Name:

Midterm Examination I

Monday 18 February 2013

Problem 0

Let n, a, and b be positive integers. Suppose that n and a are relatively prime and that $n \mid a b$. Prove that $n \mid b$.

Problem 1

Let A, B, and C be sets. Let h be a function from A onto B and let g be a function from A onto C. Let $\theta_{h}:=\left\{\left\langle a, a^{\prime}\right\rangle \mid a, a^{\prime} \in A\right.$ and $\left.h(a)=h\left(a^{\prime}\right)\right\}$. Let $\theta_{g}:=\left\{\left\langle a, a^{\prime}\right\rangle \mid a, a^{\prime} \in A\right.$ and $\left.g(a)=g\left(a^{\prime}\right)\right\}$. Define

$$
f:=\{\langle h(a), g(a)\rangle \mid a \in A\}
$$

Suppose further that f is a one-to-one function from B into C.
Prove that $\theta_{h}=\theta_{g}$.

Problem 2 (Core)

Do each part below.
(a) Let $R=\{a+b \sqrt{5}: a, b \in \mathbb{Z}\}$. Show that R is a subring of the ring \mathbb{R} of real numbers.
(b) Let R be as defined in part (a) above. Define

$$
F: R \rightarrow R
$$

by $F(a+b \sqrt{5})=a-b \sqrt{5}$ for all $a, b \in \mathbb{Z}$. Prove that F is a ring homomorphism.

Problem 3 (Core)

Let \mathbf{R} be a commutative ring. Prove that $\left\{r \mid r \in R\right.$ and $r^{n}=0$ for some natural number $\left.n\right\}$ is an ideal of \mathbf{R}.

