Explicit Construction of Small Folkman Graphs

Linyuan Lu

lu@math.sc.edu.

University of South Carolina

The 22nd Clemson Mini-Conference on Discrete Mathematics and Algorithms

Ramsey number R(3,3) = 6

If edges of K_6 are 2-colored then there exists a monochromatic triangle.

Ramsey number R(3,3) = 6

If edges of K_6 are 2-colored then there exists a monochromatic triangle.

• There exists a 2-coloring of edges of K_5 with no monochromatic triangle.

Rado's arrow notation

 $G \rightarrow (H)$: if the edges of G are 2-colored then there exists a monochromatic subgraph of G isomorphic to H.

Rado's arrow notation

 $G \rightarrow (H)$: if the edges of G are 2-colored then there exists a monochromatic subgraph of G isomorphic to H.

Fact: If $K_6 \subset G$, then $G \to (K_3)$.

A question of Erdős and Hajnal

Is there a K_6 -free graph G with $G \to (K_3)$?

A question of Erdős and Hajnal

Is there a K_6 -free graph G with $G \to (K_3)$?

Graham (1968): Yes!

Explicit Construction of Small Folkman Graphs - p.4/26

Suppose *G* has no monochromatic triangle.

Suppose G has no monochromatic triangle.

Label the vertices of C_5 by either (r, b) or (b, r).

Suppose G has no monochromatic triangle.

Label the vertices of C_5 by either (r, b) or (b, r).

A red triangle is unavoidable since $\chi(C_5) = 3$.

K_5 -free graphs G with $G \rightarrow (K_3)$

Year	Authors	G
1969	Schäuble	42
1071	Graham Spancar	0 2

- 1971 Graham, Spencer 23
- 1973 Irving 18
- 1979 Hadziivanov, Nenov 16
- 1981 Nenov 15

 K_5 -free graphs G with $G \rightarrow (K_3)$

Year	Authors	G
1969	Schäuble	42
1971	Graham, Spencer	23
1973	Irving	18
1979	Hadziivanov, Nenov	16
1981	Nenov	15

In 1998, Piwakowski, Radziszowski and Urbański used a computer-aided exhaustive search to rule out all possible graphs on less than 15 vertices.

General results

Folkman's theorem (1970): For any $k_2 > k_1 \ge 3$, there exists a K_{k_2} -free graph G with $G \to (K_{k_1})$.

These graphs are called Folkman Graphs.

General results

Folkman's theorem (1970): For any $k_2 > k_1 \ge 3$, there exists a K_{k_2} -free graph G with $G \to (K_{k_1})$.

These graphs are called Folkman Graphs.

Nešetřil-Rödl's theorem (1976): For $p \ge 2$ and any $k_2 > k_1 \ge 3$, there exists a K_{k_2} -free graph G with $G \to (K_{k_1})_p$.

Here $G \rightarrow (H)_p$: if the edges of *G* are *p*-colored then there exists a monochromatic subgraph of *G* isomorphic to *H*.

$f(p, k_1, k_2)$

Let $f(p, k_1, k_2)$ denote the smallest integer n such that there exists a K_{k_2} -free graph G on n vertices with $G \to (K_{k_1})_p$.

Graham

$$f(2,3,6) = 8.$$

$f(p, k_1, k_2)$

Let $f(p, k_1, k_2)$ denote the smallest integer n such that there exists a K_{k_2} -free graph G on n vertices with $G \to (K_{k_1})_p$.

Graham

$$f(2,3,6) = 8.$$

Nenov, Piwakowski, Radziszowski and Urbański

f(2,3,5) = 15.

 $f(p, k_1, k_2)$

Let $f(p, k_1, k_2)$ denote the smallest integer n such that there exists a K_{k_2} -free graph G on n vertices with $G \to (K_{k_1})_p$.

9 Graham

$$f(2,3,6) = 8.$$

Nenov, Piwakowski, Radziszowski and Urbański

$$f(2,3,5) = 15.$$

• What about f(2, 3, 4)?

Folkman, Nešetřil-Rödl 's upper bound is huge.

- **Folkman, Nešetřil-Rödl** 's upper bound is huge.
- Frankl and Rödl (1986)

 $f(2,3,4) \le 7 \times 10^{11}.$

- **Folkman, Nešetřil-Rödl** 's upper bound is huge.
- Frankl and Rödl (1986)

 $f(2,3,4) \le 7 \times 10^{11}.$

Erdős set a prize of \$100 for the challenge

 $f(2,3,4) \le 10^{10.}$

- **Folkman, Nešetřil-Rödl** 's upper bound is huge.
- Frankl and Rödl (1986)

 $f(2,3,4) \le 7 \times 10^{11}.$

Erdős set a prize of \$100 for the challenge

 $f(2,3,4) \le 10^{10.}$

Spencer (1988) claimed the prize.

 $f(2,3,4) \le 3 \times 10^9.$

- **Folkman, Nešetřil-Rödl** 's upper bound is huge.
- **Frankl and Rödl** (1986)

 $f(2,3,4) \le 7 \times 10^{11}.$

Erdős set a prize of \$100 for the challenge

 $f(2,3,4) \le 10^{10.}$

Spencer (1988) claimed the prize.

 $f(2,3,4) \le 3 \times 10^9.$

Erdős re-set a prize of \$100 for the new challenge

 $f(2,3,4) \le 10^6.$

The most wanted Folkman Graph

The most wanted Folkman Graph

Problem on triangle-free subgraphs in graphs containing no K_4 \$100 (proposed by Erdős)⁴⁸ Let $f(p, k_1, k_2)$ denote the smallest integer n such that there is a graph G with n vertices satisfying the properties: (1) any edge coloring in p colors contains a monochromatic K_{k_1} ; (2) G contains no K_{k_2} . Prove or disprove: $f(2,3,4) < 10^6$.

Explicit Construction of Small Folkman Graphs - p.10/26

Difficulty

• There is no efficient algorithm to test whether $G \rightarrow (K_3)$.

Difficulty

- There is no efficient algorithm to test whether $G \rightarrow (K_3)$.
- For moderate n, Folkman graphs are very rare among all K_4 -free graphs on n vertices.

Difficulty

- There is no efficient algorithm to test whether $G \rightarrow (K_3)$.
- For moderate n, Folkman graphs are very rare among all K_4 -free graphs on n vertices.
- Probabilistic methods are generally good choices for asymptotic results. However, it is not good for moderate size n.

• Find a simple and sufficient condition for $G \rightarrow (K_3)$, and an efficient algorithm to verify this condition.

- Find a simple and sufficient condition for $G \rightarrow (K_3)$, and an efficient algorithm to verify this condition.
- Search a special class of graphs so that we have a better chance of finding a Folkman graph.

- Find a simple and sufficient condition for $G \rightarrow (K_3)$, and an efficient algorithm to verify this condition.
- Search a special class of graphs so that we have a better chance of finding a Folkman graph.
- Use spectral analysis instead of probabilistic methods.

- Find a simple and sufficient condition for $G \rightarrow (K_3)$, and an efficient algorithm to verify this condition.
- Search a special class of graphs so that we have a better chance of finding a Folkman graph.
- Use spectral analysis instead of probabilistic methods.
- Localization and δ -fairness.

- Find a simple and sufficient condition for $G \rightarrow (K_3)$, and an efficient algorithm to verify this condition.
- Search a special class of graphs so that we have a better chance of finding a Folkman graph.
- Use spectral analysis instead of probabilistic methods.
- Localization and δ -fairness.
- Circulant graphs and L(m, s).

Our result

We claim the reward by proving **Theorem 1 (Lu, 2007)** $f(2, 3, 4) \le 9697$.

Our result

We claim the reward by proving **Theorem 1 (Lu, 2007)** $f(2, 3, 4) \le 9697$.

We explicitly constructed 4 Folkman graphs with orders

 $9697, \quad 30193, \quad 33121, \quad 57401.$

Our result

We claim the reward by proving **Theorem 1 (Lu, 2007)** $f(2, 3, 4) \le 9697$.

We explicitly constructed 4 Folkman graphs with orders

 $9697, \quad 30193, \quad 33121, \quad 57401.$

Recent update: Dudek and Rödl (2008) proved $f(2,3,4) \le 941$.

Spencer's Lemma

Notations:

- G_v : the induced graph on the the neighborhood of v.
- b(H): the maximum size of edge-cuts for H.

Spencer's Lemma

Notations:

- G_v : the induced graph on the the neighborhood of v.
- b(H): the maximum size of edge-cuts for H.

Lemma (Spencer) If $\sum_{v} b(G_v) < \frac{2}{3} \sum_{v} |E(G_v)|$, then $G \to (K_3)$.

Spencer's Lemma

Notations:

- G_v : the induced graph on the the neighborhood of v.
- b(H): the maximum size of edge-cuts for H.

Lemma (Spencer) If $\sum_{v} b(G_v) < \frac{2}{3} \sum_{v} |E(G_v)|$, then $G \to (K_3)$.

Localization

For $0 < \delta < \frac{1}{2}$, a graph *H* is δ -fair if

$$b(H) < \left(\frac{1}{2} + \delta\right)|E(H)|.$$

Localization

For $0 < \delta < \frac{1}{2}$, a graph *H* is δ -fair if

$$b(H) < \left(\frac{1}{2} + \delta\right)|E(H)|.$$

 ${\cal G}$ is a Folkman graph if for each v

- G_v is $\frac{1}{6}$ -fair.
- G_v is K_3 -free.

Localization

For $0 < \delta < \frac{1}{2}$, a graph *H* is δ -fair if

$$b(H) < \left(\frac{1}{2} + \delta\right)|E(H)|.$$

 ${\cal G}$ is a Folkman graph if for each v

- G_v is $\frac{1}{6}$ -fair.
- G_v is K_3 -free.

For vertex transitive graph G, all G_v 's are isomorphic.

Spectral lemma

- H: a graph on n vertices
- A: the adjacency matrix of H
- $\mathbf{d} = (d_1, d_2, \dots, d_n)$: degrees of H
- $\operatorname{Vol}(S) = \sum_{v \in S} d_v$: the volume of S
- $\bar{d} = \frac{\operatorname{Vol}(H)}{n}$: the average degree

Spectral lemma

- H: a graph on n vertices
- A: the adjacency matrix of H
- $\mathbf{d} = (d_1, d_2, \dots, d_n)$: degrees of H
- $\operatorname{Vol}(S) = \sum_{v \in S} d_v$: the volume of S
- $\bar{d} = \frac{\operatorname{Vol}(H)}{n}$: the average degree

Lemma (Lu) If the smallest eigenvalue of $M = A - \frac{1}{\text{Vol}(H)} \mathbf{d} \cdot \mathbf{d}'$ is greater than $-2\delta \bar{d}$, then H is δ -fair.

Spectral lemma

- H: a graph on n vertices
- A: the adjacency matrix of H
- $\mathbf{d} = (d_1, d_2, \dots, d_n)$: degrees of H
- $\operatorname{Vol}(S) = \sum_{v \in S} d_v$: the volume of S
- $\bar{d} = \frac{\operatorname{Vol}(H)}{n}$: the average degree

Lemma (Lu) If the smallest eigenvalue of $M = A - \frac{1}{\text{Vol}(H)} \mathbf{d} \cdot \mathbf{d}'$ is greater than $-2\delta \overline{d}$, then H is δ -fair.

Similar results hold for A and L. However, they are weaker than using M in experiments.

Corollary

Corollary Suppose H is a d-regular graph and the smallest eigenvalue of its adjacency matrix A is greater than $-2\delta d$. Then H is δ -fair.

Explicit Construction of Small Folkman Graphs - p.17/26

Corollary

Corollary Suppose H is a d-regular graph and the smallest eigenvalue of its adjacency matrix A is greater than $-2\delta d$. Then H is δ -fair.

Proof: We can replace M by A in the previous lemma.

- 1 is an eigenvector of A with respect to d.
- *M* is the projection of *A* to the hyperspace $\mathbf{1}^{\perp}$.
- *M* and *A* have the same smallest eigenvalues.

• $V(H) = X \cup Y$: a partition of the vertex-set.

Explicit Construction of Small Folkman Graphs - p.18/26

- $V(H) = X \cup Y$: a partition of the vertex-set.
- $\mathbf{1}_X$, $\mathbf{1}_Y$: indicated functions of X and Y.

 $\mathbf{1}_X + \mathbf{1}_Y = \mathbf{1}.$

- $V(H) = X \cup Y$: a partition of the vertex-set.
- $\mathbf{1}_X$, $\mathbf{1}_Y$: indicated functions of X and Y.

 $\mathbf{1}_X + \mathbf{1}_Y = \mathbf{1}.$

• We observe $M\mathbf{1} = 0$.

- $V(H) = X \cup Y$: a partition of the vertex-set.
- $\mathbf{1}_X$, $\mathbf{1}_Y$: indicated functions of X and Y.

 $\mathbf{1}_X + \mathbf{1}_Y = \mathbf{1}.$

- We observe $M\mathbf{1} = 0$.
- For each $t \in (0,1)$, let $\alpha(t) = (1-t)\mathbf{1}_X t\mathbf{1}_Y$. We have

$$\alpha(t)' \cdot M \cdot \alpha(t) = -e(X, Y) + \frac{1}{\operatorname{Vol}(H)} \operatorname{Vol}(X) \operatorname{Vol}(Y).$$

Let ρ be the smallest eigenvalue of M. We have

$$e(X,Y) - \frac{\operatorname{Vol}(X)\operatorname{Vol}(Y)}{\operatorname{Vol}(H)} \le -\alpha(t)' \cdot M \cdot \alpha(t) \le -\rho \|\alpha_t\|^2.$$

Let ρ be the smallest eigenvalue of M. We have

$$e(X,Y) - \frac{\operatorname{Vol}(X)\operatorname{Vol}(Y)}{\operatorname{Vol}(H)} \le -\alpha(t)' \cdot M \cdot \alpha(t) \le -\rho \|\alpha_t\|^2.$$

Choose $t = \frac{|X|}{n}$ so that $||\alpha(t)||^2$ reaches its minimum $\frac{|X||Y|}{n}$.

Let ρ be the smallest eigenvalue of M. We have

$$e(X,Y) - \frac{\operatorname{Vol}(X)\operatorname{Vol}(Y)}{\operatorname{Vol}(H)} \le -\alpha(t)' \cdot M \cdot \alpha(t) \le -\rho \|\alpha_t\|^2.$$

Choose $t = \frac{|X|}{n}$ so that $||\alpha(t)||^2$ reaches its minimum $\frac{|X||Y|}{n}$. We have

$$\begin{split} e(X,Y) &\leq \frac{\operatorname{Vol}(X)\operatorname{Vol}(Y)}{\operatorname{Vol}(H)} + \rho \frac{|X||Y|}{n}. \\ &\leq \frac{\operatorname{Vol}(H)}{4} - \rho \frac{n}{4} \\ &< (\frac{1}{2} + \delta)|E(H)|, \text{ since } \rho > -2\delta \overline{d}. \end{split}$$

Circulant graphs

- $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$
- S: a subset of \mathbb{Z}_n satisfying -S = S and $0 \notin S$.

We define a circulant graph H by

- $V(H) = \mathbb{Z}_n$

-
$$E(H) = \{xy \mid x - y \in S\}.$$

Example: A circulant graph with n = 8 and $S = \{\pm 1, \pm 3\}$.

Spectrum of circulant graphs

Lemma: The eigenvalues of the adjacency matrix for the circulant graph generated by $S \subset \mathbb{Z}_n$ are

$$\sum_{s \in S} \cos \frac{2\pi i s}{n}$$

for
$$i = 0, ..., n - 1$$
.

Spectrum of circulant graphs

Lemma: The eigenvalues of the adjacency matrix for the circulant graph generated by $S \subset \mathbb{Z}_n$ are

I =

$$\sum_{s \in S} \cos \frac{2\pi i s}{n}$$

for
$$i = 0, ..., n - 1$$
.

Proof: Note A = g(J), where

$$g(x) = \sum_{s \in S} x^s.$$

Proof continues...

Let $\phi = e^{\frac{2\pi\sqrt{-1}}{n}}$ denote the primitive *n*-th unit root. *J* has eigenvalues

 $1, \phi, \phi^2, \dots, \phi^{n-1}.$

Proof continues...

Let $\phi = e^{\frac{2\pi\sqrt{-1}}{n}}$ denote the primitive *n*-th unit root. *J* has eigenvalues

 $1, \phi, \phi^2, \dots, \phi^{n-1}.$

Thus, the eigenvalues of A = g(J) are

$$g(1), g(\phi), \dots, g(\phi^{n-1}).$$

Proof continues...

Let $\phi = e^{\frac{2\pi\sqrt{-1}}{n}}$ denote the primitive *n*-th unit root. *J* has eigenvalues

$$1, \phi, \phi^2, \dots, \phi^{n-1}.$$

Thus, the eigenvalues of A = g(J) are

$$g(1), g(\phi), \dots, g(\phi^{n-1}).$$

For i = 0, 1, 2, ..., n - 1, we have

$$g(\phi^i) = \Re(g(\phi^i)) = \sum_{s \in S} \cos \frac{2\pi i s}{n}.$$

${\bf Graph}\; L(m,s)$

Suppose s and m are relatively prime to each other. Let n be the least positive integer satisfying

 $s^n \equiv 1 \mod m.$

Graph L(m, s)

Suppose s and m are relatively prime to each other. Let n be the least positive integer satisfying

 $s^n \equiv 1 \mod m.$

We define the graph L(m, s) to be a circulant graph on m vertices with

$$S = \{s^i \mod m \mid i = 0, 1, 2, \dots, n-1\}.$$

Graph L(m, s)

Suppose s and m are relatively prime to each other. Let n be the least positive integer satisfying

 $s^n \equiv 1 \mod m.$

We define the graph L(m,s) to be a circulant graph on m vertices with

$$S = \{s^i \mod m \mid i = 0, 1, 2, \dots, n-1\}.$$

Proposition: The local graph G_v of L(m, s) is also a circulant graph.

• For each L(m, s), compute the local graph G_v .

Explicit Construction of Small Folkman Graphs - p.24/26

- For each L(m,s), compute the local graph G_v .
- If G_v is not triangle-free, reject it and try a new graph L(m,s).

- For each L(m, s), compute the local graph G_v .
- If G_v is not triangle-free, reject it and try a new graph L(m,s).
- If the ratio the smallest eigenvalue verse the largest eigenvalue of G_v is less than $-\frac{1}{3}$, reject it and try a new graph L(m,s).

- For each L(m, s), compute the local graph G_v .
- If G_v is not triangle-free, reject it and try a new graph L(m,s).
- If the ratio the smallest eigenvalue verse the largest eigenvalue of G_v is less than $-\frac{1}{3}$, reject it and try a new graph L(m,s).
- Output a Folkman graph L(m, s).

		_
L(m,s)	σ	
L(127, 5)	$-0.6363\cdots$	
L(761, 3)	$-0.5613\cdots$	
L(785, 53)	$-0.5404\cdots$	
L(941, 12)	$-0.5376\cdots$	
L(1777, 53)	$-0.5216\cdots$	
L(1801, 125)	$-0.4912\cdots$	
L(2641, 2)	$-0.4275\cdots$	
L(9697, 4)	$-0.3307\cdots$	
L(30193, 53)	$-0.3094\cdots$	
L(33121, 2)	$-0.2665\cdots$	
L(57401,7)	$-0.3289\cdots$	
		-

 σ is the ratio of the smallest eigenvalue to the largest eigenvalue in the local graph.

L(m,s)	σ	
L(127, 5)	$-0.6363\cdots$	
L(761, 3)	$-0.5613\cdots$	
L(785, 53)	$-0.5404\cdots$	
L(941, 12)	$-0.5376\cdots$	
L(1777, 53)	$-0.5216\cdots$	
L(1801, 125)	$-0.4912\cdots$	
L(2641, 2)	$-0.4275\cdots$	
L(9697, 4)	$-0.3307\cdots$	
L(30193, 53)	$-0.3094\cdots$	
L(33121, 2)	$-0.2665\cdots$	
L(57401,7)	$-0.3289\cdots$	

 σ is the ratio of the smallest eigenvalue to the largest eigenvalue in the local graph.

• All graphs on the left are K_4 -free.

		_
L(m,s)	σ	
L(127, 5)	$-0.6363\cdots$	
L(761, 3)	$-0.5613\cdots$	
L(785, 53)	$-0.5404\cdots$	
L(941, 12)	$-0.5376\cdots$	
L(1777, 53)	$-0.5216\cdots$	
L(1801, 125)	$-0.4912\cdots$	
L(2641, 2)	$-0.4275\cdots$	_
L(9697, 4)	$-0.3307\cdots$	
L(30193, 53)	$-0.3094\cdots$	
L(33121, 2)	$-0.2665\cdots$	
L(57401,7)	$-0.3289\cdots$	

 σ is the ratio of the smallest eigenvalue to the largest eigenvalue in the local graph.

- All graphs on the left are K_4 -free.
- Graphs in red are Folkman graphs.

		_
L(m,s)	σ	
L(127,5)	$-0.6363\cdots$	
L(761, 3)	$-0.5613\cdots$	
L(785, 53)	$-0.5404\cdots$	
L(941, 12)	$-0.5376\cdots$	
L(1777, 53)	$-0.5216\cdots$	
L(1801, 125)	$-0.4912\cdots$	
L(2641, 2)	$-0.4275\cdots$	
L(9697, 4)	$-0.3307\cdots$	
L(30193, 53)	$-0.3094\cdots$	
L(33121, 2)	$-0.2665\cdots$	
L(57401,7)	$-0.3289\cdots$	

 σ is the ratio of the smallest eigenvalue to the largest eigenvalue in the local graph.

- All graphs on the left are K_4 -free.
- Graphs in red are Folkman graphs.
- Graphs in black are good candidates.

• Exoo conjectured L(127, 5) is a Folkman graph.

Explicit Construction of Small Folkman Graphs - p.26/26

- Exoo conjectured L(127, 5) is a Folkman graph.
- Is L(2641, 2) a Folkman graph?

- Exoo conjectured L(127, 5) is a Folkman graph.
- Is L(2641, 2) a Folkman graph?
- Our method works for graphs other than L(m, s). Is there any other construction for smaller Folkman graphs?

- Exoo conjectured L(127, 5) is a Folkman graph.
- Is L(2641, 2) a Folkman graph?
- Our method works for graphs other than L(m, s). Is there any other construction for smaller Folkman graphs?
- A new challenge: prove or disprove

 $f(2,3,4) \le 100.$

