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EXPLICIT CONSTRUCTION OF SMALL FOLKMAN GRAPHS∗

LINYUAN LU†

Abstract. A Folkman graph is a K4-free graph G such that if the edges of G are 2-colored, then
there exists a monochromatic triangle. Erdős offered a prize for proving the existence of a Folkman
graph with at most 1 million vertices. In this paper, we construct several “small” Folkman graphs
within this limit. In particular, there exists a Folkman graph on 9697 vertices.
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1. Introduction. For two graphs G and H, the Rado arrow notation G → (H)p
is the statement that if the edges of G are p-colored, then there exists a monochromatic
subgraph of G isomorphic to H. In 1967 Erdős and Hajnal [2] (also see [3]) conjectured
that for each p there exists a graph G, containing no K4, which has the property that
G → (K3)p. This conjecture was proved by Folkman [4] for p = 2. A Folkman graph
is a K4-free graph G with G → (K3)2. Nešetřil and Rödl [9] proved the conjecture
for general p. In particular, for any k1 < k2 and any p ≥ 2, one could ask what is the
smallest integer n such that there is a Kk2-free graph G on n vertices satisfying

G → (Kk1)p.

Let f(p, k1, k2) denote this smallest integer n. Graham [6] proved that f(2, 3, 6) = 8
by showing

K8 \ C5 → (K3)2.

Irving [7] proved that f(2, 3, 5) ≤ 18, and it was further improved by Khadzhiivanov
and Nenov [8] to f(2, 3, 5) ≤ 16. Finally, Piwakowski, Radziszowski, and Urbański
[13] and Nenov [12] proved f(2, 3, 5) = 15. However, both upper bounds of Folkman
and of Nešetřil and Rödl for f(2, 3, 4) are extremely large. Frankl and Rödl [5] first
gave a reasonable bound

f(2, 3, 4) ≤ 7 × 1011.

Erdős set a prize of $100 for the challenge f(2, 3, 4) ≤ 1010. This reward was claimed
by Spencer [10, 11], who proved that

f(2, 3, 4) < 3 × 109.

Erdős then offered another $100 prize (see [1, page 46]) for the new challenge

f(2, 3, 4) < 106.
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Here we claim the reward.
Theorem 1.

f(2, 3, 4) ≤ 9697.

In fact, we construct several “small” Folkman graphs. This paper is organized as
follows. In section 2, we use spectral analysis to establish a sufficient condition for
G → (K3)2. This allows us to test a set of graphs efficiently. In section 3, we examine
a special class of graphs and find four “small” Folkman graphs.

2. Spectral analysis.

2.1. Localization. Our starting point is the following lemma from Spencer [10].
We will use the following notation.

For any graph H and a vertex-set partition V (H) = X ∪ Y , let e(X,Y ) be the
number of edges in H with one end in X and the other end in Y . Let b(H) be the
maximum of e(X,Y ) among all partition V (H) = X ∪ Y .

Consider a random partition V (H) = X∪Y by putting each vertex independently
into X or Y with equal probability. The expected number of e(X,Y ) is exactly
1
2 |E(H)|. Thus we have

b(H) ≥ 1

2
|E(H)|.

Definition 1. For 0 < δ < 1
2 , a graph H is said to be δ-fair if b(H) < ( 1

2 +
δ)|E(H)|.

Supposing G �→ (K3)2, we see that the edges of G can be colored in red and blue
with no monochromatic triangle. For each triangle, there are two possible colorings
(two red edges and a blue edge or vice versa). Each triangle has two vertices incident
with a red edge and a blue edge. Thus

|{xyz : xy is a red edge, xz is a blue edge, and yz is an edge}| = 2|{all triangles}|.

For any vertex v ∈ V (G), let Γ(v) be the set of neighbors of v in G. Let Gv be
the induced subgraph on Γ(v). The left-hand side of the above equation is at most∑

v b(Gv) while the right-hand side is exactly 2
3

∑
v |E(Gv)|. This observation leads

to the following lemma.
Lemma 1 (see Spencer [10]). If

∑
v b(Gv) <

2
3

∑
v |E(Gv)|, then G → (K3)2.

Corollary 1. Suppose for each vertex v the local graph Gv is 1
6 -fair. Then

G → (K3)2.

If in addition Gv is triangle-free for each v, then G is a Folkman graph.

2.2. δ-fair graphs. Suppose H is a graph on vertices v1, v2, . . . , vn. Let A =
(aij) be the adjacency matrix of H so that

aij =

{
1 vivj is an edge of H;
0 otherwise.

Let 1 denote the n-dimensional column vector with all entries 1. Let d = (d1, d2, . . . , dn)′

be the column vector of degrees. Here di is the degree of vertex vi. By definition, we
have

(1) d = A · 1.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EXPLICIT CONSTRUCTION OF SMALL FOLKMAN GRAPHS 1055

For any set S ⊂ V (H), the volume of S is defined as

Vol(S) =
∑
v∈S

dv.

We write Vol(H) = Vol(V (H)) =
∑

v dv = 2|E(H)|. Let d̄ = Vol(H)
n be the average

degree of H.
Lemma 2. If the smallest eigenvalue of M = A − 1

Vol(H)d · d′ is greater than

−2δd̄, then H is δ-fair.
Proof. For any partition of the vertex set V (H) = X ∪ Y , let 1X be the n-

dimensional column vector whose entries are 1 if the index is in X and 0 otherwise.
The vector 1Y is defined similarly. By definition, we have

(2) 1X + 1Y = 1.

From (1), we have

M · 1 =

(
A− 1

Vol(H)
d · d′

)
· 1

= A · 1 − 1

Vol(H)
d · d′ · 1

= d − 1

Vol(H)
dVol(H)

= 0.

Thus, 0 is always an eigenvalue of M and 1 is the corresponding eigenvector.
Let α(t) = (1 − t)1X − t1Y . For any t, we claim

α(t)′ ·M · α(t) = −e(X,Y ) +
1

Vol(H)
Vol(X)Vol(Y ).

From (2), we can rewrite

α(t) = 1X − t1 = −1Y + (1 − t)1.

We have

α(t)′ ·M · α(t) = (1X − t1)′ ·M · (−1Y + (1 − t)1)

= −1′
X ·M · 1Y

= −1′
X ·A · 1Y +

1

Vol(H)
1′
X · d · d′ · 1Y

= −e(X,Y ) +
Vol(X)Vol(Y )

Vol(H)
.

Here we use the fact that M · 1 = 0.
Let ρ be the largest eigenvalue of −M . By assumption, ρ < 2δd̄. We have

e(X,Y ) − 1

Vol(H)
Vol(X)Vol(Y ) = α(t)′ · (−M) · α(t)

≤ ρ‖α(t)‖2.
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Choose t = |X|
n so that ‖α(t)‖2 reaches its minimum |X||Y |

n . We have

e(X,Y ) − Vol(X)Vol(Y )

Vol(H)
≤ ρ

|X||Y |
n

.

Apply the Cauchy–Schwarz inequalities to Vol(X)Vol(Y ) and to |X||Y |. We have

e(X,Y ) ≤ Vol(X)Vol(Y )

Vol(H)
+ ρ

|X||Y |
n

.

≤ (Vol(X) + Vol(Y ))2

4Vol(H)
+ ρ

(|X| + |Y |)2
4n

=
Vol(H)

4
+ ρ

n

4

<
Vol(H)

4
+ 2δd̄

n

4

= (1 + 2δ)
Vol(H)

4

= (
1

2
+ δ)|E(H)|.

Since this holds for any partition X ∪ Y , we have

b(H) ≤
(

1

2
+ δ

)
|E(H)|.

H is δ-fair as claimed.
Corollary 2. Suppose H is a d-regular graph and that the smallest eigenvalue

of its adjacency matrix A is greater than −2δd. Then H is δ-fair.
Proof. Since H is d-regular, we have d = d1 and Vol(H) = nd. Thus,

M = A− d

n
1 · 1′.

Note that 1 is the eigenvector of A with respect to the eigenvalue d. Suppose α is
another eigenvector of A with respect to an eigenvalue λ (λ �= d). The eigenvector α
is orthogonal to 1. We have Mα = Aα = λα. Suppose A has eigenvalues λ1 ≤ λ2 ≤
· · · ≤ λn = d. Then M has eigenvalues λ1, λ2, . . . , λn−1, and 0. In particular, the
smallest eigenvalue of M equals the smallest eigenvalue of A. The conclusion follows
from Lemma 2.

Remark. The largest Laplacian eigenvalue of graph H can also be used to derive
the δ-fairness of H. However, in practice, it is not as effective as the matrix M .

2.3. The spectrum of circulant graphs. Let Zn = Z/nZ be the cyclic group
of order n. A circulant graph H generated by a subset S ⊂ Zn is a graph with the
vertex set V (H) = Zn and the edge set E(H) = {xy | x− y ∈ S}. Here S ⊂ Zn is a
subset satisfying that

• if s ∈ S, then −s ∈ S;
• 0 �∈ S.

The following lemma determines the spectrum of circulant graphs.
Lemma 3. The eigenvalues of the adjacency matrix for the circulant graph gen-

erated by S ⊂ Zn are

∑
s∈S

cos
2πis

n
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for i = 0, . . . , n− 1.
Proof. Let J = (Jij) be the adjacency matrix of the directed cycle on n vertices.

Namely, Jij = 1 if j − i ≡ 1 mod n, and 0 otherwise. The adjacency matrix of the
circulant graph generated by (Zn, S) can be expressed as

A =
∑
s∈S

Js.

We identify elements Zn with 0, 1, 2, . . . , n − 1 and define a polynomial f(x) =∑
s∈S xs. Note that A = f(J). The eigenvalues of A are completely determined

by the eigenvalues of J and the polynomial f(x).

Let ρ = e
2πi
n denote the primitive nth unit root. We observe that J has eigenvalues

1, ρ, ρ2, . . . , ρn−1.

Thus, the eigenvalues of A are

f(1), f(ρ), . . . , f(ρn−1).

Since A is symmetric, the above eigenvalues are all real. For i = 0, 1, 2, . . . , n− 1, we
have

f(ρi) = �(f(ρi)) =
∑
s∈S

cos
2πis

n
.

3. Graph L(m, s). The previous section allows us to test a special class of
graphs efficiently.

Suppose m is an odd positive integer and s < m is another positive integer
relatively prime to m. Let φ(m) be the totient function of m, which is the number
of positive integers not exceeding m and relatively prime to m. By Euler’s theorem,
we have sφ(m) ≡ 1 mod m. Let n be the smallest positive integer satisfying sn ≡ 1
mod m. In particular, n is a factor of φ(m). Define a subset S = S(s) ⊂ Zm as

S = {si mod m | i = 0, 1, 2, . . . , n− 1}.

We observe that
• if −1 ∈ S, then for any t ∈ S, −t ∈ S;
• with inherited multiplication from Zm, S forms an abelian group isomorphic

to Zn.
Definition 2. We define graph L(m, s) to be the circulant graph on m vertices

generated by S = S(s) provided −1 ∈ S.
The graph G = L(m, s) is a vertex-transitive graph on m vertices. All local

graphs Gv are isomorphic to each other. The following lemma shows that Gv is also
a circulant graph under isomorphism.

Lemma 4. The unique local graph of L(m, s) is isomorphic to a circulant graph
of order n.

Proof. The local graph H of L(m, s) can be described as follows.
1. V (H) = S.
2. E(H) = {xy | x ∈ S, y ∈ S, and x− y ∈ S}.

We define a bijection f : Zn → S which maps i to si mod m. This is a well-defined
map since sn ≡ 1 mod m. The map f is a group isomorphism from Zn to S:

f(i + j) = f(i)f(j).
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We define T ⊂ Zn as

T = {i | f(i) − 1 ∈ S}.

Let H ′ be the circulant graph generated by (Zn, T ). If suffices to show f is a graph
homomorphism mapping H ′ to H.

On the one hand, for any edge jk ∈ E(H ′), we have j − k ∈ T . Thus,

f(j − k) − 1 ∈ S.

Since f(j)−f(k) = f(k)(f(j−k)−1) and S is a group, we conclude that f(j)−f(k) ∈
S. Equivalently, f(j)f(k) is an edge of H.

On the other hand, for any edge f(j)f(k) ∈ E(H), we have f(j)−f(k) ∈ S. Note
that f(−k) is the inverse of f(k) in S. We conclude that

f(j − k) − 1 = f(−k)(f(j) − f(k)) ∈ S.

Thus, j − k ∈ T and jk is an edge of H ′.

3.1. Results from computation. For a fixed pair (m, s), let H be the local
graph of L(m, s) and A the adjacency matrix of H. Let σ = σ(m, s) be the ratio of
the smallest eigenvalue and the largest eigenvalue of A. If σ > − 1

3 , then H is 1
6 -fair

from Corollary 2. Thus, from Corollary 1, L(m, s) → (K3)2. Table 1 (except for the
last row) shows graphs L(m, s) satisfying that

1. L(m, s) is K4-free;
2. σ = σ(m, s) is maximized in the sense that σ(m, s) > σ(m′, s′), for all pairs

(m′, s′) in the table and m′ < m.

We note that σ > − 1
3 in the last four rows of Table 1. Thus, L(9697, 4),

L(30193, 53), L(33121, 2), and L(57401, 7) are Folkman graphs.

Table 1

A set of candidates for Folkman graphs.

L(m, s) σ
L(17, 2) −0.8047 · · ·
L(61, 8) −0.7826 · · ·
L(79, 12) −0.7625 · · ·
L(127, 5) −0.6363 · · ·
L(421, 7) −0.6253 · · ·
L(457, 6) −0.6
L(631, 24) −0.5749 · · ·
L(761, 3) −0.5613 · · ·
L(785, 53) −0.5404 · · ·
L(941, 12) −0.5376 · · ·
L(1777, 53) −0.5216 · · ·
L(1801, 125) −0.4912 · · ·
L(2641, 2) −0.4275 · · ·
L(9697, 4) −0.3307 · · ·

L(30193, 53) −0.3094 · · ·
L(33121, 2) −0.2665 · · ·
L(57401, 7) −0.3289 · · ·

Proof of Theorem 1. It suffices to show that G = L(9697, 4) is a Folkman graph.
The local graph of G is a circulant graph H generated by T ⊂ Zn. Here n = 1212
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and

T = {3, 9, 46, 57, 62, 70, 81, 91, 98, 115, 141, 166, 202, 204, 233, 271,

286, 301, 325, 342, 372, 376, 383, 396, 397, 403, 411, 428, 430, 436,

448, 450, 456, 471, 472, 479, 489, 516, 522, 532, 556, 564, 566, 588,

593, 595, 617, 619, 624, 646, 648, 656, 680, 690, 696, 723, 733, 740,

741, 756, 762, 764, 776, 782, 784, 801, 809, 815, 816, 829, 836, 840,

870, 887, 911, 926, 941, 979, 1008, 1010, 1046, 1071, 1097, 1114,

1121, 1131, 1142, 1150, 1155, 1166, 1203, 1209}.

An easy calculation (by Maple) shows that H has the following properties:
1. H is a 92-regular and triangle-free graph.
2. The smallest eigenvalue of the adjacency matrix of H is

∑
t∈T

cos
2π · 502t

1212
≈ −30.43170597 . . . .

Since 30.43170597 . . . < 92
3 , H is 1

6 -fair. Thus, L(9697, 4) is a Folkman graph on 9697
vertices.

Remark 1. We say G is a strong Folkman graph if G is K4-free and G → (K4−e)2.
Here K4 − e is the graph obtained by removing one edge from K4. We can show that
both L(30193, 53) and L(33121, 2) are strong Folkman graphs.

Remark 2. Graphs with relatively large σ (as shown in Table 1) are good candi-
dates for Folkman graphs. Recently Exoo showed that L(17, 2), L(61, 8), L(79, 12),
L(421, 7), and L(631, 24) are not Folkman graphs. Little is known for other graphs.
For example, is L(2641, 2) a Folkman graph?

Remark 3. Exoo (see [14]) conjectured that L(127, 5) is a Folkman graph. The
set S ⊂ Z127 generated by 5 is precisely all nonzero cubes in Z127. Exoo did extensive
computation on this graph. If his conjecture is true, then it implies f(2, 3, 4) ≤ 127.

Remark 4. Recently, Dudek and Rödl independently proved f(2, 3, 4) < 130000.
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