Homework 6

Due at the beginning of class on Wednesday, April 1.
(21) Problem 17 is an example of the present problem. Consider a 3×2 matrix M. The entries of M are homogeneous elements of $R=k\left[x_{1}, x_{2}\right]$. Each entry in the first column of M has degree d_{1}. Each entry in the second column of M has degree d_{2}. Let $\Delta_{1}, \Delta_{2}, \Delta_{3}$ be the three 2×2 minors of M. (Of course, these minors are homogeneous of degree $d=d_{1}+d_{2}$.) Arrange these minors and give them signs so that

$$
\left[\begin{array}{lll}
\Delta_{1} & \Delta_{2} & \Delta_{3}
\end{array}\right] M=0
$$

Let $\phi: \mathbb{A}^{2} \rightarrow \mathbb{A}^{3}$ be the morphism

$$
\phi(a, b)=\left(\Delta_{1}(a, b), \Delta_{2}(a, b), \Delta_{3}(a, b)\right) .
$$

Let $k\left[\mathbb{A}^{3}\right]=k\left[y_{1}, y_{2}, y_{3}\right]$. Identify two homogeneous polynomials F, G in $\left(k\left[y_{1}, y_{2}, y_{3}\right]\right)\left[x_{1}, x_{2}\right]$ so that the resultant

$$
\begin{equation*}
\operatorname{Res}(F, G) \text { is in } I(\operatorname{im} \phi) \tag{*}
\end{equation*}
$$

Prove (*).
(22) I want you to use Commutative Algebra or Algebraic Geometry to do problem 5.9 on page 88 in Hassett. Let S be the polynomial ring $k[x, y, z]$, and I be the ideal $I=\left(x^{m_{1}}, y^{m_{2}}, z^{m_{3}}\right)$.
(a) Notice that

$$
\begin{aligned}
& \begin{array}{cc}
S\left(-m_{2}-m_{3}\right) & S\left(-m_{1}\right) \\
\oplus & \oplus
\end{array} \\
& 0 \xrightarrow{d_{4}} S\left(-m_{1}-m_{2}-m_{3}\right) \xrightarrow{d_{3}} S\left(-m_{1}-m_{3}\right) \xrightarrow{d_{2}} S\left(-m_{2}\right) \xrightarrow{d_{1}} S \xrightarrow{d_{0}} S / I \xrightarrow{d_{-1}} 0 \\
& S\left(-m_{1}-m_{2}\right) \quad S\left(-m_{3}\right)
\end{aligned}
$$

is an exact sequence (that is $\operatorname{ker} d_{i}=\operatorname{im} d_{i+1}$ for all i), where d_{0} is the natural quotient map, $d_{1}=\left[\begin{array}{lll}x^{m_{1}} & y^{m_{2}} & z^{m_{3}}\end{array}\right]$,

$$
d_{2}=\left[\begin{array}{ccc}
0 & z^{m_{3}} & -y^{m_{2}} \\
-z^{m_{3}} & 0 & x^{m_{1}} \\
y^{m_{2}} & -x^{m_{1}} & 0
\end{array}\right], \quad \text { and } \quad d_{3}=\left[\begin{array}{l}
x^{m_{1}} \\
y^{m_{2}} \\
z^{m_{3}}
\end{array}\right]
$$

(b) Let $S(-m)_{d}$ be the vector space of homogeneous polynomials in S of degree $d-m$. Notice that

$$
\begin{aligned}
\operatorname{dim}(S / I)_{d}= & \operatorname{dim} S_{d}-\left(\operatorname{dim} S\left(-m_{1}\right)_{d}+\operatorname{dim} S\left(-m_{2}\right)_{d}+\operatorname{dim} S\left(-m_{3}\right)_{d}\right) \\
& +\left(\operatorname{dim} S\left(-m_{2}-m_{3}\right)_{d}+\operatorname{dim} S\left(-m_{1}-m_{3}\right)_{d}+\operatorname{dim} S\left(-m_{1}-m_{2}\right)_{d}\right) \\
& -\operatorname{dim} S\left(-m_{1}-m_{2}-m_{3}\right)_{d}
\end{aligned}
$$

for all integers d.
(c) Identify d_{0} so that $(S / I)_{d_{0}} \neq 0$, but $(S / I)_{d_{0}+1}=0$. What is a basis for $(S / I)_{d_{0}}$?
(d) Apply (b) at $d_{0}+1$ to obtain the formula of problem 5.9.

