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EXPLICIT CONSTRUCTION OF SMALL FOLKMAN GRAPHS*

LINYUAN LUf

Abstract. A Folkman graph is a K4-free graph G such that if the edges of G are 2-colored, then
there exists a monochromatic triangle. Erdds offered a prize for proving the existence of a Folkman
graph with at most 1 million vertices. In this paper, we construct several “small” Folkman graphs
within this limit. In particular, there exists a Folkman graph on 9697 vertices.
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1. Introduction. For two graphs G and H, the Rado arrow notation G — (H),
is the statement that if the edges of G are p-colored, then there exists a monochromatic
subgraph of G isomorphic to H. In 1967 Erdés and Hajnal [2] (also see [3]) conjectured
that for each p there exists a graph G, containing no Ky, which has the property that
G — (K3),. This conjecture was proved by Folkman [4] for p = 2. A Folkman graph
is a Ky-free graph G with G — (K3)2. Nesetfil and Rodl [9] proved the conjecture
for general p. In particular, for any k; < ke and any p > 2, one could ask what is the
smallest integer n such that there is a Kj,-free graph G on n vertices satisfying

G— (Kkl)P'

Let f(p, k1, k2) denote this smallest integer n. Graham [6] proved that f(2,3,6) = 8
by showing

Kg \ C5 — (Kg)g.

Irving [7] proved that f(2,3,5) < 18, and it was further improved by Khadzhiivanov
and Nenov [8] to f(2,3,5) < 16. Finally, Piwakowski, Radziszowski, and Urbaniski
[13] and Nenov [12] proved f(2,3,5) = 15. However, both upper bounds of Folkman
and of Negetfil and Rodl for f(2,3,4) are extremely large. Frankl and Rodl [5] first
gave a reasonable bound

f(2,3,4) <7 x 10"

Erdds set a prize of $100 for the challenge f(2,3,4) < 10'°. This reward was claimed
by Spencer [10, 11], who proved that

£(2,3,4) < 3 x 10°.
Erdds then offered another $100 prize (see [1, page 46]) for the new challenge
f(2,3,4) < 10°.
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Here we claim the reward.
THEOREM 1.

£(2,3,4) < 9697.

In fact, we construct several “small” Folkman graphs. This paper is organized as
follows. In section 2, we use spectral analysis to establish a sufficient condition for
G — (K3)2. This allows us to test a set of graphs efficiently. In section 3, we examine
a special class of graphs and find four “small” Folkman graphs.

2. Spectral analysis.

2.1. Localization. Our starting point is the following lemma from Spencer [10].
We will use the following notation.

For any graph H and a vertex-set partition V(H) = X UY, let ¢(X,Y) be the
number of edges in H with one end in X and the other end in Y. Let b(H) be the
maximum of e(X,Y’) among all partition V(H) = X UY.

Consider a random partition V(H) = XUY by putting each vertex independently
into X or Y with equal probability. The expected number of e(X,Y) is exactly
1|E(H)|. Thus we have

b(H) = S|E(H)|.

DEFINITION 1. For 0 < 6 < 1, a graph H is said to be &-fair if b(H) < (3 +
)| E(H)|.

Supposing G 4 (K3)2, we see that the edges of G can be colored in red and blue
with no monochromatic triangle. For each triangle, there are two possible colorings
(two red edges and a blue edge or vice versa). Each triangle has two vertices incident
with a red edge and a blue edge. Thus

[{zyz: zy is a red edge, zz is a blue edge, and yz is an edge}| = 2|{all triangles}|.

For any vertex v € V(G), let T'(v) be the set of neighbors of v in G. Let G, be
the induced subgraph on I'(v). The left-hand side of the above equation is at most
>, b(Gy) while the right-hand side is exactly 2> |E(G,)|. This observation leads
to the following lemma.

LEMMA 1 (see Spencer [10]). If 3, b(G,) < 23, |E(Gy)|, then G — (K3)s.

COROLLARY 1. Suppose for each vertex v the local graph G, is %-fair. Then

G — (Kg)g.

If in addition G, is triangle-free for each v, then G is a Folkman graph.

2.2. 6-fair graphs. Suppose H is a graph on vertices vi,vo,...,v,. Let A =
(ai;) be the adjacency matrix of H so that

a — 1 wvv; is an edge of H;
Y 0 otherwise.

Let 1 denote the n-dimensional column vector with all entries 1. Let d = (dy,da, ..., d,)’
be the column vector of degrees. Here d; is the degree of vertex v;. By definition, we
have

(1) d=A-1.
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For any set S C V(H), the volume of S is defined as

Vol(S) =Y _d,.

veES

We write Vol(H) = Vol(V(H)) = Y3, d, = 2|E(H)|. Let d = Y2 he the average
degree of H.

LEMMA 2. If the smallest eigenvalue of M = A — ﬁ(H)d -d’ is greater than
—26d, then H is 6-fair.

Proof. For any partition of the vertex set V(H) = X UY, let 1x be the n-
dimensional column vector whose entries are 1 if the index is in X and 0 otherwise.
The vector 1y is defined similarly. By definition, we have

(2) 1x+1y =1.
From (1), we have

— 1 !/
M-1_<A Vol(H)cl d) 1
1

Vol( )
1
Vol Vo Vel )

——d-d-1

=0.

Thus, 0 is always an eigenvalue of M and 1 is the corresponding eigenvector.
Let a(t) = (1 —t)1x — t1ly. For any t, we claim

a(t) - M- a(t) = —e(X,Y) + ——Vol(X)Vol(Y).

1
Vol(H)
From (2), we can rewrite
alt) =1x —t1 = —1y + (1 — 1)1
We have
at) - M-a(t)=(1x —t1) - M- (-1y + (1 —1)1)
= _1’X M -1y
1
=-1%-4A-1 1’ d-d-1

Vol(X )Vol( )

=—e(X,Y)+ Vol(H)

Here we use the fact that M -1 = 0. )
Let p be the largest eigenvalue of —M. By assumption, p < 26d. We have

e(X,Y) — ———Vol(X)Vol(Y) = a(t) - (—M) - a(t)

1
Vol(H)
< plla®)].
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X1

Choose t = = so that ||a(t)||? reaches its minimum % We have

Vol(X)Vol(Y) < | XY

Vol(H)  — P
Apply the Cauchy—Schwarz inequalities to Vol(X)Vol(Y') and to | X||Y|. We have
Vol(X)Vol(Y) | X Y]

+p .

Vol(H) n
(Vol(X) + Vol(Y))? (X +[V])?
= AVol(H) P
~ Vol(H) 4o
T 1 T

1(H -

< YollH) | 26d

4
_ (1+25)V01iH>

= (5 + DB

e(X,Y) —

e(X,Y) <

Since this holds for any partition X UY, we have

b(H) < (; + 5) \E(H)|.

H is é-fair as claimed. 0

COROLLARY 2. Suppose H is a d-regular graph and that the smallest eigenvalue
of its adjacency matriz A is greater than —26d. Then H is 6-fair.

Proof. Since H is d-regular, we have d = d1 and Vol(H) = nd. Thus,

d
M=A--1-1.
n

Note that 1 is the eigenvector of A with respect to the eigenvalue d. Suppose « is
another eigenvector of A with respect to an eigenvalue A (A # d). The eigenvector a
is orthogonal to 1. We have Ma = Ao = Aa. Suppose A has eigenvalues A; < g <
-o- < A, =d. Then M has eigenvalues A, Ao,..., A\y_1, and 0. In particular, the
smallest eigenvalue of M equals the smallest eigenvalue of A. The conclusion follows
from Lemma 2. ]

Remark. The largest Laplacian eigenvalue of graph H can also be used to derive
the d-fairness of H. However, in practice, it is not as effective as the matrix M.

2.3. The spectrum of circulant graphs. Let Z, = Z/nZ be the cyclic group
of order n. A circulant graph H generated by a subset S C Z, is a graph with the
vertex set V(H) = Z,, and the edge set E(H) = {zy | x —y € S}. Here S C Z,, is a
subset satisfying that

o if s€ 5, then —s € S
e 0¢&5S.

The following lemma determines the spectrum of circulant graphs.

LEMMA 3. The eigenvalues of the adjacency matrix for the circulant graph gen-
erated by S C Z,, are

2mis
g cos
n

ses
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fori=0,...,n—1.

Proof. Let J = (J;;) be the adjacency matrix of the directed cycle on n vertices.
Namely, J;; = 1if j —¢ =1 mod n, and 0 otherwise. The adjacency matrix of the
circulant graph generated by (Z,,, S) can be expressed as

A=)
s€S

We identify elements Z, with 0,1,2,...,n — 1 and define a polynomial f(z) =
> scgr®. Note that A = f(J). The eigenvalues of A are completely determined
by the eigenvalues of J and the polynomial f(z).

Let p = e’n" denote the primitive nth unit root. We observe that J has eigenvalues

n—1

L,p,p%....p

Thus, the eigenvalues of A are

f(1>7f(p)7"'7f(pn_1)'

Since A is symmetric, the above eigenvalues are all real. For i =0,1,2,...,n—1, we
have
i i 2mis
F6') = RU(P) = Y cos == 0
seS

3. Graph L(m,s). The previous section allows us to test a special class of
graphs efficiently.

Suppose m is an odd positive integer and s < m is another positive integer
relatively prime to m. Let ¢(m) be the totient function of m, which is the number
of positive integers not exceeding m and relatively prime to m. By Euler’s theorem,
we have s?(™) = 1 mod m. Let n be the smallest positive integer satisfying s” = 1
mod m. In particular, n is a factor of ¢(m). Define a subset S = S(s) C Z,, as

S={s" modm|i=0,1,2,...,n—1}.

We observe that
o if —1 € S, then for any t € S, —t € S
e with inherited multiplication from Z,,, S forms an abelian group isomorphic
to Z,,.

DEFINITION 2. We define graph L(m,s) to be the circulant graph on m vertices
generated by S = S(s) provided —1 € S.

The graph G = L(m,s) is a vertex-transitive graph on m vertices. All local
graphs G, are isomorphic to each other. The following lemma shows that G, is also
a circulant graph under isomorphism.

LEMMA 4. The unique local graph of L(m,s) is isomorphic to a circulant graph
of order n.

Proof. The local graph H of L(m,s) can be described as follows.

1. V(H)=S.

2. E(H)={zy|z€S, ye S, andz—ye S}
We define a bijection f : Z, — S which maps i to s mod m. This is a well-defined
map since s =1 mod m. The map f is a group isomorphism from Z, to S:

f+3) = F@)f3G)
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We define T' C Z,, as
T={i| f(i)—1€ S}

Let H' be the circulant graph generated by (Z,,T). If suffices to show f is a graph
homomorphism mapping H' to H.
On the one hand, for any edge jk € E(H’), we have j — k € T. Thus,

fG—k)—1€8.

Since f(5)—f(k) = f(k)(f(j—k)—1) and S is a group, we conclude that f(j)— f(k) €
S. Equivalently, f(4)f(k) is an edge of H.

On the other hand, for any edge f(j)f(k) € E(H), we have f(j)— f(k) € S. Note
that f(—Fk) is the inverse of f(k) in S. We conclude that

fG—k)=1=f(=k)(f() - f(k)) €S

Thus, j —k € T and jk is an edge of H'. 0

3.1. Results from computation. For a fixed pair (m,s), let H be the local
graph of L(m,s) and A the adjacency matrix of H. Let 0 = o(m, s) be the ratio of
the smallest eigenvalue and the largest eigenvalue of A. If o > —%, then H is %—fair
from Corollary 2. Thus, from Corollary 1, L(m,s) — (K3)2. Table 1 (except for the
last row) shows graphs L(m, s) satisfying that

1. L(m,s) is Ky-free;
2. 0 = o(m,s) is maximized in the sense that o(m,s) > o(m’,s’), for all pairs
(m/,s') in the table and m’ < m.

We note that ¢ > —1% in the last four rows of Table 1. Thus, L(9697,4),

L(30193,53), L(33121,2), and L(57401,7) are Folkman graphs.

TABLE 1
A set of candidates for Folkman graphs.

L(m,s) o
L(17,2) | —0.8047 -
L(61,8) | —0.7826- -
I(79,12) | —0.7625---
L(127,5) | —0.6363- -
L(421,7) | —0.6253- -
L(457,6) —06
L(631,24) | —0.5749 -
L(761,3) | —05613 -
L(785,53) | —0.5404--
L(941,12) | —0.5376- -
L(1777,53) | —0.5216--
L(1801,125) | —0.4912- .-
L(2641,2) | —0.4275 -
L(9697,4) | —0.3307 -
L(30193,53) | —0.3004- -
L(33121,2) | —0.2665 -
L(57401,7) | —0.3280 -

Proof of Theorem 1. It suffices to show that G = L(9697,4) is a Folkman graph.
The local graph of G is a circulant graph H generated by T" C Z,,. Here n = 1212
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and

T = {3,9,46,57,62,70,81,91,98, 115, 141, 166, 202, 204, 233, 271,
286, 301, 325, 342, 372, 376, 383, 396, 397, 403, 411, 428, 430, 436,
448, 450, 456, 471, 472, 479, 489, 516, 522, 532, 556, 564, 566, 588,
593,595, 617, 619, 624, 646, 648, 656, 680, 690, 696, 723, 733, 740,
741,756, 762, 764, 776, 782, 784, 801, 809, 815, 816, 829, 836, 840,
870, 887,911, 926,941, 979, 1008, 1010, 1046, 1071, 1097, 1114,
1121,1131, 1142, 1150, 1155, 1166, 1203, 1209}

An easy calculation (by Maple) shows that H has the following properties:
1. H is a 92-regular and triangle-free graph.
2. The smallest eigenvalue of the adjacency matrix of H is

27 - 502t

-~ —30.431
E cos 1912 30.43170597
teT

Since 30.43170597... < %, His %—fair. Thus, L(9697,4) is a Folkman graph on 9697
vertices. O

Remark 1. We say G is a strong Folkman graph if G is Ky-free and G — (K4 —e)s.
Here K4 — e is the graph obtained by removing one edge from K. We can show that
both L(30193,53) and L(33121,2) are strong Folkman graphs.

Remark 2. Graphs with relatively large o (as shown in Table 1) are good candi-
dates for Folkman graphs. Recently Exoo showed that L(17,2), L(61,8), L(79,12),
L(421,7), and L(631,24) are not Folkman graphs. Little is known for other graphs.
For example, is L(2641,2) a Folkman graph?

Remark 3. Exoo (see [14]) conjectured that L(127,5) is a Folkman graph. The
set S C Zi27 generated by 5 is precisely all nonzero cubes in Zj27. Exoo did extensive
computation on this graph. If his conjecture is true, then it implies f(2,3,4) < 127.

Remark 4. Recently, Dudek and R6dl independently proved f(2,3,4) < 130000.
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