Homework for Math 747

These problems are due on the last day of classes; however I encourage you to hand them to me as you do them. I might assign more problems at a later date.

1. Let R be an arbitrary (commutative noetherian) ring, let M and N be R-modules, and let F and G both be resolutions of M by projective R-modules. If

A:
$$\ldots \rightarrow A_i \xrightarrow{a_i} A_{i-1} \rightarrow \ldots$$

is a complex, let ${\rm H_i(A)}$ denote the ith homology of A, namely ${\rm Ker(a_i)/Im(a_{i+1})}$. In class I told you that

(*)
$$H_i(F \otimes_R N) \simeq H_i(G \otimes_R N)$$
,

for all $i \ge 0$. I called the common value $Tor^{R}_{i}(M,N)$. In this exercise I want you to prove (*).

(a) Let $\alpha \colon A \to B$ be any map of complexes of R-modules. (In other words, there is a commutative diagram

$$\cdots \rightarrow A_{i} \xrightarrow{a_{i}} A_{i-1} \rightarrow \cdots$$

$$\downarrow^{\alpha_{i}} \qquad \downarrow^{\alpha_{i-1}}$$

$$\cdots \rightarrow B_{i} \xrightarrow{b_{i}} B_{i-1} \rightarrow \cdots)$$

Prove that there is an induced map $\overline{\alpha}_i \colon H_i(A) \to H_i(B)$ for all i.

(b) Let α : $A \to B$ and β : $A \to B$ both be maps of complexes of R-modules. Suppose that α and β are homotopic. (In other words, suppose that for each subscript i, there is a map $s_i : A_i \to B_{i+1}$ such that $\alpha_i - \beta_i = s_{i-1} a_i + b_{i+1} s_i$ for all i.) Prove that α and β induce the same map on homology.

- (c) Return to the Comparison Theorem which I proved in class. Let me remind you what I proved: Let $\ldots \to A_1 \to A_0 \to M \to 0$, and $\ldots \to B_1 \to B_0 \to N \to 0$ be complexes; if each A_i is projective, the second complex is exact, and there is a map $f \colon M \to N$, then there is a complex map α from A to B which covers f. Prove that if $\beta \colon A \to B$ also covers f, then α and β are homotopic.
- (d) Prove (*). <u>Hint</u>: Use the comparison theorem to get a map α : $F \to G$ which covers id:M \to M. Also get β : $G \to F$ covering id: M \to M. So $\beta \alpha$ and id are both maps from F to F which cover id: M \to M.
- (e) As a consequence of (a) (c) you can easily prove: If $f \colon M \to M'$ is an R-module map, then there is a map $f_* \colon \operatorname{Tor}^R_{\mathbf{i}}(M,N) \to \operatorname{Tor}^R_{\mathbf{i}}(M',N)$. Tell me how f_* is defined and why it is independent of various choices.
 - 2. Fix a commutative ring R.
 - (a) Prove the Snake Lemma. Let:

be a commutative diagram of R-modules. Assume that the rows are exact. Prove that there is a long exact sequence:

$$\ker \alpha \to \ker \beta \to \ker \gamma \to \operatorname{cok} \alpha \to \operatorname{cok} \beta \to \operatorname{cok} \gamma$$
.

Define the maps. Prove that they are well defined. Prove that the sequence is exact. (Needless to say, the interesting map is the one from ker γ to cok α . This map is called the connecting homomorphism.) Moreover, prove that if f is one-to-one, then ker $\alpha \to \ker \beta$ is also. Finally, prove that if g' is onto, then $\operatorname{cok}\beta \to \operatorname{cok}\gamma$ is also.

(b) Let $0 \to A' \to A \to A'' \to 0$ be a short exact sequences of complexes of R-modules. Prove that there is a long exact sequence of homology:

$$\ldots \to \operatorname{H}_{i+1}(A'') \to \operatorname{H}_i(A') \to \operatorname{H}_i(A) \to \operatorname{H}_i(A'') \to \operatorname{H}_{i-1}(A') \to \ldots .$$
 (Once again the interesting part is the connecting homomorphism.)

- (c) Let $0 \to M' \to M \to M'' \to 0$ be a short exact sequence of R-modules. Prove that there is a long exact sequence of homology: $... \to \mathsf{Tor}_{i+1}(M'',N) \to \mathsf{Tor}_i(M',N) \to \mathsf{Tor}_i(M,N) \to \mathsf{Tor}_i(M'',N) \to \mathsf{Tor}_{i-1}(M',N) \to$
- 3. Fix a commutative ring R. In class I told you that $Tor^R(M,N)$ can be computed two different ways: One can resolve M, apply $_$ \bigcirc N, then take homology; or one can resolve N, apply M \bigcirc \bigcirc , then take homology. In this exercise you will prove that both ways give the same answer. Let Tor(M,N) (with a capital T) represent the first method, and tor(M,N) (with a lower case t) represent the second method.
- (a) Prove that $Tor_i(M,N) = 0$ for all $i \ge 1$ if either of the modules M or N is a projective module. (The same argument shows that $tor_i(M,N) = 0$ for all $i \ge 1$ if either of the modules M or N is a projective module. Don't bother to re-write your argument for this result.)
- (b) Let F be a fixed projective resolution of M, and let G be a fixed projective resolution of N. Let K_0 be the kernel of $F_0 \to M$ and $F_0 \to M$ and $F_0 \to M$ are short exact sequences:

$$0 \to K_0 \to F_0 \to M \to 0, \text{ and}$$
$$0 \to L_0 \to G_0 \to N \to 0$$
.

Explain why the following commutative diagram has exact rows and columns:

Be sure to use Problems 2(c) (and the identical result for $tor(M, ___)$) and 3(a).

- (c) Apply the Snake Lemma to α , β , γ in order to conclude that $Tor_1(M,N) \simeq tor_1(M,N)$. (So $Tor_1 = tor_1$.)
- (d) Do a quick diagram chase in order to prove that $tor_1(K_0,N) \simeq Tor_1(M,L_0)$.
 - (e) Now apply (c) and (d) to the short exact sequences:

in order to conclude $\operatorname{Tor}_{1}(K_{i}, L_{j-1}) \simeq \operatorname{Tor}_{1}(K_{i-1}, L_{j})$ for all i and j.

(f) Prove that $tor_i(M,N) \simeq Tor_i(M,N)$ for all i. (<u>Hint</u>: Why is $Tor_n(M,N) \simeq Tor_1(K_{n-1},N)$?)