
On a problem of Erdős and Lovász

on coloring non-uniform hypergraphs

Linyuan Lu ∗

July 19, 2008

Abstract

Let f(r) = minH

P
F∈E(H)

1

2|F |
, where H ranges over all 3-chromatic

hypergraphs with minimum edge cardinality r. Erdős-Lovász (1975) con-
jectured f(r) → ∞ as r → ∞. This conjecture was proved by Beck in
1978. Here we show a new proof for this conjecture with a better lower
bound:

f(r) ≥ (
1

16
− o(1))

ln r

ln ln r
.

1 Introduction

A hypergraph H consists of a vertex set V (H) together with a family E(H) of
subsets of V (H), which are called edges of H. A r-uniform hypergraph, or r-
graph, is a hypergraph whose edges have the same cardinality r. A hypergraph
H (not necessary uniform) is said to have Property B (or 2-colorable) if there
is a red-blue vertex-coloring of H with no monochromatic edges. Property B is
named after Felix Bernstein [2] who first introduced this property in 1908. A
proper k-coloring of a hypergraph H is a vertex-coloring using k-colors so that
every edge has at least 2 colors. The chromatic number χ(H) is the minimum
k such that H has a proper k-coloring. A hypergraph H with no Property B
has chromatic number at least 3. The following problem on Property B (listed
in [3]) is raised by Erdős [4] in 1963.

Problem on Property B: What is the minimum number of edges in an
r-graph not having Property B?

In general, let mk(r) denote the smallest number of edges a (k+1)-chromatic
r-graph can have. The above problem asks what m2(r) is.

The best upper bound known for m2(r) is due to Erdős [4, 5] and the best
lower bound previous known is due to Radhakrishnan and Srinivasan [8].

0.7
√

r

ln r
2r ≤ m2(r) ≤ (1 + ε)

2 ln 2
4

r22r.

∗University of South Carolina, Columbia, SC 29208 (lu@math.sc.edu). This author was
supported in part by NSF grant DMS 0701111.

1

To quote from Erdős and Lovász in their seminal paper [6]:

Perhaps r2r is the correct order of magnitude of m2(r);
it seems likely that

m2(r)
2r

→∞.

A stronger conjecture would be: Let Emk=1 be a 3-
chromatic (not necessarily uniform) hypergraph. Let

f(r) = min
m∑
k=1

1
2|Ek|

,

where the minimum is extended over all hypergraphs
with min |Ek| = r. We conjecture that f(r) → ∞ as
r →∞.

Erdős [4] showed in 1963 that m2(r) ≥ 2r−1. Namely, color the vertices red and
blue with equal probability and independently, and observe that the expected
number of monochromatic edges is smaller than 1. In 1978, Beck [1] proved
that m2(r) > r

1
3−o(1)2r. Spencer [9] simplified Beck’s proof using probabilistic

methods.
For non-uniform hypergraphs, Beck [1] proved that f(r)→∞ as r →∞ and

thus settled the conjecture of Erdős and Lovász on non-uniform hypergraphs.
Beck’s lower bound of f(r) is quite weak. Let g0(x) = x, gk(x) = log2(gk−1(x))
for k ≥ 1. For all x > 0, let log∗(x) = min{k : gk(x) ≤ 1}. Beck [1] proved

f(r) ≥ log∗(r)− 100
7

.

The function log∗(x) grows very slowly since it can be viewed as the inverse
function of the following tower function of height n

n→ 2

n︷︸︸︷
2·
··
2

.

In spite of several successful improvements of the lower bound of m2(r), the
lower bound on f(r) has not been improved for several decades. In this paper,
we prove the following lower bound for f(r).

Theorem 1 For any ε > 0, there is an r0 = r0(ε), for all r > r0, we have

f(r) ≥ (
1
16
− ε) ln r

ln ln r
. (1)

An obvious upper bound for f(r) is

f(r) ≤ m2(r)2−r ≤ (1 + ε)
2 ln 2

4
r2.

2

The question whether f(r) = m2(r)2−r remains open.
We organize the sections as follows. In section 2, we will examine twin-

hypergraphs. We prove several useful lemmas and present a randomized algo-
rithm for testing Property B of a twin-hypergraph. In section 3, we prove a
theorem for non-uniform twin-hypergraphs, which implies Theorem 1.

2 Coloring twin-hypergraphs

A natural object for Property B is not a hypergraph but a pair of hypergraphs.
We define a twin-hypergraph to be a pair of hypergraphs (H1, H2) with the same
vertex set V (H1) = V (H2). For any hypergraph G, we can view it as a special
diagonal twin-hypergraph (G,G).

For the rest of this section, we write H = (H1, H2) for the twin-hypergraph
unless otherwise being specified. The common vertex set of H1 and H2 is de-
noted by V (H).

We remark that the condition V (H1) = V (H2) is only for convenience, but
not essential. For any two hypergraphs H1 and H2, let V = V (H1) ∪ V (H2).
By adding isolated vertices, if necessary, we can extend the hypergraph Hi (for
i = 1, 2) over the vertex-set V so that (H1, H2) forms a twin-hypergraph.

A red-blue coloring C of a twin-hypergraphH is a map C : V (H)→ {red, blue}.
For a fixed coloring C, an edge F is called red (or blue) if every vertex in F is red
(or blue). A coloring C of a twin-hypergraph H = (H1, H2) is called proper if
H1 has no red edge and H2 has no blue edge. The twin-hypergraph H is called
to have Property B (or 2-colorable) if there exists a proper red-blue coloring.

We say H = (H1, H2) is trivial if either H1 or H2 has no edges. In this case,
H has property B since we can color all vertices in just one color.

2.1 Residue twin-hypergraphs

For a given coloring C of a twin-hypergraph H, a red (or blue) edge is an edge
in which all vertices are red (or blue) respectively. Let R (depending on the
coloring C) be the collection of red edges in H1.

R = {F ∈ E(H1) | F is red.}

Let R be the set of vertices lying in red edges of H1.

R = ∪F∈RF.

Let ER be the set of induced edges on R from E(H2) defined as:

ER = {F ∩R | F ∈ E(H2), F ∩R 6= ∅, F \R is blue}.

We define the red residue twin-hypergraph RC(H) = (H ′1, H
′
2) as

V (H ′1) = V (H ′2) = R, E(H ′1) = R, and E(H ′2) = ER.

3

Similarly, we define B be the collection of blue edges in H2 and let B be the
set of vertices lying in blue edges of H2. We define EB in the similar way:

EB = {F ∩B | F ∈ E(H1), F ∩B 6= ∅, F \B is red}.

Finally, we define the blue residue twin-hypergraph BC(H) = (H ′′1 , H
′′
2) as

V (H ′′1) = V (H ′′2) = B, E(H ′′1) = EB , and E(H ′′2) = B.

The following lemma is the basis of the recoloring method.

Lemma 1 For any coloring C, the twin-hypergraph H has Property B if both
RC(H) and BC(H) have Property B.

Proof: Suppose RC(H) and BC(H) have Property B. There is a proper red-blue
vertex-coloring C1 (and C2) of RC(H) (and of BC(H) respectively). Now, we
recolor the vertices in R using coloring C1 and the vertices in B using coloring
C2. If a vertex v is neither in R nor in B, we keep the same color of v as in the
coloring C. The new coloring is denoted by C ′.
Claim: C ′ is a proper coloring of H.

We will prove the claim by contradiction. Suppose an edge F of H becomes
monochromatic in C ′. Note that the statement is symmetric for the red color
and the blue color. Without loss of generality, we assume F ∈ E(H1) becomes
a red edge in C ′.

Case A: F ∩ B = ∅. No vertex in F has been changed from blue to red. The
edge F is red in C. Namely, F ∈ R and F remains red in C ′. Contradiction
to the assumption that C1 is a proper coloring of RC(H).

Case B: F ∩ B 6= ∅. Only vertices in B can change its color from blue to
red. For each vertex v in F \ B, v is red in C. By definition, we have
F ∩B ∈ EB . Now, F ∩B becomes a red edge in BC(H) after recoloring.
Contradiction to the assumption that C2 is a proper coloring of BC(H).

The proof of the claim is finished. �

2.2 Lemma on reduction

A twin-hypergraph H = (H1, H2) is called irreducible if

1. For any edge F1 ∈ E(H1) and any vertex v ∈ F1 there exists an edge
F2 ∈ E(H2) such that F1 ∩ F2 = {v}.

2. For any edge F2 ∈ E(H2) and any vertex v ∈ F2 there exists an edge
F1 ∈ E(H1) such that F1 ∩ F2 = {v}.

Otherwise, we say H is reducible.
A sub-twin-hypergraph of H = (H1, H2) is a twin-hypergraph H ′ = (H ′1, H

′
2)

such that H ′i is a sub-hypergraph of H ′i for i = 1, 2.

4

If H = (H1, H2) is reducible, then there exist an edge F ∈ E(Hi) (i is either
1 or 2) and a vertex v ∈ F satisfying for any F ′ ∈ E(H3−i), if v ∈ F ′ then
|F ∩ F ′| ≥ 2. Removing F from Hi we get a twin-hypergraph with one edge
less. Repeat this process until an irreducible twin-hypergraph is reached. We
get a sequence of twin-hypergraphs:

H = H(0) ⊃ H(1) ⊃ · · · ⊃ H(s).

The last twin-hypergraph H(s) is irreducible.

Lemma 2 In the above process, H(s) is unique and does not depend on the
order of edges being removed.

Proof: We define the union of two twin-hypergraphs (H1, H2) and (H ′1, H
′
2)

to be a twin-hypergraph (H1 ∪ H ′1, H2 ∪ H ′2). Let G = (G1, G2) be the union
of all irreducible sub-twin-hypergraphs. We observe that irreducibility is closed
under union. G is also irreducible. In fact, it is the unique maximum irreducible
sub-twin-hypergraph of H.

We will use induction to show G ⊆ H(j) for all j = 0, . . . , s.
For j = 0, it is trivial since

G ⊆ H = H(0).

Now we assume thatG ⊆ H(j). WriteG = (G1, G2) andH(j) = (H(j)
1 , H

(j)
2).

For j + 1, H(j+1) is obtained by removing an edge F from H(j). Suppose that
the removed edge F is in H

(j)
i for some i = 1 or 2. We have

H
(j+1)
i = H

(j)
i \ {F} and H

(j+1)
3−i = H

(j)
3−i.

By inductive hypothesis, we have

Gi ⊆ H(j)
i and G3−i ⊆ H(j)

3−i = H
(j+1)
3−i .

Since F is removed, there is an v ∈ F satisfying

|F ∩ F ′| ≥ 2 for all F ′ ∈ E(H(j)
3−i) such that v ∈ F ′.

We have

|F ∩ F ′| ≥ 2 for all F ′ ∈ E(G3−i) such that v ∈ F ′.

Since G is irreducible, we must have F 6∈ E(Gi). It implies Gi ⊆ H
(j+1)
i .

Together with G3−i ⊆ H(j)
3−i = H

(j+1)
3−i , we finish the induction step G ⊆ H(j+1).

We have
G ⊆ H(s).

Since H(s) is irreducible and G is maximum, we also have

H
(s)
1 ⊆ G.

5

We get
H(s) = G.

as claimed. �
Remark: Such a unique Hs is called the irreducible core of H. It is the maxi-
mum irreducible sub-twin-hypergraph of H. Lemma 2 shows that the irreducible
core can be computed by a simple deterministic greedy algorithm.

If H has Property B, then any sub-twin-hypergraph has Property B. In
particular, its irreducible core has Property B. The following lemma shows the
reverse statement is also true.

Lemma 3 A twin-hypergraph H has Property B if and only if its irreducible
core has Property B.

Proof: Suppose the irreducible core G = (G1, G2) has Property B. There is a
red-blue coloring of V (G1) with no red edge in G1 and no blue edge in G2. We
extend the coloring of V (G1) to a coloring of V (H1) in an arbitrary way. (For
example, we could color every vertex not in V (G1) red.)

Recall that the irreducible core can be constructed by removing one edge at
a time. We have the following chain of twin-hypergraphs.

H = H(0) ⊃ H(1) ⊃ · · · ⊃ H(s) = G.

We would like to use the induction to show H(j) has Property B for all
j = s, s− 1, . . . , 1, 0. For j = s, it is true by the assumption.

Suppose H(j) = (H(j)
1 , H

(j)
2) has Property B. Let Cj be a proper coloring of

H(j). We would like to show H(j−1) = (H(j−1)
1 , H

(j−1)
2) also has Property B.

Suppose that F ∈ E(H(j−1)
i) (for some i = 1 or 2) is the edge being removed

at step j. Without loss of generality, we assume i = 1. We have

H
(j−1)
1 \ {F} = H

(j)
1 and H

(j−1)
2 = H

(j)
2 .

If F is not completely red, then the coloring Cj is a proper coloring of H(j−1).
Otherwise, there is a vertex v ∈ F satisfying

|F ∩ F ′| ≥ 2 for all F ′ ∈ E(H(j)
2) such that v ∈ F ′.

Change the color of v to blue. The action doesn’t create new red edge in H
(j)
1 .

It can only affect edges in H
(j)
2 , which contains the vertex v. For such an edge

F ′, F ′ can not be completely blue since it contains another red vertex u ∈ F .
The induction step is finished.

H has Property B. The proof of this lemma is finished. �

2.3 Randomized testing algorithm

The following randomized algorithm tests whether a given twin-hypergraph H
has a property B. We pre-assume an early termination condition, which will be
specified later in the proof of Theorem 2.

6

Randomized Testing Algorithm:
Input: a twin-hypergraph H = (H1, H2).
Output: “The program succeeds.” or “The program fails.”.

1. Randomly color each vertex of H in red with probability 1
2 and in blue

with probability 1
2 independently. Test the early termination condition. If

the early termination condition is satisfied, output “The program fails.”
and quit the program; Otherwise, compute two residue twin-hypergraphs
RC(H) and BC(H).

2. In this step, we test whether RC(H) has Property B.

Recall that R is the collection of red edges of H1 in the coloring C. We
partition R into many classes so that the sizes of edges in the same class
varies by at most a factor of 2. This is done by introducing the rank of an
edge. An edge F is said to have rank i if r2i−1 ≤ |F | < r2i. In another
word, the rank of an edge F is just blog2

|F |
r c.

The red edges of higher ranks are attempted to be destroyed first. To
attempt to destroy all red edges of rank i, we flip the color of each vertex
lying in edges of rank i independently with probability q

r2i−1 . Here are
the details.

Let i1 > i2 > · · · > is be the collection of ranks of edges in R. Let
q = Θ(lnh) be a fixed parameter. Let H(0) be the irreducible core of
HC,R and let C(0) be the coloring of H(0) which colors each vertex in red.

For j = 1, . . . , s, we construct a new twin-hypergraph H(j) and a new
coloring C(j) from H(j−1) and C(j−1) as follows. For any vertex v, which
lies in red edges of rank ij in C(j−1), we recolor v into blue with probability
pj = q

r2ij−1 independently. (Note that r2ij−1 is the smallest possible size
of an edge of rank ij can have.) Output “The program fails.” and quit
if a red edge F of rank ij survives or a new blue edge is created in C(j).
Otherwise let H(j) be the irreducible core of the red residue RCj (H(j−1))
and continue the loop.

3. Test whether BC(H) has Property B in a similar way.

4. Output “The program succeeds.” and exit the algorithm.

If H has a property B, this algorithm might output “The program fails”.
However, if it outputs “The program succeeds.”, then H must have property B.
The correctness of this randomized algorithm is a direct consequence of Lemma
1 and Lemma 3.

3 Non-uniform twin-hypergraphs

It suffices to prove the following theorem.

7

Theorem 2 Suppose a twin-hypergraph H = (H1, H2) with minimum edge-
cardinality r satisfies ∑

F∈E(Hi)

1
2|F |

≤ (
1
16
− o(1))

ln r
ln ln r

(2)

for i = 1, 2. Then H has property B.

Proof: For i = 1, 2, let hi =
∑
F∈E(Hi)

1
2|F |

and h = max{h1, h2}. Consider
the randomized testing algorithm in section 2 and an early termination condition
defined later. At the first step, we can define the following random variables for
the random coloring C.

1. For any integer i ≥ r, let X(i) be the number of pair (v, F) satisfying

“v ∈ F, F ∈ E(H1), |F | = i, and F \ {v} is red.′′

An edge F ∈ E(H1) with |F | = i can contribute to Xi by i if F is
completely red and by 1 if F has one blue vertex and i − 1 red vertices.
In particular,

E(X(i)) =
∑

F∈E(H1)
|F |=i

2i
2i
. (3)

Let X =
∑
i≥r

X(i)

i . We have

E(X) =
∑

F∈E(H1)

2
2|F |

= 2h1. (4)

2. For any integer i ≥ r, let Y (i) be the number of pair (v, F) satisfying

“v ∈ F, F ∈ E(H2), |F | = i, and F \ {v} is blue.′′

Let Y =
∑
i≥r

Y (i)

i . Similarly, we have

E(Y) = 2h2. (5)

For a fixed constant M > 2, let A be the event that

“X ≤ 2Mh1 and Y ≤ 2Mh2.
′′

Choose the early termination condition to be “the event A is not satisfied”.
Using Markov’s inequality, we have

Pr(X > 2Mh1) <
E(X)
2Mh1

=
1
M
, (6)

Pr(Y > 2Mh2) <
E(Y)
2Mh2

=
1
M
. (7)

8

In particular, we have

Pr(A) > 1− 2
M
.

The randomized algorithm outputs “The program fails.” during testing
RC(H) if

1. A red edge F ∈ R survives after the vertices lying in edges with the same
rank of F have been recolored.

2. There is an edge {v1, . . . , vk} of RC(H)2 so that vertices v1, . . . , vk are
sequentially recolored into blue.

When estimating the probability of first type event, we discard the proba-
bility that an red edge F is destroyed before or after edges of the same rank of
F are attempted to be destroyed. The probability of first type event is at most∑

F∈E(H1)

1
2|F |

(1− q

r2blog2
|F |
r c

)|F | ≤
∑

F∈E(H1)

1
2|F |

(1− q

|F |
)|F |

≤
∑

F∈E(H1)

1
2|F |

e−q

= h1e
−q. (8)

If the second type event occurs, there exist an edge F ′ ∈ E(H2), and a subset
S ⊂ F ′, satisfying

1. Vertices in S are red in the coloring C while vertices in F ′ \ S are blue.

2. All vertices in S are changed into blue eventually.

3. For each v ∈ S, there exists a red edge Fv in C so that Fv ∩ F ′ = {v}
because of the irreducibility. Moreover, Fv survives until v is recolored
into blue. In this case, we say v blames Fv.

Suppose v blames an edge Fv with rank iv. The change of color of v might
have occurred earlier, when red edges with higher rank s ≥ iv were being recol-
ored.

Pr(v blames Fv) <

∞∑
s=iv

q

r2s−1

=
4q
r2iv

<
4q
|Fv|

. (9)

Let Fv be the set of red edges to whom v can blame:

Fv = {F ∈ E(H1)|F ∩ F ′ = {v}, F \ {v} is red.}.

9

We have

Pr(v is recolored into blue) ≤
∑
F∈Fv

Pr(v blames F)

≤
∑
F∈Fv

4q
|Fv|

. (10)

During recoloring process, “a set S is completely recolored into blue” means
there exists a sequence of pairs (v1, F1), . . . , (vk, Fk) such that

1. The sequence v1, v2, . . . , vk is the ordering of of vertices in S being recol-
ored. Here k = |S|.

2. For 1 ≤ i ≤ k, vi blames Fi.

For 1 ≤ i ≤ j ≤ k, the vertex vi is recolored into blue before the vertex vj is
recolored. The rank of Fi is higher than or equal to the rank of Fj . During
recoloring process of a fixed rank, the events that different vertices are recolored
into blue are independent. For recoloring processes of two different ranks, the
recoloring process of higher rank might reduce the possible choices of red edges,
whom might be blamed later during the recoloring process of lower rank. It
actually reduces the probability that other vertices in S are recolored later. In
other words, for any 1 ≤ j ≤ k,

Pr(vj blames Fj | ∧1≤i≤j−1(vi blames Fi)) ≤ Pr(vj blames Fj). (11)

We have

Pr(∧1≤j≤k(vj blames Fj)) =
k∏
j=1

Pr(vj blames Fj | ∧1≤i≤j−1(vi blames Fi))

≤
k∏
j=1

Pr(vj blames Fj). (12)

We have

Pr(S is completely recolored into blue) ≤
∑

(v1,F1),...,(vk,Fk)

Pr(∧1≤j≤k(vj blames Fj))

≤
∑

(v1,F1),...,(vk,Fk)

k∏
j=1

Pr(vj blames Fj)

≤
k∏
j=1

∑
(vj ,Fj)

Pr(vj blames Fj)

≤
k∏
j=1

∑
F∈Fvj

4q
|F |

=
∏
v∈S

∑
F∈Fv

4q
|F |

. (13)

10

Summing up for all non-empty subset S of F ′, we have

Pr(the second type event | given coloring C) ≤
∑

S⊂F ′
S 6=∅

∏
v∈S

∑
F∈Fv

4q
|F |

. (14)

We denote the above sum by Z.

Z =
∑

S⊂F ′
S 6=∅

∏
v∈S

∑
F∈Fv

4q
|F |

=
∏
v∈F ′

(
1 +

∑
F∈Fv

4q
|F |

)
− 1

≤
∏
v∈F ′

e
P

F∈Fv

4q
|F | − 1

= e
P

v∈F ′
P

F∈Fv

4q
|F | − 1. (15)

Let X(i)
F ′ be the number of pairs (v, F) satisfying F ∈ E(H1), |F | = i,

F ∩ F ′ = {v} and F \ {v} is red. Let XF ′ =
∑
i≥rX

(i)
F ′ . We have

∑
v∈F ′

∑
F∈Fv

1
|F |

=
∑
i≥r

X
(i)
F ′

i
= XF ′ . (16)

Combining equation (16) and inequality (15), we have

Z ≤ e4qXF ′ − 1. (17)

Now we will bound XF ′ .
For any edge F ∈ E(H1) with |F ∩ F ′| = 1, the probability that all vertices

in F \ F ′ are red is exactly 1
2|F |−1 .

E(
∑
i≥r

X(i)) =
∑

F∈E(H1)
|F∩F ′|=1

1
2|F |−1

≤ 2h1. (18)

In particular, we have

E(XF ′) = E(
∑
i≥r

X
(i)
F ′

i
)

≤ 1
r

E(
∑
i≥r

X
(i)
F ′)

≤ 2h1

r
. (19)

11

By Markov’s inequality, we have

Pr(XF ′ ≥ λ) ≤ E(XF ′)
λ

≤ 2h1

rλ
. (20)

The probabilistic upper-bound is quite good for each XF ′ . However, it does
not holds uniformly over all F ′’s. Here we need a uniform bound. Namely, we
wish to upper bound Pr(∪F ′∈E(H2)(XF ′ ≥ λ)). Comparing the definition, X(i)

only differs from X
(i)
F ′ by dropping the requirement F ∩ F ′ = {v}. We have

X
(i)
F ′ ≤ X(i) and

XF ′ =
∑
i≥r

X
(i)
F ′

i
≤
∑
i≥r

X(i)

i
= X. (21)

We have

Pr(∪F ′∈E(H2)(XF ′ ≥ 2Mh1)) ≤ Pr(X ≥ 2Mh1)

≤ E(X)
2Mh1

=
2h1

2Mh1

=
1
M
. (22)

In another word, with probability at least 1 − 1
M , XF ′ ≤ 2Mh1 holds uni-

formly for all F ′ ∈ E(H2).

Let AF ′ be the event that
∑
i≥r

X
(i)
F ′
i ≤ 2Mh1. Recall A is the event that

X ≤ 2Mh1. We have A ⊂ AF ′ , since XF ′ ≤ X. The event AF ′ only depends
on the coloring of vertices outside F ′, and is independent of the coloring of
vertices inside F ′. Relaxing the event A to AF ′ is one of the crucial steps
toward improvement.

The random coloring C can be decomposed into two steps. First, we can
color the vertices outside F ′. Then color the vertices inside F ′. Notice that X(i)

F ′

only depend on the coloring of vertices outside F ′. So does the random variable
Z.

Let W be the event that S are red and other vertices in F ′ are blue. It is
clear that

Pr(W) =
1

2|F ′|
. (23)

This probability is the same for different choices of the subset S. The event W
is independent of AF ′ and Z since W only depends on the coloring of vertices
inside F ′.

Thus, the probability that F ′ causes the failure of the algorithm is at most

E(1AF ′Z)
1

2|F ′|
. (24)

12

Since e4qx is concave upward, the curve over any interval [a, b] is blew the
secant over this interval.

e4qx ≥ e4qa +
e4qb − e4qa

b− a
(x− a). (25)

Apply this inequality with a = 0, b = 2Mh1, and x = XF ′ . We have

1AF ′Z ≤
(
e8Mh1q − 1

2Mh1

)
XF ′

≤ e8Mh1q

2Mh1
XF ′ . (26)

The probability that the second type event occurs is at most

∑
F ′∈E(H2)

E(1AZ)
1

2|F ′|
≤

∑
F ′∈E(H2)

1
2|F ′|

E(
e8Mh1q

2Mh1
XF ′)

=
∑

F ′∈E(H2)

1
2|F ′|

e8Mh1q

2Mh1
E(XF ′)

≤
∑

F ′∈E(H2)

1
2|F ′|

e8Mh1q

2Mh1

2h1

r

=
h2e

8Mh1q

Mr
. (27)

Here we apply inequality (19).
Combine equalities (6), (7), (8), (14), (15), and (27) Replace h1 and h2 by

their maximum h. The probability that the algorithm output “H has Property
B” is at least

1− 2
M
− 2he−q − 2he8Mhq

Mr
. (28)

Choose M = 2(1 + ε), q = ln ln r, and h = 1−ε
16

ln r
ln ln r . We observe that the

above probability is
ε

1 + ε
− 2h

ln r
− 2h
Mrε2

> 0 (29)

for sufficiently large r.
With positive probability, the randomized algorithm will output “The pro-

gram succeeds”. H must have Property B. �.

4 Coloring hypergraphs using k colors

For any integer k, let fk(r) = minH
∑
F∈E(H)

1
k|F |

, where H ranges over all
k + 1-chromatic hypergraphs with minimum edge cardinality r. Our approach
works naturally for this case, we have

13

Theorem 3 For any fixed k ≥ 2 and ε > 0, there is an r0 = r0(k, ε), for any
r ≥ r0, we have

fk(r) ≥ (
k − 1
4k2

− ε) ln r
ln ln r

. (30)

The residue twin-hypergraphs and the irreducible core can be naturally ex-
tended from twin-hypergraphs to k-tuple hypergraphs. During the recoloring
process of the randomized algorithm, when a color of a vertex is to be changed,
it will use one of k − 1 other colors randomly. The analysis is very similar to
the one for the 2-coloring case. We omit of the detail proof of Theorem 3.

An obvious upper bound for fk(r) is k−rmk(r). Kostochka [7] pointed out
mk(r) ≤ Cr2kr can be obtained by the argument of Erdős [4, 5]. It implies

fk(r) ≤ Cr2.

For uniform hypergraphs, Kostochka [7] proved

mk(r) ≥ ckr(r

ln r
)1−

1
blog2 rc+1 ,

which is significantly better for large k large. It seems to be an interesting
question whether the lower bound of fk(r) in Theorem 3 can be improved for
large k.

Acknowledgment
The author is grateful for Joel Spencer and Prasad Tetali for their valuable

comments.

References

[1] J. Beck, On 3-chromatic hypergraphs, Discrete Math. 24 (1978): 127–137.

[2] F. Bernstein, Zur Theorie der trigonometrische Reihen. Leipz. Ber. 60
(1908): 325–328.

[3] F. Chung and R. Graham, Erdős on Graphs: His Legacy of Unsolved Prob-
lems. A K Peters, 1998.

[4] P. Erdős, On a combinatorial problem. Nordisk Mat. Tidskr. 11 (1963): 5-10,
40.

[5] P. Erdős, On a combinatorial problem, II. Acta Math. Acad. Sci. Hungar.
15 (1964): 445-447.

[6] P. Erdős and L. Lovász, Problems and results on 3-chromatic hypergraphs
and some related questions, in Infinite and Finite Sets, A. Hajnal et. al.,
Eds., Colloq. Math. Soc. J. Bolyai 11, North Holland, Amsterdam, 1975,
609–627.

14

[7] A. V. Kostochka, Coloring uniform hypergraphs with few colors, Random
Structures & Algorithms 24(1), (2004), 1-10.

[8] J. Radhakrishnan and A. Srinivasan, Improved Bounds and Algorithms for
Hypergraph 2-Coloring, Random Struct. Alg. 16 (2000) 4–32.

[9] J. H. Spencer, Coloring n-sets red and blue, J. Comb. Theory Ser. A 30,
(1981), 112-113.

15

