
Problem Set 0

Due Wednesday 27 August 2014

Problem 0.
For integers a and b we use (a, b) to denote the greatest common divisor of a and b. For example, (12, 18) = 6.
In each part below find the greatest common divisor. [Hint: Find out about Euclid’s Algorithm online or in
one of our resource books]

a. (6643, 2873).
b. (26460, 12600).
c. (12091, 8437).

Problem 1.
For each of the three parts of Problem 0, find integers m and n such that (a, b) = ma+ nb.

Problem 2.
Give a proof of the properties of the divisibility relation listed in each part below.

a. For any integers a, b, and c, if b | a, then b | ac.
b. For any integers a, b, and c, if b | a and c | b, then c | a.

Problem 3.
Show that any nonempty set of integers that is closed under subtraction must also be closed under addition.

Problem 4 (A Challenge Problem).
Which sets of natural numbers are closed under addition?
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Problem 5.
For each of the numbers 60, 100, and 1575 draw the diagram of positive divisors showing the divisibility
relation.

Problem 6.
Prove that log 2

log 3 is not a rational number.

Problem 7.
In each part below determine whether the function given is one-to-one, whether it is onto, and, in the event
that it is both one-to-one and onto, describe its inverse.

(a) f : R2 → R2 where f(x, y) = (x+ y, y).
(b) f : R2 → R2 where f(x, y) = (x+ y, x+ y).
(c) f : R2 → R2 where f(x, y) = (2x+ y, x+ y).

Problem 8.
Suppose that f : A→ B and g : B → C and both f and g are one-to-one and onto. Prove that (g ◦ f)−1 is
a function from C to A and that (g ◦ f)−1 = f−1 ◦ g−1.

Problem 9 (Challenge Problem).
Prove that, for every positive naturaly number n, there are n consecutive composite natural numbers.
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Problem 10.
On the set R2 of ordered pairs of real numbers (think points in the plane) define the 2-place relation ∼ as
follows:

(a, b) ∼ (c, d) if and only if a2 + b2 = c2 + d2.

(a) Prove that ∼ is an equivalence relation on R2.
(b) Describe the equivalence classes with respect to ∼.

Problem 11.
On the set Z of integers define the 2-place relation ∼ as follows:

m ∼ n if and only if n | mk for some positive integer k and m | nj for some positive integer j.

(a) Prove that ∼ is an equivalence relation on Z.
(b) Describe the equivalence class that contains 6 and describe the equivalence class that contains 12.
(c) Decribe the equivalence classes in general.

Problem 12.
Let X be a nonempty set and let σ ∈ SymX. Define the 2-place relation ∼ on X as follows:

x ∼ y if and only if σk(x) = y for some integer k.

Prove that ∼ is an equivalence relation on X.

Problem 13.
Let X be a nonempty set. Define the 2-place relation ∼ on SymX as follows:

σ ∼ τ if and only if ρ−1 ◦ σ ◦ ρ = τ for some permutation ρ.

Prove that ∼ is an equivalence relation on SymX.
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Problem 14.
Prove that the inverse of any isomorphism is also an isomorphism.

Problem 15.
Prove that the composition of two isomorphisms (if it is possible to form the composition) is also an isomor-
phism.

Problem 16.
Let R be any ring. Prove that the following equations must hold in R.

(a) x · 0 = 0.
(b) 0 · x = 0.
(c) −(−x) = x.
(d) (−x) · (−y) = x · y.

Problem 17.
Let I be any set and let R be the collection of all subsets of I. We impose on R the following operations:

A+B := (A ∪B) ∩ (Ā ∪ B̄)

−A := A

0 := ∅
A ·B := A ∩B

1 := I

Here Ā = {d | d ∈ I and d /∈ A}. The operation + defined above is sometimes called the symmetric difference
of the sets A and B. It may help to draw a Venn diagram of A + B. Prove that 〈R,+, ·,−, 0, 1〉, that is R
equipped with the operaitons above, is a ring.
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Problem 18.
Let R and S be rings and let h and g be homomorphisms from R into S. Let T = {r | r ∈ R and h(r) = g(r)}.
Prove that T is a subring of R.

Problem 19.
Let R = {m+ n

√
2 | m,n ∈ Z} and let I = {m+ n

√
2 | m,n ∈ Z and m is even}.

(a) Prove that R is a subring of the ring of real numbers.
(b) Prove that I is an ideal of R.

Problem 20.
Let R be the ring of all continuous functions from the set R of real numbers into R and let

I = {f | f ∈ R and f(π) = 0}.
(a) Prove that I is a proper ideal of R.
(b) Prove that if J is an ideal of R and I ⊆ J ⊆ R, then either I = J or J = R.

Problem 21.
Let D be a finite integral domain. Show that every nonzero element of D has a multiplicative inverse.
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Problem 22.
Let R be the ring of all continuous functions from the real numbers into the real numbers. Prove that R is
not an integral domain.

Problem 23.
Let R be an integral domain and suppose that a is an element of R with the property that a2 = a. Prove
that either a = 0 or a = 1.

Problem 24.
Let R be an integral domain and suppose that a and b are nonzero elements of R. Prove that

a | b and b | a⇔ b = au for some unit u ∈ R.

Problem 25.
Let R be an integral domain and let I and J be nontrivial ideals of R. Prove that I ∩ J is a nontrivial ideal
of R.
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Problem 26.
Suppose that R is a commutative ring and that u is an element of R. Prove that u is a unit of R if and only
if u | r for all r ∈ R.

Problem 27.
Let R be an integral domain and suppose that p ∈ R has the property that p 6= 0 and if p | ab, then either
p | a or p | b. Prove that p is irreducible. Bonus: show that Z6 does not have this property.

Problem 28.
Prove that the ring Zn is a field if and only if n is a prime number. Recall Zn is the ring of remainders upon
division by n where ring operations are defined modulo n.

Problem 29.
Let F = {a+ b

√
2 | a, b ∈ Q}.

(1) Prove F is a subring of the field R of real numbers.
(2) Prove that F is a field.
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Problem 30.
Write (4, 5, 6)(5, 6, 7)(6, 7, 0)(0, 1, 2)(1, 2, 3)(3, 4, 5) as a product of disjoint cycles.

Problem 31.
Let X be a set and a ∈ X. A permutation σ ∈ SymX is said to fix a provided σ(a) = a. Let H be the
collection of all permutations of X that fix the element a. Prove each of the following:

(a) 1X ∈ H, where 1X is the identity function on X.
(b) If σ ∈ H, then σ−1 ∈ H.
(c) If σ, τ ∈ H, then σ ◦ τ ∈ H.

Problem 32.
Let Sn be the set of all permutations of the set {0, 1, 2, . . . , n − 1}. Suppose that n ≥ 3. Prove that every
even permutation in Sn can be written as a product of cycles of length 3.

Problem 33.
Show that every permutation of the set {0, 1, 2, . . . , n − 1} can be represented as a product, maybe a long
one, using only the following n− 1 transpositions

(0, 1), (0, 2), . . . , and (0, n− 1).

Problem 34 (Challenge Problem).
Prove that every permutation of {0, 1, 2, . . . , 6} can be written as a product, maybe a long one, built up using
just the transposition (0, 1) and the 7 cycle (0, 1, 2, . . . , 6). Is this still true if our 7-element set is replaced
by one with 6-elements? What about 5-elements? What values of n work?
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Problem 35.
Prove that στσ−1τ−1 ∈ An, for any σ, τ ∈ Sn.

Problem 36.
Without writing down all 60 elements of A5 (the group of all even permutations on a five-element set),
describe the possible shapes of the permutations (the number and length of their disjoint cycles) and how
many of each type there are.

Problem 37.
Let X be an infinite set. Let H be the set of all elements σ of SymX such that σ(x) = x for all but finitely
many x ∈ X. Prove that H is subgroup of SymX.

Problem 38 (Challenge Problem).
Prove that every group with n elements is isomorphic to a subgroup of the group of all invertible linear
operators on the n-dimensional real vector space. Would something like this remain true if n were infinite?
Would that even mean anything?
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Problem 39.
Let n, a, and b be positive integers. Suppose that n and a are relatively prime and that n | ab. Prove that
n | b.

Problem 40 (Core).
Let A, B, and C be sets. Let h be a function from A onto B and let g be a function from A onto C. Let
θh := {〈a, a′〉 | a, a′ ∈ A and h(a) = h(a′)}. Let θg := {〈a, a′〉 | a, a′ ∈ A and g(a) = g(a′)}. Define

f := {〈h(a), g(a)〉 | a ∈ A}.
Suppose further that f is a one-to-one function from B into C.

Prove that θh = θg.

Problem 41 (Core).
Let G be a group and let H be a subgroup of G. Let

N = {g | g ∈ G such that x−1gx ∈ H for all x ∈ G}.
Prove that N is a subuniverse of G.

Problem 42.
Problem 3

Let n and k be positive integers and h be a homomorphism from 〈Zn,+n, ·n,−n, 0, 1〉 onto 〈Zk,+k, ·k,−k, 0, 1〉.
Prove each of the following statements.

a. k ≤ n.
b. h(k) = 0. [Hint: h(1 +n · · ·+n 1) = h(1) +k · · ·+k h(1).]
c. h(a) = r for each a ∈ {0, 1, . . . , n− 1}, where a = kq + r with r ∈ {0, 1, . . . , k − 1} for some integer q.
d. k | n.
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Problem 43.
By Z2 we mean the algebra 〈{0, 1},⊕,	, 0〉 where the two place operation ⊕ is given by

0⊕ 0 = 0 1⊕ 1 = 0

0⊕ 1 = 1 1⊕ 0 = 1

and 	 works so that 	0 = 0 and 	1 = 1. With these operations Z2 is a group (and eager students will check
this). Now let n > 2 be a natural number and let h be the map from Sn to {0, 1} defined so that h(σ) = 0 if
σ is an even permutation and h(σ) = 1 if σ is an odd permutation. Prove that h is a homomorphism from
Sn onto Z2. Also discover what the kernel of h is.

Problem 44.
Let C× be the group of nonzero complex numbers, where the two place operation is complex multiplication,
the one-place operation is multiplicative inverse, and the identity is 1. Likewise, let R+ be the group of
positive real numbers with the same sorts of operations. (So we see that R+ is a subgroup of C×.) Let φ be
the function from C× to R+ defined by φ(a+ bi) = a2 + b2, for all reals a and b that are not both 0. Prove
that φ is a homomorphism from C× onto R+. Also discover what the kernel of φ is.

Problem 45.
Let G be a group. Define ZG := {g | g ∈ G and gh = hg for all h ∈ G}. Prove that ZG is a normal subgroup
of G.

Problem 46.
Let G be a group and let H and K be normal subgroups of G so that H ∩K = {1}. Prove that hk = kh
for all h ∈ H and all k ∈ K.
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Problem 47.
Let G be the group of all 3× 3 matrices with real entries that are invertible. The operations of this group
are matrix multiplication, matrix inversion, and the identity matrix. Let S be the set of 3× 3 matrices with
real entries and with determinant 1. Let R× denote the group of nonzero numbers with the operations of
multiplication, multiplicative inverse, and 1. Prove that G/S ∼= R×. Does this hold when 3 is replaced by
an arbitrary positive integer?

Problem 48.
Let G be a finite group and n be a natural number. Prove that if G has exactly one subgroup of size n,
then that subgroup must be normal.

Problem 49.
Let X be an infinite set and σ be a permutation of X. We says that σ moves only finitely many elements
provided the set {x | x ∈ X and σ(x) 6= x} is finite. Let

H = {σ | σ ∈ SymX and σ moves only finitely many elements}.
Prove that H is a normal subgroup of SymX.

Problem 50.
Let G be a group, let H be a subgroup of G, and let N be a normal subgroup of G. Prove each of the
following.

(a) NH is a subgroup of G.
(b) N is a normal subgroup of NH.
(c) N ∩H is a normal subgroup of H.
(d) H/(N ∩H) ∼= NH/N .
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Problem 51.
Let G be a group and let H and K be subgroups of G. Prove |HK||H ∩K| = |H||K|. [Hint: Lagrange’s
Theorem or its proof helps. Warning: we do not assume that either of the subgroups is normal.]

Problem 52.
Let G be a group and let H be a subgroup of G so that [G : H] = 2. Prove that H is a normal subgroup of
G.

Problem 53.
Suppose that N is a normal subgroup of the group G and the N is a finite cyclic group. Prove that every
subgroup of N is a normal subgroup of G.

Problem 54.
Let G be a group with exactly 2 subgroups. Prove that G ∼= Zp for some prime number p.
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Problem 55.
Let G be a finite group and let H and K be subgroups of G. Suppose that |H| and |K| are relatively prime.
Prove that H ∩K = {1}.

Problem 56.
Let G be a group and let a ∈ G. Define Fa : G → G via Fa(x) = axa−1 for all x ∈ G. Prove that Fa is an
isomorphism from G onto G.

Problem 57.
Let A,B, and C be rings. Let h be a homomorphism from A onto B and let g be a homomorphism from A
onto C such that kerh = ker g. Prove that there is an isomorphism f from B onto C.

Problem 58.
Let G be a group and let H,K, and N be subgroups of G fulfilling all the following conditions:

• H ⊆ K,
• HN = KN ,
• H ∩N = K ∩N .

Under these stipulations, prove that H = K.


