Explicit Construction of Small Folkman Graphs

Linyuan Lu

lu@math.sc.edu.

University of South Carolina

The 22nd Clemson Mini-Conference on Discrete Mathematics and Algorithms

Ramsey number $R(3,3)=6$

- If edges of K_{6} are 2-colored then there exists a monochromatic triangle.

Ramsey number $R(3,3)=6$

- If edges of K_{6} are 2-colored then there exists a monochromatic triangle.

- There exists a 2-coloring of edges of K_{5} with no monochromatic triangle.

Rado's arrow notation

$G \rightarrow(H)$: if the edges of G are 2 -colored then there exists a monochromatic subgraph of G isomorphic to H.

$$
K_{6} \rightarrow\left(K_{3}\right)
$$

Rado's arrow notation

$G \rightarrow(H)$: if the edges of G are 2 -colored then there exists a monochromatic subgraph of G isomorphic to H.

$$
K_{6} \rightarrow\left(K_{3}\right)
$$

$K_{5} \nrightarrow\left(K_{3}\right)$

Fact: If $K_{6} \subset G$, then $G \rightarrow\left(K_{3}\right)$.

A question of Erdős and Hajnal

Is there a K_{6}-free graph G with $G \rightarrow\left(K_{3}\right)$?

A question of Erdős and Hajnal

Is there a K_{6}-free graph G with $G \rightarrow\left(K_{3}\right)$?
Graham (1968): Yes!

$$
K_{8} \backslash C_{5}
$$

Graham's graph $K_{8} \backslash C_{5}=K_{3} * C_{5}$

Suppose G has no monochromatic triangle.

Graham's graph $K_{8} \backslash C_{5}=K_{3} * C_{5}$

Suppose G has no monochromatic triangle.

Graham's graph $K_{8} \backslash C_{5}=K_{3} * C_{5}$

Suppose G has no monochromatic triangle.

Graham's graph $K_{8} \backslash C_{5}=K_{3} * C_{5}$

Suppose G has no monochromatic triangle.

Graham's graph $K_{8} \backslash C_{5}=K_{3} * C_{5}$

Suppose G has no monochromatic triangle.

Graham's graph $K_{8} \backslash C_{5}=K_{3} * C_{5}$

Suppose G has no monochromatic triangle.

Label the vertices of C_{5} by either (r, b) or (b, r).

Graham's graph $K_{8} \backslash C_{5}=K_{3} * C_{5}$

Suppose G has no monochromatic triangle.

Label the vertices of C_{5} by either (r, b) or (b, r).
A red triangle is unavoidable since $\chi\left(C_{5}\right)=3$.

K_{5}-free graphs G with $G \rightarrow\left(K_{3}\right)$

Year	Authors	$\|G\|$
1969	Scha̋uble	42
1971	Graham, Spencer	23
1973	Irving	18
1979	Hadziivanov, Nenov	16
1981	Nenov	15

K_{5}-free graphs G with $G \rightarrow\left(K_{3}\right)$

Year	Authors	$\|G\|$
1969	Scha̋uble	42
1971	Graham, Spencer	23
1973	Irving	18
1979	Hadziivanov, Nenov	16
1981	Nenov	15

In 1998, Piwakowski, Radziszowski and Urbański used a computer-aided exhaustive search to rule out all possible graphs on less than 15 vertices.

General results

Folkman's theorem (1970): For any $k_{2}>k_{1} \geq 3$, there exists a $K_{k_{2}}$-free graph G with $G \rightarrow\left(K_{k_{1}}\right)$.
These graphs are called Folkman Graphs.

General results

Folkman's theorem (1970): For any $k_{2}>k_{1} \geq 3$, there exists a $K_{k_{2}}$-free graph G with $G \rightarrow\left(K_{k_{1}}\right)$.
These graphs are called Folkman Graphs.

Nešetřil-Rödl's theorem (1976): For $p \geq 2$ and any
$k_{2}>k_{1} \geq 3$, there exists a $K_{k_{2}}$-free graph G with $G \rightarrow\left(K_{k_{1}}\right)_{p}$.
Here $G \rightarrow(H)_{p}$: if the edges of G are p-colored then there exists a monochromatic subgraph of G isomorphic to H.
$f\left(p, k_{1}, k_{2}\right)$
Let $f\left(p, k_{1}, k_{2}\right)$ denote the smallest integer n such that there exists a $K_{k_{2}}$-free graph G on n vertices with $G \rightarrow\left(K_{k_{1}}\right)_{p}$.

- Graham

$$
f(2,3,6)=8 .
$$

Let $f\left(p, k_{1}, k_{2}\right)$ denote the smallest integer n such that there exists a $K_{k_{2}}$-free graph G on n vertices with $G \rightarrow\left(K_{k_{1}}\right)_{p}$.

- Graham

$$
f(2,3,6)=8 .
$$

- Nenov, Piwakowski, Radziszowski and Urbański

$$
f(2,3,5)=15 .
$$

Let $f\left(p, k_{1}, k_{2}\right)$ denote the smallest integer n such that there exists a $K_{k_{2}}$-free graph G on n vertices with $G \rightarrow\left(K_{k_{1}}\right)_{p}$.

- Graham

$$
f(2,3,6)=8 .
$$

- Nenov, Piwakowski, Radziszowski and Urbański

$$
f(2,3,5)=15 .
$$

- What about $f(2,3,4)$?

Upper bound of $f(2,3,4)$

- Folkman, Nešetřil-Rödl 's upper bound is huge.

Upper bound of $f(2,3,4)$

- Folkman, Nešetřil-Rödl 's upper bound is huge.
- Frankl and Rödl (1986)

$$
f(2,3,4) \leq 7 \times 10^{11} .
$$

Upper bound of $f(2,3,4)$

- Folkman, Nešetřil-Rödl 's upper bound is huge.
- Frankl and Rödl (1986)

$$
f(2,3,4) \leq 7 \times 10^{11} .
$$

- Erdős set a prize of $\$ 100$ for the challenge

$$
f(2,3,4) \leq 10^{10} .
$$

Upper bound of $f(2,3,4)$

- Folkman, Nešetřil-Rödl 's upper bound is huge.
- Frankl and Rödl (1986)

$$
f(2,3,4) \leq 7 \times 10^{11} .
$$

- Erdős set a prize of $\$ 100$ for the challenge

$$
f(2,3,4) \leq 10^{10} .
$$

- Spencer (1988) claimed the prize.

$$
f(2,3,4) \leq 3 \times 10^{9} .
$$

Upper bound of $f(2,3,4)$

- Folkman, Nešetřil-Rödl 's upper bound is huge.
- Frankl and Rödl (1986)

$$
f(2,3,4) \leq 7 \times 10^{11} .
$$

- Erdős set a prize of $\$ 100$ for the challenge

$$
f(2,3,4) \leq 10^{10} .
$$

- Spencer (1988) claimed the prize.

$$
f(2,3,4) \leq 3 \times 10^{9} .
$$

- Erdốs re-set a prize of $\$ 100$ for the new challenge

$$
f(2,3,4) \leq 10^{6} .
$$

The most wanted Folkman Graph

The most wanted Folkman Graph

Problem on triangle-free subgraphs in graphs containing no $K_{4} \quad \$ 100$ (proposed by Erdös) ${ }^{48}$
Let $f\left(p, k_{1}, k_{2}\right)$ denote the smallest integer n such that there is a graph G with n vertices satisfying the properties:
(1) any edge coloring in p colors contains a monochromatic $K_{k_{1}}$;
(2) G contains no $K_{k_{2}}$.

Prove or disprove:

$$
f(2,3,4)<10^{6} .
$$

Difficulty

- There is no efficient algorithm to test whether $G \rightarrow\left(K_{3}\right)$.

Difficulty

- There is no efficient algorithm to test whether $G \rightarrow\left(K_{3}\right)$.
- For moderate n, Folkman graphs are very rare among all K_{4}-free graphs on n vertices.

Difficulty

- There is no efficient algorithm to test whether $G \rightarrow\left(K_{3}\right)$.
- For moderate n, Folkman graphs are very rare among all K_{4}-free graphs on n vertices.
- Probabilistic methods are generally good choices for asymptotic results. However, it is not good for moderate size n.

Our approach

- Find a simple and sufficient condition for $G \rightarrow\left(K_{3}\right)$, and an efficient algorithm to verify this condition.

Our approach

- Find a simple and sufficient condition for $G \rightarrow\left(K_{3}\right)$, and an efficient algorithm to verify this condition.
- Search a special class of graphs so that we have a better chance of finding a Folkman graph.

Our approach

- Find a simple and sufficient condition for $G \rightarrow\left(K_{3}\right)$, and an efficient algorithm to verify this condition.
- Search a special class of graphs so that we have a better chance of finding a Folkman graph.
- Use spectral analysis instead of probabilistic methods.

Our approach

- Find a simple and sufficient condition for $G \rightarrow\left(K_{3}\right)$, and an efficient algorithm to verify this condition.
- Search a special class of graphs so that we have a better chance of finding a Folkman graph.
- Use spectral analysis instead of probabilistic methods.
- Localization and δ-fairness.

Our approach

- Find a simple and sufficient condition for $G \rightarrow\left(K_{3}\right)$, and an efficient algorithm to verify this condition.
- Search a special class of graphs so that we have a better chance of finding a Folkman graph.
- Use spectral analysis instead of probabilistic methods.
- Localization and δ-fairness.
- Circulant graphs and $L(m, s)$.

Our result

We claim the reward by proving
Theorem 1 (Lu, 2007) $f(2,3,4) \leq 9697$.

Our result

We claim the reward by proving
Theorem 1 (Lu, 2007) $f(2,3,4) \leq 9697$.
We explicitly constructed 4 Folkman graphs with orders

$$
\text { 9697, 30193, 33121, } 57401 .
$$

Our result

We claim the reward by proving
Theorem 1 (Lu, 2007) $f(2,3,4) \leq 9697$.
We explicitly constructed 4 Folkman graphs with orders

$$
9697, \quad 30193, \quad 33121, \quad 57401 .
$$

Recent update: Dudek and Rödl (2008) proved
$f(2,3,4) \leq 941$.

Spencer's Lemma

Notations:

- G_{v} : the induced graph on the the neighborhood of v.
- $b(H)$: the maximum size of edge-cuts for H.

Spencer's Lemma

Notations:

- G_{v} : the induced graph on the the neighborhood of v.
- $b(H)$: the maximum size of edge-cuts for H.

Lemma (Spencer) If $\sum_{v} b\left(G_{v}\right)<\frac{2}{3} \sum_{v}\left|E\left(G_{v}\right)\right|$, then $G \rightarrow\left(K_{3}\right)$.

Spencer's Lemma

Notations:

- G_{v} : the induced graph on the the neighborhood of v.
- $b(H)$: the maximum size of edge-cuts for H.

Lemma (Spencer) If $\sum_{v} b\left(G_{v}\right)<\frac{2}{3} \sum_{v}\left|E\left(G_{v}\right)\right|$, then $G \rightarrow\left(K_{3}\right)$.

Localization

For $0<\delta<\frac{1}{2}$, a graph H is δ-fair if

$$
b(H)<\left(\frac{1}{2}+\delta\right)|E(H)|
$$

Localization

For $0<\delta<\frac{1}{2}$, a graph H is δ-fair if

$$
b(H)<\left(\frac{1}{2}+\delta\right)|E(H)| .
$$

G is a Folkman graph if for each v

- G_{v} is $\frac{1}{6}$-fair.
- G_{v} is K_{3}-free.

Localization

For $0<\delta<\frac{1}{2}$, a graph H is δ-fair if

$$
b(H)<\left(\frac{1}{2}+\delta\right)|E(H)| .
$$

G is a Folkman graph if for each v

- G_{v} is $\frac{1}{6}$-fair.
- G_{v} is K_{3}-free.

For vertex transitive graph G, all G_{v} 's are isomorphic.

Spectral lemma

- H : a graph on n vertices
- A : the adjacency matrix of H
- $\mathbf{d}=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$: degrees of H
- $\operatorname{Vol}(S)=\sum_{v \in S} d_{v}$: the volume of S
- $\bar{d}=\frac{\operatorname{Vol}(H)}{n}$: the average degree

Spectral lemma

- H : a graph on n vertices
- A : the adjacency matrix of H
- $\mathbf{d}=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$: degrees of H
- $\operatorname{Vol}(S)=\sum_{v \in S} d_{v}$: the volume of S
- $\bar{d}=\frac{\operatorname{Vol}(H)}{n}$: the average degree

Lemma (Lu) If the smallest eigenvalue of $M=A-\frac{1}{\operatorname{Vol}(H)} \mathbf{d} \cdot \mathbf{d}^{\prime}$ is greater than $-2 \delta \bar{d}$, then H is δ-fair.

Spectral lemma

- H : a graph on n vertices
- A : the adjacency matrix of H
- $\mathbf{d}=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$: degrees of H
- $\operatorname{Vol}(S)=\sum_{v \in S} d_{v}$: the volume of S
- $\bar{d}=\frac{\operatorname{Vol}(H)}{n}$: the average degree

Lemma (Lu) If the smallest eigenvalue of $M=A-\frac{1}{\operatorname{Vol}(H)} \mathbf{d} \cdot \mathbf{d}^{\prime}$ is greater than $-2 \delta \bar{d}$, then H is δ-fair.

Similar results hold for A and L. However, they are weaker than using M in experiments.

Corollary

Corollary Suppose H is a d-regular graph and the smallest eigenvalue of its adjacency matrix A is greater than $-2 \delta d$. Then H is δ-fair.

Corollary

Corollary Suppose H is a d-regular graph and the smallest eigenvalue of its adjacency matrix A is greater than $-2 \delta d$. Then H is δ-fair.
Proof: We can replace M by A in the previous lemma.

- 1 is an eigenvector of A with respect to d.
- M is the projection of A to the hyperspace 1^{\perp}.
- M and A have the same smallest eigenvalues.

The proof of the Lemma

- $V(H)=X \cup Y$: a partition of the vertex-set.

The proof of the Lemma

- $V(H)=X \cup Y$: a partition of the vertex-set.
- $\mathbf{1}_{X}, \mathbf{1}_{Y}$: indicated functions of X and Y.

$$
\mathbf{1}_{X}+\mathbf{1}_{Y}=1 .
$$

The proof of the Lemma

- $V(H)=X \cup Y$: a partition of the vertex-set.
- $\mathbf{1}_{X}, \mathbf{1}_{Y}$: indicated functions of X and Y.

$$
\mathbf{1}_{X}+\mathbf{1}_{Y}=\mathbf{1} .
$$

- We observe $M 1=0$.

The proof of the Lemma

- $V(H)=X \cup Y$: a partition of the vertex-set.
- $\mathbf{1}_{X}, \mathbf{1}_{Y}$: indicated functions of X and Y.

$$
\mathbf{1}_{X}+\mathbf{1}_{Y}=\mathbf{1} .
$$

- We observe $M 1=0$.
- For each $t \in(0,1)$, let $\alpha(t)=(1-t) \mathbf{1}_{X}-t \mathbf{1}_{Y}$. We have

$$
\alpha(t)^{\prime} \cdot M \cdot \alpha(t)=-e(X, Y)+\frac{1}{\operatorname{Vol}(H)} \operatorname{Vol}(X) \operatorname{Vol}(Y) .
$$

The proof of the Lemma

Let ρ be the smallest eigenvalue of M. We have

$$
e(X, Y)-\frac{\operatorname{Vol}(X) \operatorname{Vol}(Y)}{\operatorname{Vol}(H)} \leq-\alpha(t)^{\prime} \cdot M \cdot \alpha(t) \leq-\rho\left\|\alpha_{t}\right\|^{2} .
$$

The proof of the Lemma

Let ρ be the smallest eigenvalue of M. We have

$$
e(X, Y)-\frac{\operatorname{Vol}(X) \operatorname{Vol}(Y)}{\operatorname{Vol}(H)} \leq-\alpha(t)^{\prime} \cdot M \cdot \alpha(t) \leq-\rho\left\|\alpha_{t}\right\|^{2} .
$$

Choose $t=\frac{|X|}{n}$ so that $\|\alpha(t)\|^{2}$ reaches its minimum $\frac{|X||Y|}{n}$.

The proof of the Lemma

Let ρ be the smallest eigenvalue of M. We have

$$
e(X, Y)-\frac{\operatorname{Vol}(X) \operatorname{Vol}(Y)}{\operatorname{Vol}(H)} \leq-\alpha(t)^{\prime} \cdot M \cdot \alpha(t) \leq-\rho\left\|\alpha_{t}\right\|^{2} .
$$

Choose $t=\frac{|X|}{n}$ so that $\|\alpha(t)\|^{2}$ reaches its minimum $\frac{|X||Y|}{n}$. We have

$$
\begin{aligned}
e(X, Y) & \leq \frac{\operatorname{Vol}(X) \operatorname{Vol}(Y)}{\operatorname{Vol}(H)}+\rho \frac{|X||Y|}{n} . \\
& \leq \frac{\operatorname{Vol}(H)}{4}-\rho \frac{n}{4} \\
& <\left(\frac{1}{2}+\delta\right)|E(H)|, \text { since } \rho>-2 \delta \bar{d} .
\end{aligned}
$$

Circulant graphs

- $\mathbb{Z}_{n}=\mathbb{Z} / n \mathbb{Z}$
- S : a subset of \mathbb{Z}_{n} satisfying $-S=S$ and $0 \notin S$.

We define a circulant graph H by

- $V(H)=\mathbb{Z}_{n}$
- $E(H)=\{x y \mid x-y \in S\}$.

Example: A circulant graph with $n=8$ and $S=\{ \pm 1, \pm 3\}$.

Spectrum of circulant graphs

Lemma: The eigenvalues of the adjacency matrix for the circulant graph generated by $S \subset \mathbb{Z}_{n}$ are

$$
\sum_{s \in S} \cos \frac{2 \pi i s}{n}
$$

for $i=0, \ldots, n-1$.

Spectrum of circulant graphs

Lemma: The eigenvalues of the adjacency matrix for the circulant graph generated by $S \subset \mathbb{Z}_{n}$ are

$$
\sum_{s \in S} \cos \frac{2 \pi i s}{n}
$$

for $i=0, \ldots, n-1$.

Proof: Note $A=g(J)$, where

$$
g(x)=\sum_{s \in S} x^{s} .
$$

$$
J=\left(\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
1 & 0 & 0 & \cdots & 0 & 0
\end{array}\right)
$$

Proof continues...

Let $\phi=e^{\frac{2 \pi \sqrt{-1}}{n}}$ denote the primitive n-th unit root. J has eigenvalues

$$
1, \phi, \phi^{2}, \ldots, \phi^{n-1}
$$

Proof continues...

Let $\phi=e^{\frac{2 \pi \sqrt{-1}}{n}}$ denote the primitive n-th unit root. J has eigenvalues

$$
1, \phi, \phi^{2}, \ldots, \phi^{n-1}
$$

Thus, the eigenvalues of $A=g(J)$ are

$$
g(1), g(\phi), \ldots, g\left(\phi^{n-1}\right) .
$$

Proof continues...

Let $\phi=e^{\frac{2 \pi \sqrt{-1}}{n}}$ denote the primitive n-th unit root. J has eigenvalues

$$
1, \phi, \phi^{2}, \ldots, \phi^{n-1}
$$

Thus, the eigenvalues of $A=g(J)$ are

$$
g(1), g(\phi), \ldots, g\left(\phi^{n-1}\right) .
$$

For $i=0,1,2, \ldots, n-1$, we have

$$
g\left(\phi^{i}\right)=\Re\left(g\left(\phi^{i}\right)\right)=\sum_{s \in S} \cos \frac{2 \pi i s}{n} .
$$

Graph $L(m, s)$

Suppose s and m are relatively prime to each other. Let n be the least positive integer satisfying

$$
s^{n} \equiv 1 \quad \bmod m .
$$

Graph $L(m, s)$

Suppose s and m are relatively prime to each other. Let n be the least positive integer satisfying

$$
s^{n} \equiv 1 \quad \bmod m .
$$

We define the graph $L(m, s)$ to be a circulant graph on m vertices with

$$
S=\left\{s^{i} \bmod m \mid i=0,1,2, \ldots, n-1\right\} .
$$

Graph $L(m, s)$

Suppose s and m are relatively prime to each other. Let n be the least positive integer satisfying

$$
s^{n} \equiv 1 \quad \bmod m .
$$

We define the graph $L(m, s)$ to be a circulant graph on m vertices with

$$
S=\left\{s^{i} \bmod m \mid i=0,1,2, \ldots, n-1\right\} .
$$

Proposition: The local graph G_{v} of $L(m, s)$ is also a circulant graph.

Algorithm

- For each $L(m, s)$, compute the local graph G_{v}.
- For each $L(m, s)$, compute the local graph G_{v}.
- If G_{v} is not triangle-free, reject it and try a new graph $L(m, s)$.
- For each $L(m, s)$, compute the local graph G_{v}.
- If G_{v} is not triangle-free, reject it and try a new graph $L(m, s)$.
- If the ratio the smallest eigenvalue verse the largest eigenvalue of G_{v} is less than $-\frac{1}{3}$, reject it and try a new graph $L(m, s)$.
- For each $L(m, s)$, compute the local graph G_{v}.
- If G_{v} is not triangle-free, reject it and try a new graph $L(m, s)$.
- If the ratio the smallest eigenvalue verse the largest eigenvalue of G_{v} is less than $-\frac{1}{3}$, reject it and try a new graph $L(m, s)$.
- Output a Folkman graph $L(m, s)$.

Computational results

$L(m, s)$	σ
$L(127,5)$	$-0.6363 \cdots$
$L(761,3)$	$-0.5613 \cdots$
$L(785,53)$	$-0.5404 \cdots$
$L(941,12)$	$-0.5376 \cdots$
$L(1777,53)$	$-0.5216 \cdots$
$L(1801,125)$	$-0.4912 \cdots$
$L(2641,2)$	$-0.4275 \cdots$
$L(9697,4)$	$-0.3307 \cdots$
$L(30193,53)$	$-0.3094 \cdots$
$L(33121,2)$	$-0.2665 \cdots$
$L(57401,7)$	$-0.3289 \cdots$

- σ is the ratio of the smallest eigenvalue to the largest eigenvalue in the local graph.

Computational results

$L(m, s)$	σ
$L(127,5)$	$-0.6363 \cdots$
$L(761,3)$	$-0.5613 \cdots$
$L(785,53)$	$-0.5404 \cdots$
$L(941,12)$	$-0.5376 \cdots$
$L(1777,53)$	$-0.5216 \cdots$
$L(1801,125)$	$-0.4912 \cdots$
$L(2641,2)$	$-0.4275 \cdots$
$L(9697,4)$	$-0.3307 \cdots$
$L(30193,53)$	$-0.3094 \cdots$
$L(33121,2)$	$-0.2665 \cdots$
$L(57401,7)$	$-0.3289 \cdots$

- σ is the ratio of the smallest eigenvalue to the largest eigenvalue in the local graph.
- All graphs on the left are K_{4}-free.

Computational results

$L(m, s)$	σ
$L(127,5)$	$-0.6363 \cdots$
$L(761,3)$	$-0.5613 \cdots$
$L(785,53)$	$-0.5404 \cdots$
$L(941,12)$	$-0.5376 \cdots$
$L(1777,53)$	$-0.5216 \cdots$
$L(1801,125)$	$-0.4912 \cdots$
$L(2641,2)$	$-0.4275 \cdots$
$L(9697,4)$	$-0.3307 \cdots$
$L(30193,53)$	$-0.3094 \cdots$
$L(33121,2)$	$-0.2665 \cdots$
$L(57401,7)$	$-0.3289 \cdots$

- σ is the ratio of the smallest eigenvalue to the largest eigenvalue in the local graph.
- All graphs on the left are K_{4}-free.
- Graphs in red are Folkman graphs.

Computational results

$L(m, s)$	σ
$L(127,5)$	$-0.6363 \cdots$
$L(761,3)$	$-0.5613 \cdots$
$L(785,53)$	$-0.5404 \cdots$
$L(941,12)$	$-0.5376 \cdots$
$L(1777,53)$	$-0.5216 \cdots$
$L(1801,125)$	$-0.4912 \cdots$
$L(2641,2)$	$-0.4275 \cdots$
$L(9697,4)$	$-0.3307 \cdots$
$L(30193,53)$	$-0.3094 \cdots$
$L(33121,2)$	$-0.2665 \cdots$
$L(57401,7)$	$-0.3289 \cdots$

- σ is the ratio of the smallest eigenvalue to the largest eigenvalue in the local graph.
- All graphs on the left are K_{4}-free.
- Graphs in red are Folkman graphs.
- Graphs in black are good candidates.

Open questions

- Exoo conjectured $L(127,5)$ is a Folkman graph.

Open questions

- Exoo conjectured $L(127,5)$ is a Folkman graph.
- Is $L(2641,2)$ a Folkman graph?

Open questions

- Exoo conjectured $L(127,5)$ is a Folkman graph.
- Is $L(2641,2)$ a Folkman graph?
- Our method works for graphs other than $L(m, s)$. Is there any other construction for smaller Folkman graphs?

Open questions

- Exoo conjectured $L(127,5)$ is a Folkman graph.
- Is $L(2641,2)$ a Folkman graph?
- Our method works for graphs other than $L(m, s)$. Is there any other construction for smaller Folkman graphs?
- A new challenge: prove or disprove

$$
f(2,3,4) \leq 100 .
$$

