$$(5) \Sigma \vdash \theta \leftrightarrow Pc_1...c_n.$$

But θ is $\varphi(c_1,...c_n)$ for some \mathscr{L} -formula $\varphi(x_1,...,x_n)$ in which P does not occur. Since $c_1,...,c_n$

are not in \mathscr{L} , the result of replacing c_i by x_i (i=1,...,n) in the proof from Σ of $\theta \leftrightarrow Pc_1...c_n$ yields a proof from Σ of $\phi \leftrightarrow Px_1...x_n$. Applying the generalization lemma gives $\Sigma \vdash \forall x_1...\forall x_n [\phi \leftrightarrow Px_1...x_n]$

and so P is explicitly definable from Σ .