EXPLICIT CONSTRUCTION OF SMALL FOLKMAN GRAPHS*

LINYUAN LU ${ }^{\dagger}$

Abstract

A Folkman graph is a K_{4}-free graph G such that if the edges of G are 2-colored, then there exists a monochromatic triangle. Erdős offered a prize for proving the existence of a Folkman graph with at most 1 million vertices. In this paper, we construct several "small" Folkman graphs within this limit. In particular, there exists a Folkman graph on 9697 vertices.

Key words. Folkman graph, spectrum, K_{4}-free, monochromatic triangle, circulant graph
AMS subject classifications. 05C55, 05C35, 05D10
DOI. 10.1137/070686743

1. Introduction. For two graphs G and H, the Rado arrow notation $G \rightarrow(H)_{p}$ is the statement that if the edges of G are p-colored, then there exists a monochromatic subgraph of G isomorphic to H. In 1967 Erdős and Hajnal [2] (also see [3]) conjectured that for each p there exists a graph G, containing no K_{4}, which has the property that $G \rightarrow\left(K_{3}\right)_{p}$. This conjecture was proved by Folkman [4] for $p=2$. A Folkman graph is a K_{4}-free graph G with $G \rightarrow\left(K_{3}\right)_{2}$. Nešetřil and Rödl [9] proved the conjecture for general p. In particular, for any $k_{1}<k_{2}$ and any $p \geq 2$, one could ask what is the smallest integer n such that there is a $K_{k_{2}}$-free graph G on n vertices satisfying

$$
G \rightarrow\left(K_{k_{1}}\right)_{p}
$$

Let $f\left(p, k_{1}, k_{2}\right)$ denote this smallest integer n. Graham [6] proved that $f(2,3,6)=8$ by showing

$$
K_{8} \backslash C_{5} \rightarrow\left(K_{3}\right)_{2}
$$

Irving [7] proved that $f(2,3,5) \leq 18$, and it was further improved by Khadzhiivanov and Nenov [8] to $f(2,3,5) \leq 16$. Finally, Piwakowski, Radziszowski, and Urbański [13] and Nenov [12] proved $f(2,3,5)=15$. However, both upper bounds of Folkman and of Nešetřil and Rödl for $f(2,3,4)$ are extremely large. Frankl and Rödl [5] first gave a reasonable bound

$$
f(2,3,4) \leq 7 \times 10^{11}
$$

Erdős set a prize of $\$ 100$ for the challenge $f(2,3,4) \leq 10^{10}$. This reward was claimed by Spencer [10, 11], who proved that

$$
f(2,3,4)<3 \times 10^{9} .
$$

Erdős then offered another $\$ 100$ prize (see [1, page 46]) for the new challenge

$$
f(2,3,4)<10^{6}
$$

[^0]Here we claim the reward.
Theorem 1.

$$
f(2,3,4) \leq 9697
$$

In fact, we construct several "small" Folkman graphs. This paper is organized as follows. In section 2, we use spectral analysis to establish a sufficient condition for $G \rightarrow\left(K_{3}\right)_{2}$. This allows us to test a set of graphs efficiently. In section 3, we examine a special class of graphs and find four "small" Folkman graphs.

2. Spectral analysis.

2.1. Localization. Our starting point is the following lemma from Spencer [10]. We will use the following notation.

For any graph H and a vertex-set partition $V(H)=X \cup Y$, let $e(X, Y)$ be the number of edges in H with one end in X and the other end in Y. Let $b(H)$ be the maximum of $e(X, Y)$ among all partition $V(H)=X \cup Y$.

Consider a random partition $V(H)=X \cup Y$ by putting each vertex independently into X or Y with equal probability. The expected number of $e(X, Y)$ is exactly $\frac{1}{2}|E(H)|$. Thus we have

$$
b(H) \geq \frac{1}{2}|E(H)|
$$

Definition 1. For $0<\delta<\frac{1}{2}$, a graph H is said to be δ-fair if $b(H)<\left(\frac{1}{2}+\right.$ $\delta)|E(H)|$.

Supposing $G \nrightarrow\left(K_{3}\right)_{2}$, we see that the edges of G can be colored in red and blue with no monochromatic triangle. For each triangle, there are two possible colorings (two red edges and a blue edge or vice versa). Each triangle has two vertices incident with a red edge and a blue edge. Thus
$\mid\{x y z: x y$ is a red edge, $x z$ is a blue edge, and $y z$ is an edge $\}|=2|\{$ all triangles $\} \mid$.
For any vertex $v \in V(G)$, let $\Gamma(v)$ be the set of neighbors of v in G. Let G_{v} be the induced subgraph on $\Gamma(v)$. The left-hand side of the above equation is at most $\sum_{v} b\left(G_{v}\right)$ while the right-hand side is exactly $\frac{2}{3} \sum_{v}\left|E\left(G_{v}\right)\right|$. This observation leads to the following lemma.

Lemma 1 (see Spencer [10]). If $\sum_{v} b\left(G_{v}\right)<\frac{2}{3} \sum_{v}\left|E\left(G_{v}\right)\right|$, then $G \rightarrow\left(K_{3}\right)_{2}$.
Corollary 1. Suppose for each vertex v the local graph G_{v} is $\frac{1}{6}$-fair. Then

$$
G \rightarrow\left(K_{3}\right)_{2} .
$$

If in addition G_{v} is triangle-free for each v, then G is a Folkman graph.
2.2. δ-fair graphs. Suppose H is a graph on vertices $v_{1}, v_{2}, \ldots, v_{n}$. Let $A=$ $\left(a_{i j}\right)$ be the adjacency matrix of H so that

$$
a_{i j}= \begin{cases}1 & v_{i} v_{j} \text { is an edge of } H \\ 0 & \text { otherwise }\end{cases}
$$

Let $\mathbf{1}$ denote the n-dimensional column vector with all entries 1 . Let $\mathbf{d}=\left(d_{1}, d_{2}, \ldots, d_{n}\right)^{\prime}$ be the column vector of degrees. Here d_{i} is the degree of vertex v_{i}. By definition, we have

$$
\begin{equation*}
\mathbf{d}=A \cdot \mathbf{1} \tag{1}
\end{equation*}
$$

For any set $S \subset V(H)$, the volume of S is defined as

$$
\operatorname{Vol}(S)=\sum_{v \in S} d_{v}
$$

We write $\operatorname{Vol}(H)=\operatorname{Vol}(V(H))=\sum_{v} d_{v}=2|E(H)|$. Let $\bar{d}=\frac{\operatorname{Vol}(H)}{n}$ be the average degree of H.

Lemma 2. If the smallest eigenvalue of $M=A-\frac{1}{\operatorname{Vol}(H)} \mathbf{d} \cdot \mathbf{d}^{\prime}$ is greater than $-2 \delta \bar{d}$, then H is δ-fair.

Proof. For any partition of the vertex set $V(H)=X \cup Y$, let $\mathbf{1}_{X}$ be the n dimensional column vector whose entries are 1 if the index is in X and 0 otherwise. The vector $\mathbf{1}_{Y}$ is defined similarly. By definition, we have

$$
\begin{equation*}
\mathbf{1}_{X}+\mathbf{1}_{Y}=\mathbf{1} \tag{2}
\end{equation*}
$$

From (1), we have

$$
\begin{aligned}
M \cdot \mathbf{1} & =\left(A-\frac{1}{\operatorname{Vol}(H)} \mathbf{d} \cdot \mathbf{d}^{\prime}\right) \cdot \mathbf{1} \\
& =A \cdot \mathbf{1}-\frac{1}{\operatorname{Vol}(H)} \mathbf{d} \cdot \mathbf{d}^{\prime} \cdot \mathbf{1} \\
& =\mathbf{d}-\frac{1}{\operatorname{Vol}(H)} \mathbf{d V o l}(H) \\
& =0
\end{aligned}
$$

Thus, 0 is always an eigenvalue of M and $\mathbf{1}$ is the corresponding eigenvector.
Let $\alpha(t)=(1-t) \mathbf{1}_{X}-t \mathbf{1}_{Y}$. For any t, we claim

$$
\alpha(t)^{\prime} \cdot M \cdot \alpha(t)=-e(X, Y)+\frac{1}{\operatorname{Vol}(H)} \operatorname{Vol}(X) \operatorname{Vol}(Y)
$$

From (2), we can rewrite

$$
\alpha(t)=\mathbf{1}_{X}-t \mathbf{1}=-\mathbf{1}_{Y}+(1-t) \mathbf{1}
$$

We have

$$
\begin{aligned}
\alpha(t)^{\prime} \cdot M \cdot \alpha(t) & =\left(\mathbf{1}_{X}-t \mathbf{1}\right)^{\prime} \cdot M \cdot\left(-\mathbf{1}_{Y}+(1-t) \mathbf{1}\right) \\
& =-\mathbf{1}_{X}^{\prime} \cdot M \cdot \mathbf{1}_{Y} \\
& =-\mathbf{1}_{X}^{\prime} \cdot A \cdot \mathbf{1}_{Y}+\frac{1}{\operatorname{Vol}(H)} \mathbf{1}_{X}^{\prime} \cdot \mathbf{d} \cdot \mathbf{d}^{\prime} \cdot \mathbf{1}_{Y} \\
& =-e(X, Y)+\frac{\operatorname{Vol}(X) \operatorname{Vol}(Y)}{\operatorname{Vol}(H)}
\end{aligned}
$$

Here we use the fact that $M \cdot \mathbf{1}=0$.
Let ρ be the largest eigenvalue of $-M$. By assumption, $\rho<2 \delta \bar{d}$. We have

$$
\begin{aligned}
e(X, Y)-\frac{1}{\operatorname{Vol}(H)} \operatorname{Vol}(X) \operatorname{Vol}(Y) & =\alpha(t)^{\prime} \cdot(-M) \cdot \alpha(t) \\
& \leq \rho\|\alpha(t)\|^{2}
\end{aligned}
$$

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

Choose $t=\frac{|X|}{n}$ so that $\|\alpha(t)\|^{2}$ reaches its minimum $\frac{|X||Y|}{n}$. We have

$$
e(X, Y)-\frac{\operatorname{Vol}(X) \operatorname{Vol}(Y)}{\operatorname{Vol}(H)} \leq \rho \frac{|X||Y|}{n}
$$

Apply the Cauchy-Schwarz inequalities to $\operatorname{Vol}(X) \operatorname{Vol}(Y)$ and to $|X||Y|$. We have

$$
\begin{aligned}
e(X, Y) & \leq \frac{\operatorname{Vol}(X) \operatorname{Vol}(Y)}{\operatorname{Vol}(H)}+\rho \frac{|X||Y|}{n} \\
& \leq \frac{(\operatorname{Vol}(X)+\operatorname{Vol}(Y))^{2}}{4 \operatorname{Vol}(H)}+\rho \frac{(|X|+|Y|)^{2}}{4 n} \\
& =\frac{\operatorname{Vol}(H)}{4}+\rho \frac{n}{4} \\
& <\frac{\operatorname{Vol}(H)}{4}+2 \delta \bar{d} \frac{n}{4} \\
& =(1+2 \delta) \frac{\operatorname{Vol}(H)}{4} \\
& =\left(\frac{1}{2}+\delta\right)|E(H)|
\end{aligned}
$$

Since this holds for any partition $X \cup Y$, we have

$$
b(H) \leq\left(\frac{1}{2}+\delta\right)|E(H)|
$$

H is δ-fair as claimed.
Corollary 2. Suppose H is a d-regular graph and that the smallest eigenvalue of its adjacency matrix A is greater than $-2 \delta d$. Then H is δ-fair.

Proof. Since H is d-regular, we have $\mathbf{d}=d \mathbf{1}$ and $\operatorname{Vol}(H)=n d$. Thus,

$$
M=A-\frac{d}{n} \mathbf{1} \cdot \mathbf{1}^{\prime} .
$$

Note that $\mathbf{1}$ is the eigenvector of A with respect to the eigenvalue d. Suppose α is another eigenvector of A with respect to an eigenvalue $\lambda(\lambda \neq d)$. The eigenvector α is orthogonal to 1 . We have $M \alpha=A \alpha=\lambda \alpha$. Suppose A has eigenvalues $\lambda_{1} \leq \lambda_{2} \leq$ $\cdots \leq \lambda_{n}=d$. Then M has eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n-1}$, and 0 . In particular, the smallest eigenvalue of M equals the smallest eigenvalue of A. The conclusion follows from Lemma 2.

Remark. The largest Laplacian eigenvalue of graph H can also be used to derive the δ-fairness of H. However, in practice, it is not as effective as the matrix M.
2.3. The spectrum of circulant graphs. Let $\mathbb{Z}_{n}=\mathbb{Z} / n \mathbb{Z}$ be the cyclic group of order n. A circulant graph H generated by a subset $S \subset \mathbb{Z}_{n}$ is a graph with the vertex set $V(H)=\mathbb{Z}_{n}$ and the edge set $E(H)=\{x y \mid x-y \in S\}$. Here $S \subset \mathbb{Z}_{n}$ is a subset satisfying that

- if $s \in S$, then $-s \in S$;
- $0 \notin S$.

The following lemma determines the spectrum of circulant graphs.
Lemma 3. The eigenvalues of the adjacency matrix for the circulant graph generated by $S \subset \mathbb{Z}_{n}$ are

$$
\sum_{s \in S} \cos \frac{2 \pi i s}{n}
$$

for $i=0, \ldots, n-1$.
Proof. Let $J=\left(J_{i j}\right)$ be the adjacency matrix of the directed cycle on n vertices. Namely, $J_{i j}=1$ if $j-i \equiv 1 \bmod n$, and 0 otherwise. The adjacency matrix of the circulant graph generated by $\left(\mathbb{Z}_{n}, S\right)$ can be expressed as

$$
A=\sum_{s \in S} J^{s}
$$

We identify elements \mathbb{Z}_{n} with $0,1,2, \ldots, n-1$ and define a polynomial $f(x)=$ $\sum_{s \in S} x^{s}$. Note that $A=f(J)$. The eigenvalues of A are completely determined by the eigenvalues of J and the polynomial $f(x)$.

Let $\rho=e^{\frac{2 \pi i}{n}}$ denote the primitive nth unit root. We observe that J has eigenvalues

$$
1, \rho, \rho^{2}, \ldots, \rho^{n-1}
$$

Thus, the eigenvalues of A are

$$
f(1), f(\rho), \ldots, f\left(\rho^{n-1}\right)
$$

Since A is symmetric, the above eigenvalues are all real. For $i=0,1,2, \ldots, n-1$, we have

$$
f\left(\rho^{i}\right)=\Re\left(f\left(\rho^{i}\right)\right)=\sum_{s \in S} \cos \frac{2 \pi i s}{n}
$$

3. Graph $\boldsymbol{L}(\boldsymbol{m}, \boldsymbol{s})$. The previous section allows us to test a special class of graphs efficiently.

Suppose m is an odd positive integer and $s<m$ is another positive integer relatively prime to m. Let $\phi(m)$ be the totient function of m, which is the number of positive integers not exceeding m and relatively prime to m. By Euler's theorem, we have $s^{\phi(m)} \equiv 1 \bmod m$. Let n be the smallest positive integer satisfying $s^{n} \equiv 1$ $\bmod m$. In particular, n is a factor of $\phi(m)$. Define a subset $S=S(s) \subset \mathbb{Z}_{m}$ as

$$
S=\left\{s^{i} \bmod m \mid i=0,1,2, \ldots, n-1\right\}
$$

We observe that

- if $-1 \in S$, then for any $t \in S,-t \in S$;
- with inherited multiplication from \mathbb{Z}_{m}, S forms an abelian group isomorphic to \mathbb{Z}_{n}.
Definition 2. We define graph $\mathbf{L}(\mathbf{m}, \mathbf{s})$ to be the circulant graph on m vertices generated by $S=S(s)$ provided $-1 \in S$.

The graph $G=L(m, s)$ is a vertex-transitive graph on m vertices. All local graphs G_{v} are isomorphic to each other. The following lemma shows that G_{v} is also a circulant graph under isomorphism.

Lemma 4. The unique local graph of $L(m, s)$ is isomorphic to a circulant graph of order n.

Proof. The local graph H of $L(m, s)$ can be described as follows.

1. $V(H)=S$.
2. $E(H)=\{x y \mid x \in S, y \in S$, and $x-y \in S\}$.

We define a bijection $f: \mathbb{Z}_{n} \rightarrow S$ which maps i to $s^{i} \bmod m$. This is a well-defined map since $s^{n} \equiv 1 \bmod m$. The map f is a group isomorphism from \mathbb{Z}_{n} to S :

$$
f(i+j)=f(i) f(j)
$$

We define $T \subset \mathbb{Z}_{n}$ as

$$
T=\{i \mid f(i)-1 \in S\} .
$$

Let H^{\prime} be the circulant graph generated by $\left(\mathbb{Z}_{n}, T\right)$. If suffices to show f is a graph homomorphism mapping H^{\prime} to H.

On the one hand, for any edge $j k \in E\left(H^{\prime}\right)$, we have $j-k \in T$. Thus,

$$
f(j-k)-1 \in S .
$$

Since $f(j)-f(k)=f(k)(f(j-k)-1)$ and S is a group, we conclude that $f(j)-f(k) \in$ S. Equivalently, $f(j) f(k)$ is an edge of H.

On the other hand, for any edge $f(j) f(k) \in E(H)$, we have $f(j)-f(k) \in S$. Note that $f(-k)$ is the inverse of $f(k)$ in S. We conclude that

$$
f(j-k)-1=f(-k)(f(j)-f(k)) \in S .
$$

Thus, $j-k \in T$ and $j k$ is an edge of H^{\prime}.
3.1. Results from computation. For a fixed pair (m, s), let H be the local graph of $L(m, s)$ and A the adjacency matrix of H. Let $\sigma=\sigma(m, s)$ be the ratio of the smallest eigenvalue and the largest eigenvalue of A. If $\sigma>-\frac{1}{3}$, then H is $\frac{1}{6}$-fair from Corollary 2. Thus, from Corollary $1, L(m, s) \rightarrow\left(K_{3}\right)_{2}$. Table 1 (except for the last row) shows graphs $L(m, s)$ satisfying that

1. $L(m, s)$ is K_{4}-free;
2. $\sigma=\sigma(m, s)$ is maximized in the sense that $\sigma(m, s)>\sigma\left(m^{\prime}, s^{\prime}\right)$, for all pairs (m^{\prime}, s^{\prime}) in the table and $m^{\prime}<m$.
We note that $\sigma>-\frac{1}{3}$ in the last four rows of Table 1. Thus, $L(9697,4)$, $L(30193,53), L(33121,2)$, and $L(57401,7)$ are Folkman graphs.

Table 1
A set of candidates for Folkman graphs.

$L(m, s)$	σ
$L(17,2)$	$-0.8047 \cdots$
$L(61,8)$	$-0.7826 \cdots$
$L(79,12)$	$-0.7625 \cdots$
$L(127,5)$	$-0.6363 \cdots$
$L(421,7)$	$-0.6253 \cdots$
$L(457,6)$	-0.6
$L(631,24)$	$-0.5749 \cdots$
$L(761,3)$	$-0.5613 \cdots$
$L(785,53)$	$-0.5404 \cdots$
$L(941,12)$	$-0.5376 \cdots$
$L(1777,53)$	$-0.5216 \cdots$
$L(1801,125)$	$-0.4912 \cdots$
$L(2641,2)$	$-0.4275 \cdots$
$L(9697,4)$	$-0.3307 \cdots$
$L(30193,53)$	$-0.3094 \cdots$
$L(33121,2)$	$-0.2665 \cdots$
$L(57401,7)$	$-0.3289 \cdots$

Proof of Theorem 1. It suffices to show that $G=L(9697,4)$ is a Folkman graph. The local graph of G is a circulant graph H generated by $T \subset \mathbb{Z}_{n}$. Here $n=1212$
and

$$
\begin{aligned}
T=\{ & \{3,9,46,57,62,70,81,91,98,115,141,166,202,204,233,271, \\
& 286,301,325,342,372,376,383,396,397,403,411,428,430,436, \\
& 448,450,456,471,472,479,489,516,522,532,556,564,566,588, \\
& 593,595,617,619,624,646,648,656,680,690,696,723,733,740, \\
& 741,756,762,764,776,782,784,801,809,815,816,829,836,840, \\
& 870,887,911,926,941,979,1008,1010,1046,1071,1097,1114, \\
& 1121,1131,1142,1150,1155,1166,1203,1209\} .
\end{aligned}
$$

An easy calculation (by Maple) shows that H has the following properties:

1. H is a 92 -regular and triangle-free graph.
2. The smallest eigenvalue of the adjacency matrix of H is

$$
\sum_{t \in T} \cos \frac{2 \pi \cdot 502 t}{1212} \approx-30.43170597 \ldots
$$

Since $30.43170597 \ldots<\frac{92}{3}$, H is $\frac{1}{6}$-fair. Thus, $L(9697,4)$ is a Folkman graph on 9697 vertices.

Remark 1. We say G is a strong Folkman graph if G is K_{4}-free and $G \rightarrow\left(K_{4}-e\right)_{2}$. Here $K_{4}-e$ is the graph obtained by removing one edge from K_{4}. We can show that both $L(30193,53)$ and $L(33121,2)$ are strong Folkman graphs.

Remark 2. Graphs with relatively large σ (as shown in Table 1) are good candidates for Folkman graphs. Recently Exoo showed that $L(17,2), L(61,8), L(79,12)$, $L(421,7)$, and $L(631,24)$ are not Folkman graphs. Little is known for other graphs. For example, is $L(2641,2)$ a Folkman graph?

Remark 3. Exoo (see [14]) conjectured that $L(127,5)$ is a Folkman graph. The set $S \subset \mathbb{Z}_{127}$ generated by 5 is precisely all nonzero cubes in \mathbb{Z}_{127}. Exoo did extensive computation on this graph. If his conjecture is true, then it implies $f(2,3,4) \leq 127$.

Remark 4. Recently, Dudek and Rödl independently proved $f(2,3,4)<130000$.

REFERENCES

[1] F. Chung and R. Graham, Erdős on Graphs. His Legacy of Unsolved Problems, A. K. Peters, Ltd., Wellesly, MA, 1998.
[2] P. Erdős and A. Hajnal, Research problem 2.5, J. Combinatorial Theory, 2 (1967), p. 105.
[3] P. Erdős, Problems and results on finite and infinite graphs, in Graph Theory, Proc. 2nd Czechoslovak Sympos. (Prague, 1974), Academia, Prague, 1975, pp. 183-192 (loose errata).
[4] J. Folkman, Graphs with monochromatic complete subgraphs in every edge coloring, SIAM J. Appl. Math., 18 (1970), pp. 19-24.
[5] P. Frankl and Rödl, Large triangle-free subgraphs in graphs without K_{4}, Graphs Combin., 2 (1986), pp. 135-144.
[6] R. L. Graham, On edgewise 2-colored graphs with monochromatic triangles and containing no complete hexagon, J. Combinatorial Theory, 4 (1968), p. 300.
[7] R. W. Irving, On a bound of Graham and Spencer for a graph coloring constant, J. Combin. Theory Ser. B, (1973), pp. 200-203.
[8] N. G. Khadzhiivanov and N. D. Nenov, An example of a 16-vertex Ramsey (3, 3)-graph with clique number 4, Serdica, 9 (1983), pp. 74-78 (in Russian).
[9] J. Nešetřil and V. Rödl, The Ramsey property for graphs with forbidden complete subgraphs, J. Combin. Theory Ser. B, 20 (1976), pp. 243-249.
[10] J. H. Spencer, Three hundred million points suffice, J. Combin. Theory Ser. A, 49 (1988), pp. 210-217.
[11] J. H. Spencer, Erratum to three hundred million points suffice, J. Combin. Theory Ser. A, 50 (1989), p. 323.
[12] N. Nenov, An example of a 15 -vertex (3,3)-Ramsey graph with clique number 4, C. R. Acad. Bulgare Sci., 34 (1981), pp. 1487-1489 (in Russian).
[13] K. Piwakowski, S. P. Radziszowski, and S. Urbański, Computation of the Folkman number $F_{e}(3,3 ; 5)$, J. Graph Theory, 32 (1999), pp. 41-49.
[14] S. P. Radziszowski and X. Xu, On the most wanted Folkman graph, Geombinatorics, 16 (2007), pp. 367-381.

[^0]: *Received by the editors March 29, 2007; accepted for publication (in revised form) August 20, 2007; published electronically January 22, 2008.
 http://www.siam.org/journals/sidma/21-4/68674.html
 ${ }^{\dagger}$ Department of Mathematics, University of South Carolina, Columbia, SC 29208 (lu@math.sc. edu). This author was supported in part by NSF grant DMS 0701111.

