********************************************** ** I do Hassett 2.9 (over Q) in Macaulay2. *** ********************************************** i2 : R=QQ[x,y] o2 = R o2 : PolynomialRing i3 : f=x^4+x^2*y^2+y^3-x^3 4 2 2 3 3 o3 = x + x y - x + y o3 : R i4 : I=ideal{f,diff(x,f),diff(y,f)} 4 2 2 3 3 3 2 2 2 2 o4 = ideal (x + x y - x + y , 4x + 2x*y - 3x , 2x y + 3y ) o4 : Ideal of R i5 : hilbertSeries(coker gens I) 2 4 1 - 2T + T o5 = ------------ 2 (1 - T) o5 : Expression of class Divide ******************************************************************************** *So the hilbert series of Q[x,y]/in(I) is (1-T^2)^2/(1-T)^2=(1+T)^2=1+2T+T^2 *** * In other words: * *(Q[x,y]/in(I))_0 has dim 1 * *(Q[x,y]/in(I))_1 has dim 2 * *(Q[x,y]/in(I))_2 has dim 1 ** *(Q[x,y]/in(I))_i has dim 0 for i>0 ** * so dim Q[x,y]/in(I) = 4. ***************************************************** ********************************************************************************** i7 : gens gb I o7 = | y2 x2 | 1 2 o7 : Matrix R <--- R ******************************************************* ** This is another way to calculate dim R/in(I) ** ** I asked Macaulay2 for the Groebner basis for I ** I see that the initial terms are y^2, x^2 ** I conclude that a basis for R/in(I) is 1, x,y,xy ** ******************************************************* *************************************************************** The next calculation shows that the normal form of x^5-y^5 in * R/I is 0. So, x^5-y^5 is in I! * *************************************************************** i10 : (x^5-y^5) % gb I o10 = 0 o10 : R **************************************************************************************** Here is a second way to see that x^5-y^5 is in I. The first column ** shows how to write 320 (x^5-y^5) as a linear combination of the other three generators.** **************************************************************************************** i11 : syz matrix {{f,diff(x,f),diff(y,f),x^5-y^5}} o11 = {4} | 1280x2+1280xy+1280y2-5760x+960y+4320 480x2y+1120xy2+240x2-3240xy+840y2-540x+2520y+270 {3} | -320x3-320x2y-320xy2+1440x2-320xy-160y2-1440x -120x3y-280x2y2-60x3+840x2y-200xy2-140y3+150x2-840xy+30y2-90x {3} | -320x2y-320xy2-320y3+320x2+1920xy-320y2-1440y -120x2y2-280xy3+60x2y+1060xy2-280y3+60x2+180xy-840y2-90y {5} | 320 0 --------------------------------------------------------------------------------------------------------------------------------------- -32x2y+32xy2+144x2+216xy+24y2-1044x+72y+702 96x3+416x2y+448xy2-648x2-1272xy+336y2+648x+900y-162 8x3y-8x2y2-36x3-56x2y-4y3+270x2-24xy-42y2-234x -24x4-104x3y-112x2y2+168x3+332x2y-108xy2-56y3-198x2-300xy+30y2+54x 8x2y2-8xy3-44x2y-44xy2-8y3+36x2+348xy-24y2-234y -24x3y-104x2y2-112xy3+24x3+260x2y+404xy2-112y3+12x2-216xy-300y2+54y 0 0 --------------------------------------------------------------------------------------------------------------------------------------- 32x3+288x2y-888x2+168xy+288x-36y+270 | -8x4-72x3y+224x3-28x2y-36xy2-126x2+12xy+6y2-90x | -8x3y-72x2y2+8x3+292x2y-60xy2+36x2-96xy+12y2-90y | 0 | 4 5 o11 : Matrix R <--- R i12 :