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Introduction

Let R be a commutative noetherian local ring of characteristic p > 0, and let
φ : R → R be the Frobenius endomorphism, φ(a) = ap. Each iteration φr defines
on R a new structure of R-module, denoted φr

R, for which a · b = ap
r

b.
In 1969 Kunz [7, (3.3)] discovered that if R is regular, then φr

R is flat for all
r ≥ 0 and, conversely, that if R is reduced and φr

R is flat for some r ≥ 1, then R is
regular. Regularity is equivalent to the finiteness of the projective dimension of the
R-module k = R/m, where m is the maximal ideal of R, so Kunz’s theorem connects
the homological properties of k and those of φ. To summarize further results along
these lines, we let c(R) denote the least integer s such that (y : m) * ms for some
maximal R-regular sequence y (such an s exists by the Artin-Rees Lemma).

For a finitely generated R-module M the following conditions are equivalent.
(i) M has finite projective dimension.

(ii) TorRn (M, φ
r

R) = 0 for all n, r ≥ 1.
(iii) TorRn (M, φ

r

R) = 0 for all n ≥ 1 and infinitely many r.
(iv) TorRn (M, φ

r

R) = 0 for j ≤ n ≤ j + depthR+ 1 where j, r are fixed integers
satisfying j ≥ 1 and r > logp(c(R)).

The implication (i) =⇒ (ii) is a fundamental theorem of Peskine and Szpiro [9,
(1.7)]. An early converse, (iii) =⇒ (i), was given by Herzog [4, (3.1)]. Recently,
Koh and Lee [6, (2.6)] proved (iv) =⇒ (i) (but stated a weaker result).

The local ring R is a complete intersection if in some (equivalently, in each)
Cohen presentation of its m-adic completion as a homomorphic image of a regular
local ring, the defining ideal is generated by a regular sequence. When R has this
property and the length `R(M) is finite, a sharpening of Herzog’s theorem is proved
(but is not stated explicitly) in [8, (2.4)]: If n ≥ 1 and M has infinite projective
dimension, then 0 < limr→∞

(
`R
(

TorRn (M, φ
r

R)
)
/pr dimR

)
<∞.

Our main result links, qualitatively and quantitatively, the homology of Frobe-
nius powers of a complete intersection and the homology of the residue field.

Theorem. Let M be a module over a local complete intersection ring (R,m, k).
If TorRj (M, φ

r

R) = 0 for some fixed j, r ≥ 1 then TorRn (M, φ
r

R) = 0 for all n ≥ j;
if, furthermore, M is finitely generated, then M has finite projective dimension.

If M has finite length and infinite projective dimension, then for each r ≥ 1 both

lim
s→∞

`R
(

TorR2s(M, φ
r

R)
)

`R
(

TorR2s(M,k)
) and lim

s→∞

`R
(

TorR2s+1(M, φ
r

R)
)

`R
(

TorR2s+1(M,k)
)

are rational numbers, and at least one of them is positive.
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It should be noted that none of the conclusions of the theorems requires that
R be a complete intersection. While we do not know whether this hypothesis is
necessary, it does play a major role in our proofs. We use it in Proposition 4 to
prove that φr

R is rigid, by refining techniques from [3], [8]. We invoke it again to
apply results from [1], [2]: in Proposition 8 to deduce finite projective dimension
from rigidity, and in Proposition 9 to study asymptotic behavior of Tor’s.

1. Rigidity

Throughout our discussion, different module structures on the same abelian
group will be induced by various homomorphisms of commutative rings. We start
by describing notation that will keep track of the module structure in use.

If α : A → B is a homomorphism of commutative rings, then αB denotes the
A-B-bimodule B with A acting through α and B acting through idB , that is,
a · b′ = α(a)b′ and b · b′ = bb′ for all a ∈ A, b′ ∈ αB, b ∈ B. For each A-module M
the tensor product M ⊗A αB is a B-module: b · (m⊗ b′) = m⊗ (bb′) for all b ∈ B,
m ∈M , b′ ∈ αB. Using a projective resolution of M to compute Tor’s, one endows
TorAn (M, αB), for each n ≥ 0, with a B-module structure that is natural in M .

We fix a prime number p and an integer r > 0, and set q = pr. We assume all
rings to be commutative noetherian of characteristic p, and for any such ring A we
use ϕ to denote the r’th iteration of the Frobenius endomorphism: ϕ(a) = aq for
all a ∈ A. For a = a1, . . . , al with ai ∈ A, we set aq = aq1, . . . , a

q
l .

From now on R denotes a local ring with maximal ideal m, residue field k = R/m,
and m-adic completion R̂; note that the canonical map ι : R→ R̂ satisfies ιϕ = ϕι.

Standard use of the flatness of ι yields the isomorphisms below.

Remark 1. For each R-module M and all n ≥ 0 there are natural isomorphisms

TorRn (M, ϕR)⊗R ιR̂ ∼= TorRn (M, ιϕR̂) = TorRn (M, ϕιR̂) ∼= Tor
bR
n (M ⊗R R̂, ϕR̂) .

Choose, by Cohen’s Structure Theorem, a surjective homomorphism Q → R̂
where Q is a ring of formal power series k[[t]] on indeterminates t = t1, . . . , te.

Remark 2. Let −′ denote the functor (−⊗Q ϕQ) from the category of Q-modules
into itself; it is exact by Kunz’s theorem. On the category of R̂-modules the functors
(−′ ⊗Q R̂) and (−⊗R ϕR̂) are isomorphic, by associativity of tensor products.

We further assume that Ker(Q→ R̂) is generated by a Q-regular sequence x =
x1, . . . , xc. The subquotients of the (x)-adic filtration of the Q-algebra S = Q/(xq)
are free R̂-modules, we can refine it to a filtration

0 = Sqc ⊂ Sqc−1 ⊂ · · · ⊂ S1 ⊂ S0 = S

with subquotients isomorphic to R̂. It defines exact sequences

(1i) 0 −→ Si+1
τi−−→ Si

σi−→ R −→ 0 for i = 0, . . . , qc − 1 .

For each Q-module N and for i = 0, . . . , qc − 1, set Si(N) = Ker(N ′ ⊗Q τi).
The idea for the proof of part (b) below comes from [3, (2.2)] and [8, (2.1)].

Lemma 3. If R = R̂, then for each R-module M the following hold.
(a) Si(M) is a homomorphic image of S0(M) for i = 1, . . . , qc − 1 .
(b) S0(M) ∼= TorR1 (M, ϕR) .
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Proof. Applying TorQ(−, ϕR) to each sequences (1i) we obtain isomorphisms

(2i) Si(M) ∼= Coker
(

TorQ1 (M ′, σi)
)

for i = 0, . . . , qc − 1 .

(a) As S0 = S, for each exact sequence of S-modules (1i) there exists a map
πi : S0 → Si with σ0 = σiπi. In view of (2i), it yields a commutative diagram

TorQ1 (M ′, S0)
TorQ

1 (M ′,σ0) //

TorQ
1 (M ′,πi)

��

TorQ1 (M ′, R) // S0(M) //

$i

��

0

TorQ1 (M ′, Si)
TorQ

1 (M ′,σi) // TorQ1 (M ′, R) // Si(M) // 0

where the rows are exact, and so the homomorphism $i is surjective.
(b) Choose an exact sequence 0 −→ K

κ−−→ L
λ−−→M −→ 0 with a free R-module

L, then apply (−⊗Q ϕQ) to get an exact sequence of Q-modules

(3) 0 −→ K ′
κ′

−−→ L′
λ′

−−→M ′ −→ 0 .

Writing L = G⊗Q R with a free Q-module G, we obtain a commutative diagram

G⊗Q TorQ1 (S, S)
G⊗QTorQ

1 (S,σ) //

∼=
��

G⊗Q TorQ1 (S,R)

∼=
��

TorQ1 (L,R)⊗Q ϕQ
∼= //

TorQ
1 (λ,R)⊗Q

ϕQ

��

TorQ1 (L′, S)
TorQ

1 (L′,σ) //

TorQ
1 (λ′,S)

��

TorQ1 (L′, R)

TorQ
1 (λ′,R)

��
TorQ1 (M,R)⊗Q ϕQ

∼= // TorQ1 (M ′, S)
TorQ

1 (M ′,σ) // TorQ1 (M ′, R)

with isomorphisms due to the flatness of G and ϕQ over Q, and the equality R′ = S.
The Koszul complex K(x, Q) is a free resolution of R over Q. For each R-module

N the differential of the complex N⊗QK(x, Q) is trivial, so there is an isomorphism
TorQ1 (−, R) ∼= (−⊗R Rc) of functors on the category of R-modules. In particular,
TorQ1 (λ,R) is surjective, hence so is TorQ1 (λ′, S). Similarly, the Koszul complex
K(xq, Q) resolves S over Q. The differential of K(xq, Q) ⊗Q N is trivial for each
S-module N , so there is an isomorphism TorQ1 (S,−) ∼= (Sc ⊗S −) of functors on
the category of S-modules. Thus, TorQ1 (S, σ) is surjective, hence so is TorQ1 (L′, σ).

Formula (20) and the preceding computations yield isomorphisms

S0(M) ∼= Coker
(

TorQ1 (M ′, σ)
) ∼= Coker

(
TorQ1 (λ′, R)

)
.

The exact sequence (3) induces the top row of the commutative diagram

TorQ1 (L′, R)
TorQ

1 (λ′,R) // TorQ1 (M ′, R) // K ′ ⊗Q R
λ′⊗QR //

∼=
��

L′ ⊗Q R

∼=
��

0 // TorR1 (M, ϕR) // K ⊗R ϕR
λ⊗R

ϕR // L⊗R ϕR

with isomorphisms from Remark 2. It gives isomorphisms that finish the proof:

Coker
(

TorQ1 (λ′, R)
) ∼= Ker(λ′ ⊗Q R) ∼= Ker(λ⊗R ϕR) ∼= TorR1 (M, ϕR) . �
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Proposition 4. If R is a complete intersection and M is an R-module such that
TorRj (M, ϕR) = 0 holds for some j > 0, then TorRn (M, ϕR) = 0 for all n ≥ j.

Proof. In view of Remark 1 and the faithful flatness of ι : R → R̂, we may assume
that R is complete. Obvious inductive considerations show that it suffices to es-
tablish the vanishing of TorRj+1(M, ϕR). Replacing M by a (j − 1)st syzygy, and
adjusting notation, we may change our hypothesis to read TorR1 (M, ϕR) = 0. Thus,
the proposition will be proved once we show that this implies TorR2 (M, ϕR) = 0.

The exact sequences (1i) and (3), and Remark 2, yield commutative diagrams

0

��
0 // Si(K) // K ′ ⊗Q Si+1

K′⊗Qτi //

κ′⊗QSi+1

��

K ′ ⊗Q Si //

κ′⊗QSi

��

K ⊗R ϕR //

��

0

0 // L′ ⊗Q Si+1
//

��

L′ ⊗Q Si //

��

L⊗R ϕR //

��

0

0 // M ′ ⊗Q Si+1
//

��

M ′ ⊗Q Si //

��

M ⊗R ϕR //

��

0

0 0 0

for i = 0, . . . , qc − 1. The rows are exact by Lemma 3. The columns are exact due
to right exactness of tensor products and, for the rightmost one, to our hypothesis.

By decreasing induction on i we prove the labeled maps are injective. If i = qc−1,
then Si+1 = 0, so all modules in the left hand column are trivial, and our assertion
is clear. If 0 ≤ i < qc − 1, then κ′ ⊗Q Si+1 is injective by the induction hypothesis.
Applying the Snake Lemma to the two top rows we see that κ′ ⊗Q Si is injective,
then applying it to the two columns on the left we conclude that K ′⊗Qτi is injective.

The injectivity of K ′⊗Q τ0 yields S0(K) = 0. Lemma 3 shows that TorR1 (K, ϕR)
vanishes. This module is isomorphic to TorR2 (M, ϕR), so we are done. �

2. Complexity

Let M and N be finitely generated modules over a local complete intersection
ring R. Following [1], we say that the pair (M,N) has complexity d, and write
cxR(M,N) = d, if d is the least non-negative integer with the property

`R(ExtnR(M,N)⊗R k) ≤ βnd−1

for some β ∈ R and all n� 0. As noted in [1, (1.3)], a result of Gulliksen [5, (3.1)]
implies cxR(M,N) ≤ codimR, where codimR = `R(m/m2)− dimR.

The number cxR(M,k) is called the complexity of M and is denoted cxRM .
It measures the polynomial rate of growth of a minimal free resolution of M . In
particular, cxRM = 0 if and only if M has finite projective dimension.

Remark 5. Inequalities, proved in [1, (5.7)], link various complexities:

(4) cxRM + cxRN − codimR ≤ cxR(M,N) ≤ min{cxRM , cxRN}.



FROBENIUS POWERS OF COMPLETE INTERSECTIONS 5

If M is a Cohen-Macaulay R-module, then [1, (5.6.2), (5.6.10)] yield an equality

(5) cxRM = cxR
(

ExtdimR−dimM
R (M,R)

)
.

Identifying R̂ ⊗Q ϕQ and S = Q/(xq), let σ : S → R̂ denote the canonical
surjection, and let ρ be the composition of local homomorphisms

R
ι−−→ R̂ = R̂⊗Q Q

bR⊗Qϕ−−−−→ R̂⊗Q ϕQ = S .

To each R-module M we associate the S-module M ′′ = M ⊗R ρS.

Remark 6. The homomorphism ρ is flat and satisfies ϕι = σρ.
For each R-module M and all n ≥ 0 there are natural isomorphisms

TorRn (M, ϕR)⊗R ιR̂ ∼= TorSn(M ′′, σR̂) .

Indeed, ι is flat, and R̂⊗Q ϕ is flat because ϕ : Q→ Q is, so their composition ρ is
flat. The equality ϕι = σρ is easily verified. The desired isomorphisms follow.

Lemma 7. The ring S is a complete intersection, with codimS = cxS σR̂.
For each finitely generated S-module L the following equalities hold

(6) cxS(L, σR̂) = cxS L = cxS(σR̂, L) .

If M is a finitely generated R-module, then

(7) cxSM ′′ = cxRM .

Proof. The sequence xq = xq1, . . . , x
q
c is Q-regular and contained in (t)2, so S =

Q/(xq) is a complete intersection of codimension c. In view of the inclusion (xq) ⊆
(t)(x), a result of Tate [10, Theorem 6] provides the first equality below:

∞∑
n=0

`R
(

ExtnS(σR̂, k)
)
tn =

(1 + t)c

(1− t2)c
=

1
(1− t)c

=
∞∑
n=0

(
n+ c− 1
c− 1

)
tn .

Thus, cxS σR̂ = c = codimS. From this expression and Remark 4 we get the equal-
ities in (6). Equality (7) comes from the isomorphisms ExtnS(M ′′, k) ∼= ExtnR(M,k)
which hold for all n, due to the flatness of ρ and ι. �

Proposition 8. If M is a finitely generated R-module and TorRj (M, ϕR) = 0 for
some j > 0, then M has finite projective dimension.

Proof. Remark 6 and Proposition 4 yield TorSn(M ′′, σR̂) = 0 for n ≥ j. By [1, The-
orem III] this means ExtSn(M ′′, σR̂) = 0 for n � 0, so cxS(M ′′, σR̂) = 0. Formulas
(6) and (7) now give cxRM = 0, so M has finite projective dimension. �

Proposition 9. If M has finite length and infinite projective dimension, then for
each r ≥ 1 the limits below are rational numbers, and at least one of them is positive:

lim
s→∞

`R
(

TorR2s(M, ϕR)
)

`R
(

TorR2s(M,k)
) and lim

s→∞

`R
(

TorR2s+1(M, ϕR)
)

`R
(

TorR2s+1(M,k)
) .

Proof. Completion preserves length and projective dimension, so we may assume
R = R̂. Let n denote the maximal ideal of the local ring S, and let E be an injective
envelope of the S-module S/n ∼= k. The functor HomS(−, E) of Matlis duality is
exact, and its restriction to the category of S-modules of finite length is isomorphic
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to the functor ExtdimS
S (−, S). Setting N = ExtdimS

S (M ′′, S), we obtain for each
n ≥ 0 an isomorphism of R-modules of finite length

HomS

(
TorSn(M ′′, σR), E

) ∼= ExtnS
(
σR,HomS(M ′′, E)

) ∼= ExtnS(σR,N) .

Using Remark 6 and the fact that Matlis duality preserves length, we get

`R
(

TorRn (M, ϕR)
)

= `S
(

TorSn(M ′′, σR)
)

= `S
(

ExtnS(σR,N)
)
.

Gulliksen [5, (3.1)] shows that N = Ext∗S(σR,N) is a finitely generated graded
module over a polynomial ring S[χ] with indeterminates χ = χ1, . . . , χc of degree
2. With N+ (respectively, N−) denoting the submodule of N consisting of all
elements whose components of odd (respectively, even) degree are equal to 0, we
have a direct sum decomposition N = N+ ⊕N− of graded S[χ]-modules.

By the Hilbert-Serre Theorem, there exist polynomials h±(t) ∈ Q[t] such that

`S
(

ExtnS(σR,N)
)

=

{
h+(n) for all n = 2s� 0 ;
h−(n) for all n = 2s+ 1� 0 ;

max{deg h+(t) , deg h−(t)} = dimS[χ]N .

The S-module N has finite length, so it is annihilated by nm for some m ≥ 1, hence
(nS[χ])mN = nmN = 0. This implies the first one in a sequence of equalities

dimS[χ]N = dimS[χ](N/nN ) = cxS(σR,N) = cxS N = cxSM ′′ = cxRM

where the second comes from dimension theory, the rest from formulas (6), (5), (7).
On the other hand, by [2, (8.1)] there exist polynomials b±(t) ∈ Q[t] such that

`R
(

TorRn (M,k)
)

=

{
b+(n) for all n = 2s� 0 ;
b−(n) for all n = 2s+ 1� 0 ;

deg b+(t) = deg b−(t) = cxRM .

The formulas displayed above clearly imply the desired assertions. �
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