Algebra Problems Set Twelve and a Half

Due 31 March 2015

Problem 4. Prove that every algebraically closed field of prime characteristic is infinite.
Problem 5. Let \mathbf{R} be a commutative ring and let I be a finitely generated nontrivial ideal of \mathbf{R}. Prove that \mathbf{R} has an ideal M such that each of the following properties holds:
i. $\quad I$ is not a subset of M, and
ii. for all ideals J of \mathbf{R}, if $M \subseteq J$ and $M \neq J$, then $I \subseteq J$.

Problem 6. Prove that there is a polynomial $f(x) \in \mathbb{R}[x]$ such that
(a) $f(x)-1$ belongs to the ideal $\left(x^{2}-2 x+1\right)$;
(b) $f(x)-2$ belongs to the ideal $(x+1)$, and
(c) $f(x)-3$ belongs to the ideal $\left(x^{2}-9\right)$.

Problem 7. Let the field \mathbf{E} be an extension of the field \mathbf{F} so that $[\mathbf{E}: \mathbf{F}]$ is finite. Let $f(x) \in \mathbf{F}[x]$ be irreducible and of degree p where p is a prime number. Prove that if $f(x)$ is not irreducible in $\mathbf{E}[x]$, then p divides $[\mathbf{E}: \mathbf{F}]$.

