Homework 8

This problem is due not too much after the last day of class.
(27) Let R be the polynomial ring $k\left[x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}, y_{3}\right]$ and A be the ring R / I where I is the ideal generated by the 2×2 minors of

$$
M=\left[\begin{array}{lllll}
x_{1} & x_{2} & x_{3} & y_{1} & y_{2} \\
x_{2} & x_{3} & x_{4} & y_{2} & y_{3}
\end{array}\right]
$$

Let P be the ideal $\left(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}\right) A$. Compute a generating set for $P^{(n)}$ for all n.

Remarks. These remarks might be interesting or they might be irrelevant; but you don't have to do anything with them.
(a) The ring A is a normal domain of Krull dimension three (i.e., the corresponding variety has dimension three). The ideal P of A is prime and A / P has Krull dimension two, which is ONE less than the Krull dimension of A. (So P is a "divisor" on A.)
(b) This problem is interesting because P generates the "divisor class group" of A. Consequently, every divisor on A is isomorphic to $P^{(n)}$ or $Q^{(n)}$, for some integer $n \geq 0$, where Q is the inverse of P in the divisor class group of A. (In this problem, $Q=\left(x_{1}, x_{2}\right) A$.) In particular, if \mathfrak{P} is any prime ideal of A with the Krull dimension of A / \mathfrak{P} equal to 2 , then every every symbolic power of \mathfrak{P}, (including \mathfrak{P} itself) is isomorphic to $P^{(n)}$ or $Q^{(n)}$, for some integer $n \geq 0$. (Furthermore, the isomorphism is given by multiplication by an element of the fraction field of A.)
(c) If the problem I asked is too hard, then only do some n, or make one or both of the scrolls shorter.
(d) If the problem I asked is too easy, then allow the scrolls to have arbitrary size and/or allow an arbitrary number of scrolls.
(e) You might be interested in describing the subvariety of \mathbb{A}^{7} which is defined by I.

