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Ramsey number R(3, 3) = 6

If edges of K6 are 2-colored then there exists a
monochromatic triangle.
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Ramsey number R(3, 3) = 6

If edges of K6 are 2-colored then there exists a
monochromatic triangle.

There exists a 2-coloring of edges of K5 with no
monochromatic triangle.
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Rado’s arrow notation

G → (H): if the edges of G are 2-colored then there exists a
monochromatic subgraph of G isomorphic to H.

K6 → (K3)
K5 6→ (K3)
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Rado’s arrow notation

G → (H): if the edges of G are 2-colored then there exists a
monochromatic subgraph of G isomorphic to H.

K6 → (K3)
K5 6→ (K3)

Fact: If K6 ⊂ G, then G → (K3).
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A question of Erdős and Hajnal

Is there a K6-free graph G with G → (K3)?
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A question of Erdős and Hajnal

Is there a K6-free graph G with G → (K3)?

Graham (1968): Yes!

K8 \ C5
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Graham’s graph K8 \ C5 = K3 ∗ C5

Suppose G has no monochromatic triangle.
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Suppose G has no monochromatic triangle.
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Graham’s graph K8 \ C5 = K3 ∗ C5

Suppose G has no monochromatic triangle.
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Graham’s graph K8 \ C5 = K3 ∗ C5

Suppose G has no monochromatic triangle.
(b, r)

(r, b)

Label the vertices of C5 by either (r, b) or (b, r).
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Graham’s graph K8 \ C5 = K3 ∗ C5

Suppose G has no monochromatic triangle.
(b, r)

(b, r)

Label the vertices of C5 by either (r, b) or (b, r).

A red triangle is unavoidable since χ(C5) = 3.
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K5-free graphs G with G → (K3)

Year Authors |G|

1969 Scha̋uble 42

1971 Graham, Spencer 23

1973 Irving 18

1979 Hadziivanov, Nenov 16

1981 Nenov 15
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K5-free graphs G with G → (K3)

Year Authors |G|

1969 Scha̋uble 42

1971 Graham, Spencer 23

1973 Irving 18

1979 Hadziivanov, Nenov 16

1981 Nenov 15

In 1998, Piwakowski, Radziszowski and Urbański used a
computer-aided exhaustive search to rule out all possible
graphs on less than 15 vertices.
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General results

Folkman’s theorem (1970): For any k2 > k1 ≥ 3, there exists a
Kk2

-free graph G with G → (Kk1
).

These graphs are called Folkman Graphs.
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General results

Folkman’s theorem (1970): For any k2 > k1 ≥ 3, there exists a
Kk2

-free graph G with G → (Kk1
).

These graphs are called Folkman Graphs.

Nešetřil-Rödl’s theorem (1976): For p ≥ 2 and any

k2 > k1 ≥ 3, there exists a Kk2
-free graph G with G → (Kk1

)p.

Here G → (H)p: if the edges of G are p-colored then there

exists a monochromatic subgraph of G isomorphic to H.
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f(p, k1, k2)

Let f(p, k1, k2) denote the smallest integer n such that there
exists a Kk2

-free graph G on n vertices with G → (Kk1
)p.

Graham

f(2, 3, 6) = 8.
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f(p, k1, k2)

Let f(p, k1, k2) denote the smallest integer n such that there
exists a Kk2

-free graph G on n vertices with G → (Kk1
)p.

Graham

f(2, 3, 6) = 8.

Nenov, Piwakowski, Radziszowski and Urbański

f(2, 3, 5) = 15.
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f(p, k1, k2)

Let f(p, k1, k2) denote the smallest integer n such that there
exists a Kk2

-free graph G on n vertices with G → (Kk1
)p.

Graham

f(2, 3, 6) = 8.

Nenov, Piwakowski, Radziszowski and Urbański

f(2, 3, 5) = 15.

What about f(2, 3, 4)?
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Upper bound of f(2, 3, 4)

Folkman, Nešetřil-Rödl ’s upper bound is huge.
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Upper bound of f(2, 3, 4)

Folkman, Nešetřil-Rödl ’s upper bound is huge.

Frankl and Rödl (1986)

f(2, 3, 4) ≤ 7 × 1011.
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Upper bound of f(2, 3, 4)

Folkman, Nešetřil-Rödl ’s upper bound is huge.

Frankl and Rödl (1986)

f(2, 3, 4) ≤ 7 × 1011.

Erdős set a prize of $100 for the challenge

f(2, 3, 4) ≤ 1010.
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Upper bound of f(2, 3, 4)

Folkman, Nešetřil-Rödl ’s upper bound is huge.

Frankl and Rödl (1986)

f(2, 3, 4) ≤ 7 × 1011.

Erdős set a prize of $100 for the challenge

f(2, 3, 4) ≤ 1010.

Spencer (1988) claimed the prize.

f(2, 3, 4) ≤ 3 × 109.
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Upper bound of f(2, 3, 4)

Folkman, Nešetřil-Rödl ’s upper bound is huge.

Frankl and Rödl (1986)

f(2, 3, 4) ≤ 7 × 1011.

Erdős set a prize of $100 for the challenge

f(2, 3, 4) ≤ 1010.

Spencer (1988) claimed the prize.

f(2, 3, 4) ≤ 3 × 109.

Erdős re-set a prize of $100 for the new challenge

f(2, 3, 4) ≤ 106.
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The most wanted Folkman Graph
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The most wanted Folkman Graph
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Difficulty

There is no efficient algorithm to test whether
G → (K3).

Explicit Construction of Small Folkman Graphs – p.11/26



Difficulty

There is no efficient algorithm to test whether
G → (K3).

For moderate n, Folkman graphs are very rare among
all K4-free graphs on n vertices.
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Difficulty

There is no efficient algorithm to test whether
G → (K3).

For moderate n, Folkman graphs are very rare among
all K4-free graphs on n vertices.

Probabilistic methods are generally good choices for
asymptotic results. However, it is not good for
moderate size n.
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Our approach

Find a simple and sufficient condition for G → (K3),
and an efficient algorithm to verify this condition.
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Our approach

Find a simple and sufficient condition for G → (K3),
and an efficient algorithm to verify this condition.

Search a special class of graphs so that we have a
better chance of finding a Folkman graph.
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Our approach

Find a simple and sufficient condition for G → (K3),
and an efficient algorithm to verify this condition.

Search a special class of graphs so that we have a
better chance of finding a Folkman graph.

Use spectral analysis instead of probabilistic methods.
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Our approach

Find a simple and sufficient condition for G → (K3),
and an efficient algorithm to verify this condition.

Search a special class of graphs so that we have a
better chance of finding a Folkman graph.

Use spectral analysis instead of probabilistic methods.

Localization and δ-fairness.
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Our approach

Find a simple and sufficient condition for G → (K3),
and an efficient algorithm to verify this condition.

Search a special class of graphs so that we have a
better chance of finding a Folkman graph.

Use spectral analysis instead of probabilistic methods.

Localization and δ-fairness.

Circulant graphs and L(m, s).
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Our result

We claim the reward by proving

Theorem 1 (Lu, 2007) f(2, 3, 4) ≤ 9697.
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Our result

We claim the reward by proving

Theorem 1 (Lu, 2007) f(2, 3, 4) ≤ 9697.

We explicitly constructed 4 Folkman graphs with orders

9697, 30193, 33121, 57401.
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Our result

We claim the reward by proving

Theorem 1 (Lu, 2007) f(2, 3, 4) ≤ 9697.

We explicitly constructed 4 Folkman graphs with orders

9697, 30193, 33121, 57401.

Recent update: Dudek and Rödl (2008) proved

f(2, 3, 4) ≤ 941.
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Spencer’s Lemma

Notations:

- Gv: the induced graph on the the neighborhood of v.

- b(H): the maximum size of edge-cuts for H.
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Spencer’s Lemma

Notations:

- Gv: the induced graph on the the neighborhood of v.

- b(H): the maximum size of edge-cuts for H.

Lemma (Spencer) If
∑

v b(Gv) < 2
3

∑

v |E(Gv)|, then

G → (K3).
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Spencer’s Lemma

Notations:

- Gv: the induced graph on the the neighborhood of v.

- b(H): the maximum size of edge-cuts for H.

Lemma (Spencer) If
∑

v b(Gv) < 2
3

∑

v |E(Gv)|, then

G → (K3).

Explicit Construction of Small Folkman Graphs – p.14/26



Localization

For 0 < δ < 1
2 , a graph H is δ-fair if

b(H) < (
1

2
+ δ)|E(H)|.
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Localization

For 0 < δ < 1
2 , a graph H is δ-fair if

b(H) < (
1

2
+ δ)|E(H)|.

G is a Folkman graph if for each v

- Gv is 1
6-fair.

- Gv is K3-free.
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Localization

For 0 < δ < 1
2 , a graph H is δ-fair if

b(H) < (
1

2
+ δ)|E(H)|.

G is a Folkman graph if for each v

- Gv is 1
6-fair.

- Gv is K3-free.

For vertex transitive graph G, all Gv ’s are isomorphic.
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Spectral lemma

- H: a graph on n vertices

- A: the adjacency matrix of H

- d = (d1, d2, . . . , dn): degrees of H

- Vol(S) =
∑

v∈S dv: the volume of S

- d̄ = Vol(H)
n

: the average degree
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Spectral lemma

- H: a graph on n vertices

- A: the adjacency matrix of H

- d = (d1, d2, . . . , dn): degrees of H

- Vol(S) =
∑

v∈S dv: the volume of S

- d̄ = Vol(H)
n

: the average degree

Lemma (Lu) If the smallest eigenvalue of M = A − 1
Vol(H)d · d′

is greater than −2δd̄, then H is δ-fair.
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Spectral lemma

- H: a graph on n vertices

- A: the adjacency matrix of H

- d = (d1, d2, . . . , dn): degrees of H

- Vol(S) =
∑

v∈S dv: the volume of S

- d̄ = Vol(H)
n

: the average degree

Lemma (Lu) If the smallest eigenvalue of M = A − 1
Vol(H)d · d′

is greater than −2δd̄, then H is δ-fair.

Similar results hold for A and L. However, they are weaker

than using M in experiments.
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Corollary

Corollary Suppose H is a d-regular graph and the smallest
eigenvalue of its adjacency matrix A is greater than −2δd. Then
H is δ-fair.
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Corollary

Corollary Suppose H is a d-regular graph and the smallest
eigenvalue of its adjacency matrix A is greater than −2δd. Then
H is δ-fair.

Proof: We can replace M by A in the previous lemma.

- 1 is an eigenvector of A with respect to d.

- M is the projection of A to the hyperspace 1
⊥.

- M and A have the same smallest eigenvalues.
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The proof of the Lemma

V (H) = X ∪ Y : a partition of the vertex-set.
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The proof of the Lemma

V (H) = X ∪ Y : a partition of the vertex-set.

1X , 1Y : indicated functions of X and Y .

1X + 1Y = 1.
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The proof of the Lemma

V (H) = X ∪ Y : a partition of the vertex-set.

1X , 1Y : indicated functions of X and Y .

1X + 1Y = 1.

We observe M1 = 0.
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The proof of the Lemma

V (H) = X ∪ Y : a partition of the vertex-set.

1X , 1Y : indicated functions of X and Y .

1X + 1Y = 1.

We observe M1 = 0.

For each t ∈ (0, 1), let α(t) = (1 − t)1X − t1Y . We have

α(t)′ · M · α(t) = −e(X,Y ) +
1

Vol(H)
Vol(X)Vol(Y ).
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The proof of the Lemma

Let ρ be the smallest eigenvalue of M . We have

e(X,Y ) −
Vol(X)Vol(Y )

Vol(H)
≤ −α(t)′ · M · α(t) ≤ −ρ‖αt‖

2.
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The proof of the Lemma

Let ρ be the smallest eigenvalue of M . We have

e(X,Y ) −
Vol(X)Vol(Y )

Vol(H)
≤ −α(t)′ · M · α(t) ≤ −ρ‖αt‖

2.

Choose t = |X|
n

so that ‖α(t)‖2 reaches its minimum |X||Y |
n

.
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The proof of the Lemma

Let ρ be the smallest eigenvalue of M . We have

e(X,Y ) −
Vol(X)Vol(Y )

Vol(H)
≤ −α(t)′ · M · α(t) ≤ −ρ‖αt‖

2.

Choose t = |X|
n

so that ‖α(t)‖2 reaches its minimum |X||Y |
n

.

We have

e(X,Y ) ≤
Vol(X)Vol(Y )

Vol(H)
+ ρ

|X||Y |

n
.

≤
Vol(H)

4
− ρ

n

4

< (
1

2
+ δ)|E(H)|, since ρ > −2δd̄. �
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Circulant graphs

- Zn = Z/nZ

- S: a subset of Zn satisfying −S = S and 0 6∈ S.

We define a circulant graph H by

- V (H) = Zn

- E(H) = {xy | x − y ∈ S}.

Example: A circulant graph with
n = 8 and S = {±1,±3}.
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Spectrum of circulant graphs

Lemma: The eigenvalues of the adjacency matrix for the

circulant graph generated by S ⊂ Zn are

∑

s∈S

cos
2πis

n

for i = 0, . . . , n − 1.
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Spectrum of circulant graphs

Lemma: The eigenvalues of the adjacency matrix for the

circulant graph generated by S ⊂ Zn are

∑

s∈S

cos
2πis

n

for i = 0, . . . , n − 1.

Proof: Note A = g(J),
where

g(x) =
∑

s∈S

xs.
J =





















0 1 0 · · · 0 0

0 0 1 · · · 0 0

0 0 0 · · · 0 0
...

...
...

. . . . . .
...

0 0 0 · · · 0 1

1 0 0 · · · 0 0




















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Proof continues...

Let φ = e
2π

√

−1

n denote the primitive n-th unit root.
J has eigenvalues

1, φ, φ2, . . . , φn−1.
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Proof continues...

Let φ = e
2π

√

−1

n denote the primitive n-th unit root.
J has eigenvalues

1, φ, φ2, . . . , φn−1.

Thus, the eigenvalues of A = g(J) are

g(1), g(φ), . . . , g(φn−1).
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Proof continues...

Let φ = e
2π

√

−1

n denote the primitive n-th unit root.
J has eigenvalues

1, φ, φ2, . . . , φn−1.

Thus, the eigenvalues of A = g(J) are

g(1), g(φ), . . . , g(φn−1).

For i = 0, 1, 2, . . . , n − 1, we have

g(φi) = ℜ(g(φi)) =
∑

s∈S

cos
2πis

n
.

�
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Graph L(m, s)

Suppose s and m are relatively prime to each other. Let n
be the least positive integer satisfying

sn ≡ 1 mod m.
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Graph L(m, s)

Suppose s and m are relatively prime to each other. Let n
be the least positive integer satisfying

sn ≡ 1 mod m.

We define the graph L(m, s) to be a circulant graph on m
vertices with

S = {si mod m | i = 0, 1, 2, . . . , n − 1}.

Explicit Construction of Small Folkman Graphs – p.23/26



Graph L(m, s)

Suppose s and m are relatively prime to each other. Let n
be the least positive integer satisfying

sn ≡ 1 mod m.

We define the graph L(m, s) to be a circulant graph on m
vertices with

S = {si mod m | i = 0, 1, 2, . . . , n − 1}.

Proposition: The local graph Gv of L(m, s) is also a circulant

graph.
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Algorithm

For each L(m, s), compute the local graph Gv.
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Algorithm

For each L(m, s), compute the local graph Gv.

If Gv is not triangle-free, reject it and try a new graph
L(m, s).
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Algorithm

For each L(m, s), compute the local graph Gv.

If Gv is not triangle-free, reject it and try a new graph
L(m, s).

If the ratio the smallest eigenvalue verse the largest

eigenvalue of Gv is less than −1
3 , reject it and try a new

graph L(m, s).
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Algorithm

For each L(m, s), compute the local graph Gv.

If Gv is not triangle-free, reject it and try a new graph
L(m, s).

If the ratio the smallest eigenvalue verse the largest

eigenvalue of Gv is less than −1
3 , reject it and try a new

graph L(m, s).

Output a Folkman graph L(m, s).
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Computational results

L(m, s) σ

L(127, 5) −0.6363 · · ·

L(761, 3) −0.5613 · · ·

L(785, 53) −0.5404 · · ·

L(941, 12) −0.5376 · · ·

L(1777, 53) −0.5216 · · ·

L(1801, 125) −0.4912 · · ·

L(2641, 2) −0.4275 · · ·

L(9697, 4) −0.3307 · · ·

L(30193, 53) −0.3094 · · ·

L(33121, 2) −0.2665 · · ·

L(57401, 7) −0.3289 · · ·

σ is the ratio of the
smallest eigenvalue to
the largest eigenvalue in
the local graph.

Explicit Construction of Small Folkman Graphs – p.25/26



Computational results

L(m, s) σ

L(127, 5) −0.6363 · · ·

L(761, 3) −0.5613 · · ·

L(785, 53) −0.5404 · · ·

L(941, 12) −0.5376 · · ·

L(1777, 53) −0.5216 · · ·

L(1801, 125) −0.4912 · · ·

L(2641, 2) −0.4275 · · ·

L(9697, 4) −0.3307 · · ·

L(30193, 53) −0.3094 · · ·

L(33121, 2) −0.2665 · · ·

L(57401, 7) −0.3289 · · ·

σ is the ratio of the
smallest eigenvalue to
the largest eigenvalue in
the local graph.

All graphs on the left are
K4-free.
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Computational results

L(m, s) σ

L(127, 5) −0.6363 · · ·

L(761, 3) −0.5613 · · ·

L(785, 53) −0.5404 · · ·

L(941, 12) −0.5376 · · ·

L(1777, 53) −0.5216 · · ·

L(1801, 125) −0.4912 · · ·

L(2641, 2) −0.4275 · · ·

L(9697, 4) −0.3307 · · ·

L(30193, 53) −0.3094 · · ·

L(33121, 2) −0.2665 · · ·

L(57401, 7) −0.3289 · · ·

σ is the ratio of the
smallest eigenvalue to
the largest eigenvalue in
the local graph.

All graphs on the left are
K4-free.

Graphs in red are
Folkman graphs.
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Computational results

L(m, s) σ

L(127, 5) −0.6363 · · ·

L(761, 3) −0.5613 · · ·

L(785, 53) −0.5404 · · ·

L(941, 12) −0.5376 · · ·

L(1777, 53) −0.5216 · · ·

L(1801, 125) −0.4912 · · ·

L(2641, 2) −0.4275 · · ·

L(9697, 4) −0.3307 · · ·

L(30193, 53) −0.3094 · · ·

L(33121, 2) −0.2665 · · ·

L(57401, 7) −0.3289 · · ·

σ is the ratio of the
smallest eigenvalue to
the largest eigenvalue in
the local graph.

All graphs on the left are
K4-free.

Graphs in red are
Folkman graphs.

Graphs in black are good
candidates.
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Open questions

Exoo conjectured L(127, 5) is a Folkman graph.
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Open questions

Exoo conjectured L(127, 5) is a Folkman graph.

Is L(2641, 2) a Folkman graph?
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Open questions

Exoo conjectured L(127, 5) is a Folkman graph.

Is L(2641, 2) a Folkman graph?

Our method works for graphs other than L(m, s). Is
there any other construction for smaller Folkman
graphs?
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Open questions

Exoo conjectured L(127, 5) is a Folkman graph.

Is L(2641, 2) a Folkman graph?

Our method works for graphs other than L(m, s). Is
there any other construction for smaller Folkman
graphs?

A new challenge: prove or disprove

f(2, 3, 4) ≤ 100.
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