Sample Final Examination

MATH 242 Section H01 2014
Instructor: Prof. George McNulty

REMEMBER TO SHOW ALL YOUR WORK!

Problem 0 (Core)

Find solutions to each of the following initial value problems.
(a)

$$
\begin{aligned}
x y^{\prime}+3 y & =2 x^{5} \\
y(2) & =1
\end{aligned}
$$

(b)
$\begin{aligned} y^{\prime} & =6 e^{2 x-y} \\ y(0) & =0\end{aligned}$

Problem 1

In each part below determine whether the functions listed are linearly independent or linearly dependent. Be sure to explain your reasoning fully.
(a) $1-x$ and $1+|x|$
(b) $\quad \cos ^{2} x$ and $1+\cos 2 x$

Problem 2

In each part below, find two linearly independent solutions to the given differential equation.
(a) $y^{\prime \prime}+6 y^{\prime}+8 y=0$
(b) $\quad y^{\prime \prime}+6 y^{\prime}+9 y=0$
(c) $\quad y^{\prime \prime}+6 y^{\prime}+25 y=0$

Problem 3 (Core)

Solve each of the initial value problems below.
$y^{\prime \prime}-4 y=0$
(a) $\quad y(0)=1$
$y^{\prime}(0)=2$
(b)

$$
\begin{aligned}
y^{\prime \prime}+4 y & =0 \\
y(0) & =1 \\
y^{\prime}(0) & =2
\end{aligned}
$$

Problem 4

Find the general solution to

$$
y^{\prime \prime}+2 y^{\prime}+5 y=e^{x} \sin x
$$

Problem 5 (Core)

Find the general solution for

$$
y^{\prime \prime}+4 y=\sin ^{2} x
$$

Problem 6

A mass of 1 kg is attached to a spring with constant $k=4 \mathrm{~kg} / \mathrm{m}$. Initially, the system is at equilibrium (that is $x(0)=0$ and $\left.x^{\prime}(0)=0\right)$. But for all times $t>0$ the mass is subject to a periodic external force $f(t)=\sin 3 t$. Find the resulting motion $x(t)$.

Problem 7 (Core)

Consider a system consisting of a mass of 2 kg attached to a spring with constant of $1 \mathrm{~kg} / \mathrm{sec}^{2}$ and subject to a frictional force proportional to the velocity with a constant of $2 \mathrm{~kg} / \mathrm{sec}$. Initially the system is at equilibrium (that is, $x(0)=0$ and $x^{\prime}(0)=0$), but for $t>0$ the mass is subject to a external force of $5 \cos t$. Find the motion $x(t)$ and identify the steady-periodic part and the transient part.x

Problem 8 (Core)
Find the Laplace transform of each function below.
(a) $f(t)=\sin 2 t \cos 2 t$
(b) $g(t)=t \cos t+t e^{2 t}$.

Problem 9

For each part below find the function whose Laplace transform is given.
(a) $\quad \mathcal{L}[f(t)]=\frac{1}{s^{2}\left(s^{2}-1\right)}$
(b) $\quad \mathcal{L}[g(t)]=\frac{2 s+1}{s\left(s^{2}+9\right)}$

Problem 10 (Core)
Use the method of Laplace transforms to find the solution to the following initial value problem.

$$
y^{\prime \prime}+4 y^{\prime}+8 y=e^{-t} \quad y(0)=0 \quad y^{\prime}(0)=0
$$

Problem 11

Solve the following initial value problem by the method of your choice.

$$
y^{\prime \prime}+4 y^{\prime}+5 y=39 e^{t} \sin t \quad y(0)=-1 \quad y^{\prime}(0)=-1
$$

