
COMMUTATIVE ALGEBRA, FALL 2018, A. KUSTIN, CLASS NOTES

1. EXPECTATIONS

1.A. What you should expect from me. I am thinking of the course as a first graduate
course. I hope that my students have some algebraic instincts (or are willing to develop
some algebraic instincts) and maybe know a few words (group, ring, field, etc.). But I am
not assuming that my students are already experts in the field. So I should define most of
the words I am using! I should explain most of the techniques that I am using! I should
give examples! etc. If it looks like I have forgotten any of this, you can

(a) ask me for more details, definitions, and/or examples,
(b) look the missing words or topics up,
(c) keep your head down and hope the storm passes quickly (and pick up what ever you

can),
(d) or some combination of the above. In particular, if you decide to “sit this one out”, but

then notice that I seem to keep talking about it; it is legal at that point to ask me to
start again at the beginning and say everything slowly.

1.B. What do I expect from you? The quick answer is something.
I’d like everybody to turn in some homework and/or speak about something in a seminar

or something like that.
The point is: you will get more out of the course (and enjoy the course more) if you do

something, rather than just watch me.
So, what should you do? Here are some ideas: (Any of them could be written-up-

exercises or seminar talks.)

(a) I picked Eisenbud’s book because it is full of interesting problems. Do some of his
problems.

(b) Even though I promised that I would do everything thoroughly and completely, I am
sure that there will be times that you will wonder, “So, what is the rest of the story?”
or “What is the right way to say all of that?” Complete the lecture.

(c) I have made the website I used in 2013-2014 available to you. There is a huge list of
problems and/or projects posted there.

(d) Find an interesting paper (maybe on the arXiv, maybe in a journal) and give a lecture
on it (or write up a report on it).

(e) Maybe you have already done a commutative algebra project and you want to share it
with the class.

(f) Maybe you want to experiment with Macaulay and produce evidence for a theorem or
conjecture.
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(g) Even if our course goes for a full year, we will cover only a small percentage of Eisen-
bud’s book. You could present (or write up) some topic that we do not do.

1.C. Further comments.

(a) If we run a parallel seminar, it would be great if one the students (or a collection of
students) organized it. My experience is that when somebody takes charge of some-
thing, most people respond by saying “Thank you for taking charge”; rather than “How
dare you take charge.”

(b) If you write something up, I prefer if you type it. You should take the time to express
your thoughts in sentences, spell most words correctly, express complete ideas, define
your words and notation. You should write most of the details. (If you think something
is true, but do not yet know how to prove it, it is much better that state the real
situation than to try to fake it.)

(c) You should acknowledge your sources!
(d) It is fun to do mathematics alone. It is fun to collaborate. Work either way. If you

collaborate, you should mention this fact in your report. If you collaborate, I would
like everybody involved to wrote up the results. (Of course, this is not what happens
when one is finished with graduate school. My thought process is that this is one of
the last opportunities for anyone to influence how you write mathematics.)

(e) I recognize that there are many demands on your time.
(i) If this is your first year in graduate school, then the most important thing is for

you the Qualifying Exam.
(ii) If you have passed your Comprehensive Exam, then the most important thing is

for you to write your dissertation.
At any rate, I hope you enjoy my class; I hope you learn a lot; but you have other
things to do too; and we both know that.
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I plan to post notes at my website

http://people.math.sc.edu/kustin/teaching/746/746.html

The first section is about Expectations (what you should expect and what I expect.) You
should read that. I do not want to talk about it.

I am always in my office TuTh 2:40–3:50. Most TuTh I can stay later, but you should
warn me. For other days, you should schedule a meeting time.

In some sense, we will cover “A first course” as described in the Introduction to [3].
We get to work.

2. RING, IDEAL, QUOTIENT RING, PRIME IDEAL, MAXIMAL IDEAL, MODULE, NOETHERIAN

This material “is” Chapter 0 and section 1.4 of [3].

2.1.

(a) (The word “ring” is “defined” in section 0.1 on page 11 of [3].) When I say ring, I
mean commutative ring with one; furthermore, the additive identity element (“0”)
is different than the multiplicative identity element (“1”).

(b) An ideal I in a ring R is a subgroup of (R,+) which is closed under scalar multiplica-
tion.

(c) If I is a proper ideal in the ring R, then R/I is a new ring, called a quotient ring. (If
one likes, R/I is the set of cosets {r + I|r ∈ R}, where

r + I = r′ + I ⇐⇒ r − r′ ∈ I.

One checks that r + I times r′ + I equals rr′ + I makes sense.)

Examples 2.2.

(a) Some of my favorite rings are Z, a field kkk, Z[x1, . . . , xn], kkk[x1, . . . , xn].
(b) Some of my favorite ideals are:

(i) (3) in Z,
(ii) (x2 + 1) in Z[x],

(iii) (x2 − y3) in R[x, y], and

(iv) the ideal generated by the two by two minors of the matrix M =

x0 x1
x1 x2
x2 x3

 in the

ring C[x0, x1, x2, x3].
(c) The corresponding quotient rings are:

(i) Z/(3),
(ii) the “Gaussian integers” Z[x]/(x2 + 1) ∼= Z[i],

(iii) the coordinate ring R[x, y]/(x2−y3) ∼= R[t2, t3] of the singular plane curve x2 = y3,
which is parameterized by t 7→ (t3, t2), and
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(iv) the homogeneous coordinate ring of the twisted cubic

[s : t] 7→ [s3 : s2t : st2 : t3]

in projective 3-space, that is,
C[x0, x1, x2, x3]

(x0x2 − x21, x0x3 − x1x2, x1x3 − x22)
.

Definition 2.3.

• The ideal I in the ring R is prime if

r1r2 ∈ I =⇒ r1 ∈ I or r2 ∈ I,

for r1 and r2 in R.
• The ideal I in the ring R is maximal if I 6= R but the only ideal of R which properly

contains I is R.

Exercise 2.4. Let I be an ideal in a ring R. Fill in the blanks and prove the resulting
statement.

• The ideal I is prime if and only if the ring R/I is a .
• The ideal I is maximal if and only if the ring R/I is a .
• Which property of ideals (prime or maximal) implies the other?
• Give a chain of three ideals which satisfies one of the properties, but not the other.
• What property (prime or maximal) do each of the ideals of 2.2.(b) have? Can you

give a larger ideal with the other property? (To prove my answer to (civ) I would
establish an isomorphism from

C[x0, x1, x2, x3]

(x0x2 − x21, x0x3 − x1x2, x1x3 − x22)
to C[s3, s2t, st2, t3]. This is a fun exercise that you can do without any machinery.)

Definition 2.5. If R is a ring and M is an Abelian group, then M is an R-module if there
is a function R×M →M (written as (r,m) 7→ rm) which satisfies:

• r(m+m′) =,
• (r + r′)m =,
• (rr′)m =, and
• 1m =.

Examples 2.6.

(1) A vector space is a module over a field.
(2) An Abelian group is a Z-module.
(3) An ideal in the ring R is an R-submodule of R.



COMMUTATIVE ALGEBRA 5

Class on August 28, 2018

Old business: The ideal (x2 + 1, 3) is maximal ideal in Z[x]. Indeed,

Z[x]

(x2 + 1, 3)
=

Z[x]
(3)

(x2+1,3)
(3)

=

Z
(3)

[x]

(x2 + 1)

Observe that Z
(3)

is a field, Z
(3)

[x] is a PID, and x2 + 1 is an irreducible polynomial. Thus,
Z
(3)

[x]

(x2+1)
is a field.

Resume the examples of modules.

(4) If F is an R-module, then any subgroup of (F,+) which is closed under scalar multi-
plication is an R-module.

(5) If N ⊆M are R-modules, then M/N is an R-module. (One can think of M/N as a set
of cosets (as described in 2.1.(c)). One must make sure that the induced multiplication
makes sense.)

(6) My favorite R-modules are the finitely generated free R-modules:

Rn is equal to the set of column vectors with n entries from R.

Addition and scalar multiplication take place component wise.
(7) Let M and N be R-modules. A function φ : M → N is an R-module homomorphism if

φ(m+m′) = and φ(rm) =

for m,m′ in m and r ∈ R.
(8) Every R-module homomorphism Rm → Rn is multiplication by an n×m matrix.
(9) If φ : M → N is an R-module homomorphism, then kerφ and cokerφ = N

imφ
are

R-modules.
(10) In a Noetherian ring R (see Observation 2.9 below), every finitely generated R-module

is the cokernel of a matrix!
(11) If φ : R → S is a ring homomorphism, then S and every S-module (say M) is an

R-module, with rm defined to be φ(r) times m for r ∈ R and m ∈M .
(12) I am particularly fond of finitely generated modules because of (10). I usually figure

that if one is thinking about a module which is not finitely generated that is because
one is not thinking about the correct ring.

Observation 2.7. Let M be a module over a ring R. The following two statements are
equivalent.

(a) Every R-submodule of M is finitely generated.
(b) Every ascending chain of R-submodules of M stabilizes. (One says that the submodules

of M satisfy the “Ascending Chain Condition”.)
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Proof.
(a) =⇒ (b). Let M1 ⊆ M2 ⊆ · · · be a chain of submodules of M . Observe that ∪iMi is
a submodule of M . Thus, ∪iMi is finitely generated. All of the generators live in Mi0 for
some i0. Thus, Mi0 = Mi0+1 = · · · .

(b) =⇒ (a). Let N be a submodule of M . Pick n1 ∈ N . If possible, pick n2 ∈ N \ (n1).
If possible, pick n3 ∈ N \ (n1, n2). etc. The chain (n1) ( (n1, n2) ( · · · is finite. So, there
exists n1, · · · , ni0 which generate N . �

Definition 2.8. If the conditions of Observation 2.7 hold for the R-module M , then M is
called a Noetherian R-module. If the conditions of Observation 2.7 hold for the R-module
R then R is called a Noetherian ring.

Observation 2.9. If M is a finitely generated module over a Noetherian ring R, then M is a
Noetherian R-module.

Proof. It suffices to show that R` is Noetherian for each positive integer `. (Indeed M is a
quotient of R` for some `. Every quotient of a Noetherian module is Noetherian. If A ⊆ B

are R-modules, then submodules of B/A all have the form C/A where C is a submodule
of B which contains A. If B is a Noetherian module, then B/A is a Noetherian module.)
Let N be a submodule of Rn. Consider the projection proj : R` → R which is given by

proj

r1...
rn

 = r1.

Observe that proj(N) is an ideal of R; thus, proj(N) is finitely generated. It follows that
there are elements n1, . . . , n# in N so that N = R(n1, . . . , n#) + N ′ where every element
of N ′ has the form 

0
∗
...
∗

 .
It follows by induction on ` that N ′ is finitely generated. Therefore, N is also finitely
generated. �

Theorem 2.10. (Hilbert basis theorem) If R is a Noetherian ring, then R[x] is a Noetherian
ring.

Proof. Let J be an ideal of R[x]. The proof has two steps.

Step One. For each non-negative integer i, let Ji be the ideal of R[x] which is generated by
the elements of J of degree at most i. Prove by induction that each Ji is finitely generated.
(This uses the same trick as 2.9. Suppose Ji−1 is finitely generated. Consider the ideal in
R which is generated by the leading coefficients of all polynomials of degree i in J . This
ideal is finitely generated; so, we can find f1, . . . , f# in Jj with Jj = (f1, . . . , f#) + Jj−1.)
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Step Two.1 Let

Ii = {r ∈ R | r is the leading coefficient of a polynomial in J of degree i}.

Notice that Ii is also equal to

{r ∈ R | r is the leading coefficient of an element of Ji}.

Observe that
I0 ⊆ I1 ⊆ · · ·

is an ascending chain of ideals in the Noetherian ring R. So; there exists i0 such that
Ii0 = Ik, for all k with i0 ≤ k.

Claim. Ji0 = J .

Proof of Claim.

It suffices to show that each element of J with degree bigger than i0 is in Ji0.

By induction, it suffices to show that if f is in J and i0 < deg f , then there exists g ∈ Ji0
with deg(f − g) < deg f .

Let r be the leading coefficient of f . Thus, r ∈ Ideg f = Ii0. Thus there is an element h of
Ji0 with deg h = i0 and the leading term of h is equal to r. Observe that

deg(f − xdeg f−i0h) < deg f.

This completes the proof of the claim.

The proof of the Theorem is also complete because we learned in step 1 that Ji0 is finitely
generated. �

Examples 2.11.

(a) All of the rings of Example 2.2 are Noetherian. (The Hilbert basis theorem guarantees
that if R is Noetherian, then R[x1, . . . , xn] is Noetherian. If R is Noetherian, then the
homomorphic image of R is Noetherian (because the ideals of R/I are all of the form
J/I where J is an ideal of R which contains I). Maybe, I should point out also, that
Z is Noetherian; indeed, every ideal can be generated by one element. One says Z is
a PID (Principal Ideal Domain). If you don’t know this already, then you should prove
it.)

(b) The ring Z[x1, x2, . . . ] is not Noetherian.

1This argument was repaired on August 30, 2018.
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3. LOCALIZATION.

This material “comes from” Chapter 2 of [3].

Definition 3.1. A local ring is a ring with exactly one maximal ideal.

Examples 3.2.

(a) Every field is a local ring.
(b) The ring Z(2) = {a

b
|a, b ∈ Z, b /∈ (2)} is a local ring. (View Z(2) as a subring of the field

of rational numbers Q.)
(c) The ring of formal power series in one variable over a field kkk[[x]] is a local ring.

3.A. Why should we study local rings?

3.3. Many definitions are given for local rings. A local ring R is (Cohen-Macaulay, Goren-
stein, regular) if xxxx. A ring R is (Cohen-Macaulay, Gorenstein, regular) if every local-
ization of Rm is (Cohen-Macaulay, Gorenstein, regular), where m varies over the maximal
ideals of R.

3.4. We will prove that if M is a module over a local ring, then M is zero if and only if Mm

is zero for all maximal ideals m of R.

MANY theorems are proven in the local case. A typical theorem says X = Y where X and
Y are submodules of some big module.

It suffices to prove X = X + Y and Y = X + Y .

It suffices to prove X+Y
X

= 0 and X+Y
Y

= 0.

It suffices to prove (X+Y
X

)m = 0 and (X+Y
Y

)m = 0 for all maximal ideals m of R.

3.B. Why are local rings called local? If you give me a geometric object, say

V = V (y − x2) = {(x0, y0) ∈ kkk2 | y0 = x20},

then I immediately think of its coordinate ring

kkk[x, y]

(y − x2)
.

This is the ring of polynomial FUNCTIONS which are defined in V . (Recall that two func-
tions are equal precisely if they take the same value on each element in the domain.) If
you give me a point, say P0 = (x0, y0) on V , then I might wonder about about the geometry
of V near P0. (Is P0 a smooth point on V ? If not, how singular is P0? etc.) To do this, I
would consider the ring of rational functions which make sense locally near P0. This ring
is the localization (

kkk[x, y]

(y − x2)

)
(x−x0,y−y0)

.
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3.C. The definition of localization.

Plan 3.5. Let R be a ring and U be a multiplicatively closed subset of R which does not
contain 0. We make a new ring U−1R in which all of the elements of U are units.

There are three typical choices for U .

(a) Let P be a prime ideal of the ring R and U = R \ P . (In this case, U−1R is usually
written RP . I have used this notation already numerous times.)

(b) Let u be an element of R which is not nilpotent and U = {1, u, u2, . . . }. (In this case,
U−1R is usually written Ru.)

(c) Let U be the set of non-zero divisors of R. In this case, U−1R is called the total ring of
fractions of R or the total quotient ring. Do notice that if R is a domain, and U is the
set of non-zero divisors of R, then U−1R is called the fraction field of R. It is the same
as R(0) (as described in (a)) and maybe maybe you already built the fraction field of a
domain (or built Q from Z) in a previous course. The construction in general is very
similar.

Definition 3.6. Let U be a multiplicatively closed subset of the ring R which does not
contain 0. The localization of R at U is the ring

U−1R =
{ r
u
|r ∈ R, u ∈ U}

r
u

= r′

u′
⇐⇒ ∃u′′ ∈ U such that u′′(u′r − ur′) = 0

.

Define addition and multiplication in the obvious manner

r

u
+
r′

u′
=
ru′ + r′u

uu′
and

r

u

r′

u′
=
rr′

uu′

and verify that these operations are indeed functions! (Remember that each element of
U−1R has many names.)

Observation 3.7. Let U be a multiplicatively closed subset of the ring R which does not
contain 0. Then there is a bijection

the set of ideals of R disjoint from U ↔ the set of proper ideals of U−1R
I −→ I(U−1R)

{r ∈ R| r
1
∈ I } ←− I .

Proof. This is easy. �

Corollary 3.8. Let U be a multiplicatively closed subset of the ring R which does not contain
0. If R is Noetherian, then U−1R is Noetherian.

3.D. HomR(M,N).
Let M and N be modules over the ring R.

• Define

HomR(M,N) = {α : M → N | α is an R-module homomorphism}.
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• Observe that HomR(M,N) is an Abelian group with

(α + β)(m) = α(m) + β(m)

for α and β in HomR(M,N).
• Observe that HomR(M,N) is an R-module with

(rα)(m) = r(α(m))

for α in HomR(M,N) and r ∈ R.
• Observe that HomR(M,−) is a covariant left exact functor. In other words, if

0→ A
α−→ B

β−→ C

is an exact sequence of R-modules, then

0→ HomR(M,A)
α∗−→ HomR(M,B)

β∗−→ HomR(M,C)

is an exact sequence of R-modules, where α∗ sends

M → A to M → A
α−→ B.

• Observe that HomR(−, N) is a contravariant left exact functor. In other words, if

A
α−→ B

β−→ C → 0

is an exact sequence of R-modules, then

0→ HomR(C,N)
β∗−→ HomR(B,N)

α∗−→ HomR(A,N)

is an exact sequence of R-modules, where α∗ sends

B → N to A
α−→ B → N.

(None of the above assertion are completely obvious; but I think they are all fairly
straightforward. You should check enough to get the idea of what is being asserted.)

3.E. Tensor product. Let R be a ring and M and N be R-modules. One can describe
M ⊗RN using generators and relations; but if one does that, then M ⊗RN seems to be an
arbitrary random object. I prefer to give the property satisfied by M ⊗RN ; this property is
called the Universal Mapping Property (UMP). Only one module can satisfy the (UMP) up
to (a very special) isomorphism. One still must prove that M ⊗RN actually exists. (This is
where the generators and relations are introduced.) In my mind the (UMP) is significantly
more important than the generators and relations. (I remember that when I was young, I
had a hard time realizing this.)

Let L,M,N be R-modules. A function h : M ×N → L is called R-bilinear if

h(−, n) : M → L and h(m,−) : N → L

is anR-module homomorphism for each n ∈ N and eachm ∈M . Bilinear homomorphisms
are awkward, I’d rather only think about ordinary R-module homomorphisms. It turns out
that it is possible to consider only ordinary R-module homomorphisms; but the cost is that
the domain becomes more complicated.
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Definition 3.9. Let M and N be modules over the ring R. The tensor product of M and N
is an R-module M ⊗R N , together with an R-bilinear function M ×N b−→ M ⊗R N , which
satisfies the following Universal Mapping Property. If L is an R-module and h : M×N → L

is an R-bilinear function, then there exists a unique homomorphism

h̃ : M ⊗R N → L

such that the diagram

M ×N b //

h
��

M ⊗R N

∃!h̃xxq q q q q q

L
commutes.

The image b(m,n) of (m,n) in M ⊗R N is denoted m⊗ n.

Observation 3.10. (Uniqueness) IfM×N b−→M⊗RN andM×N b′−→ (M⊗RN)′ both satisfy
the (UMP) for tensor product, then there is a unique isomorphism α : M ⊗RN → (M ⊗RN)′

for which the diagram

M ×N
b

xxqqqqqqqqqqq
b′

''NNNNNNNNNNN

M ⊗R N
α

∼=
// (M ⊗R N)′

commutes.

Proof. The (UMP) with L = (M ⊗R N)′ yields a unique map α so that

M ×N b //

b′

��

M ⊗R N

∃!αwwo o o o o o

(M ⊗R N)′

commutes. The (UMP) with L = M ⊗R N yields a unique map β so that

M ×N b //

b′

��
b

���������������������
M ⊗R N

∃!αwwo o o o o o

(M ⊗R N)′

∃!βwwo o o o o o

M ⊗R N

commutes. At this point β ◦ α and idM⊗RN both cause

M ×N b //

b
��

M ⊗R N

∃!xxp p p p p p

M ⊗R N
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to commute and α ◦ β and id(M⊗RN)′ both cause

M ×N b′ //

b′

��

(M ⊗R N)′

∃!wwo o o o o o

(M ⊗R N)′

to commute. Thus, β ◦ α = idM⊗RN and α ◦ β = id(M⊗RN)′ and the proof is complete. �

Remark. The proof that an object defined by a (UMP) is unique always goes this way. We
probably will not write such a proof together again.

Observation 3.11. (Existence) If M and N are modules over the ring R, then M ⊗R N
exists.

Proof. Let X equal the free R-module on the set {x(m,n) | m ∈ M, and n ∈ N}, Let Y be
the R-submodule of X generated by

{x(m+m′,n) − x(m,n) − x(m′,n) | m,m′ ∈M and n ∈ N}
∪{x(m,n+n′) − x(m,n) − x(m,n′) | m ∈M, and n, n′ ∈ N}
∪{x(rm,n) − rx(m,n) | m ∈M, n ∈ N, and r ∈ R}
∪{x(m,rn) − rx(m,n) | m ∈M, n ∈ N, and r ∈ R}.

I claim that M×N b−→ X
Y

, given by b(m,n) = cls x(m,n) satisfies the (UMP) of tensor product.
Let L be an R-module and h : M ×N → L be an R-bilinear function.

• Observe first that b is an R-bilinear function of R-modules.
• Observe second that the only map α : X

Y
→ L which has a chance of making

M ×N b //

h
��

X
Y

α
{{x

x
x

x
x

L

commute has to send cls(x(m,n)) to h(m,n) for each (m,n) ∈ M × N . Of course,
X is a free R-module with basis {x(m,n) | m ∈ M and n ∈ N}; so α̃ : X → L with
α̃(x(m,n)) = h(m,n) is a well defined R-module homomorphism.
• Observe that α̃(Y ) = 0. The first isomorphism theorem guarantees that α̃ induces
α : X

Y
→ L with α(cls(x(m,n)) = h(m,n).

Thus, M ×N b−→ X
Y

is a solution to the Universal Mapping Problem; and therefore

M ×N b−→ X

Y

is M ×N b−→M ⊗R N . �
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3.F. Properties of tensor product.

(a) If M is an R-module, then R⊗RM = M and R×M b−→ R⊗RM is

R×M scalar multiplication−−−−−−−−−−→M.

Proof. Observe that R ×M scalar multiplication−−−−−−−−−−→ M is an R-bilinear function. It suffices to

show that R ×M scalar multiplication−−−−−−−−−−→ M is a solution of the Universal Mapping Problem.
Let h : R ×M → L be an R-bilinear function. Observe that the only candidate for a
homomorphism h̃ : M → L for which

(3.11.1) R×M mult //

h
��

M

h̃zzvvvvvvvvvv

L

commutes is h̃(m) = h(1,m) for m ∈ M ; on the other hand, this choice does make
(3.11.1) commute:

(h̃ ◦mult)(r,m) = h̃(rm) = h(1, rm) = rh(1,m) = h(r,m),

for m ∈M and r ∈ R. �

(b) If f : M → M ′ and g : N → N ′ are R-module homomorphisms, then there is a unique
R-module homomorphism M ⊗R N → M ′ ⊗R N ′ which sends m ⊗ n to f(m) ⊗ g(n),
for m ∈M and n ∈ N . (Of course, this homomorphism is called f ⊗ g.)

Proof. Apply the (UMP) of tensor product. Observe that

M ×N →M ′ ⊗R N ′,

given by (m,n) 7→ f(m)⊗ g(n) is R-bilinear, for m ∈M and n ∈ N . �

(c) If M , N , and N ′ are R-modules, then

M ⊗R (N ⊕N ′) ∼= (M ⊗R N)⊕ (M ⊗R N ′).

Proof. Observe that

M × (N ⊕N ′)→ (M ⊗R N)⊕ (M ⊗R N ′),

with
(m, (n, n′)) 7→ (m⊗ n,m⊗ n′)

is anR-bilinear function, form ∈M and n, n′ ∈ N . It follows that there is anR-module
homomorphism

φ : M ⊗R (N ⊕N ′)→ (M ⊗R N)⊕ (M ⊗R N ′),

with
φ(m⊗ (n, n′)) = (m⊗ n,m⊗ n′),

for m ∈M and n, n′ ∈ N . Similarly,

M ×N →M ⊗R (N ⊕N ′),
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with
(m,n) 7→ m⊗ (n, 0)

is an R-bilinear function, for m ∈ M and n ∈ N ; hence there is an R-module homo-
morphism

M ⊗R N →M ⊗R (N ⊕N ′),
with

(3.11.2) m⊗ n 7→ m⊗ (n, 0),

for m ∈M and n ∈ N . The same procedure produces an R-module homomorphism

M ⊗R N ′ →M ⊗R (N ⊕N ′),

with

(3.11.3) m⊗ n′ 7→ m⊗ (0, n′),

for m ∈ M and n′ ∈ N ′. Combine the legitimate R-module homomorphisms (3.11.2)
and (3.11.3) to obtain a legitimate R-module homomorphism

ψ : (M ⊗R N)⊕ (M ⊗R N ′)→M ⊗R (N ⊕N ′),

with
ψ(m⊗ n,m′ ⊗ n′) = (m⊗ (n, 0)) + (m′ ⊗ (0, n′))

for all m,m′ ∈M , n ∈ N , and n′ ∈ N ′. In particular,

ψ(m⊗ n,m⊗ n′) = (m⊗ (n, 0)) + (m⊗ (0, n′)) = m⊗
(

(n, 0) + (0, n′)
)

= m⊗ (n, n′),

for all m ∈ M , n ∈ N , and n′ ∈ N ′. Observe that φ and ψ are inverses of one
another. �

(d) If N is a module over the ring R, then − ⊗R N is a covariant right exact functor. In
other words, if

A
α−→ B

β−→ C → 0

is an exact sequence of R-modules, then

A⊗R N
α⊗1−−→ B ⊗R N

β⊗1−−→ C ⊗R N → 0

is an exact sequence of R-modules.

Proof. I will show that ker(β ⊗ 1) ⊂ im(α ⊗ 1). The rest of the things that must be
shown are fairly straightforward. Let E = im(α⊗ 1). Observe that E ⊆ ker(β ⊗ 1). Let
β̄ be the R-module homomorphism

B ⊗R N
E

→ C ⊗R N,

which is induced by

B ⊗R N
β⊗1−−→ C ⊗R N.
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We produce an inverse for β̄ (and that will complete the proof). Observe that

(3.11.4) C ×N → B ⊗R N
E

with (c, n) 7→ (b ⊗ n) + E, for some b ∈ B with β(b) = c is a well-defined FUNCTION,
where c ∈ C and n ∈ N are arbitrary. (Indeed, if b′ ∈ B and β(b′) is also equal to c,
then b − b′ ∈ ker β = imα and (b − b′) ⊗ n is in E.) Now observe that (3.11.4) is an
R-bilinear function. It follows that there is an R-module homomorphism

γ : C ⊗R N →
B ⊗R N

E
,

with γ(c ⊗ n) = (b ⊗ n) + E, for some b ∈ B with β(b) = c. Observe that γ and β̄ are
inverses of one another. �

(e) The right exactness of tensor product makes calculation possible. Indeed, if

(3.11.5) Rb φ−→ Ra →M → 0

is an exact sequence of R-modules (where φ is an a× b matrix of scalars), then

N b φ−→ Na →M ⊗R N → 0

is an exact sequence of R-modules. (Of course, every finitely generated module over
a Noetherian ring has a finite presentation like (3.11.5).)

(f) If M is an R-module and I is an ideal, then R
I
⊗RM ∼= M

IM
.

Proof. Apply −⊗RM to the exact sequence

0→ I → R→ R/I → 0

to obtain the exact sequence

I ⊗RM → R⊗RM︸ ︷︷ ︸
M

→ R/I ⊗RM → 0

and the image of I ⊗RM in R⊗RM = M is IM . �

(g) Let ψ : R→ S be a ring homomorphism.

Every S-module is already an R module.

On the other hand, ifM is an R-module, then S⊗RM is the S-module that corresponds
to M . (One says that S ⊗RM is obtained from M by extension of scalars).

In particular, if M is an R-module with finite presentation (3.11.5), then S ⊗RM is
the S-module with presentation:

Sb
ψ(φ)−−→ Sa → S ⊗RM → 0.

If the entry in φ in row r and column c is φr,c, then the entry in ψ(φ) in row r and
column c is ψ(φr,c).
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(h) I want to point out that −⊗R N is NOT always an exact functor. Let I and J be ideals
of the ring R. Apply −⊗R R/J to the exact sequence

0→ I → R→ R/I → 0

to obtain the exact sequence

I ⊗R (R/J)︸ ︷︷ ︸
I/IJ

→ R⊗R (R/J)︸ ︷︷ ︸
R/J

→ (R/I)⊗R (R/J)︸ ︷︷ ︸
R/I

J(R/I)
=R/(I+J)

→ 0,

which we re-write as the exact sequence

I

IJ
→ R

J
→ R

I + J
→ 0.

(Each map is the natural map cls θ 7→ cls θ.) The kernel of the left-hand map is I∩J
IJ

.
This module is often not zero. In particular, if I = J , then I/I2 is usually not zero.

3.G. Localization produces flat modules!

Definition 3.12. Let R be a ring and M be an R-module. If M ⊗R − is an exact functor,
then M is a flat R-module. (An exact functor carries short exact sequences to short exact
sequences.)

Examples 3.13.

(a) Every free R-module is flat. (It is clear that R is flat. We proved that direct sum
commutes with tensor product. Actually, we proved that finite direct sum commutes
with tensor product; however, it is true that all direct sums commute with tensor
product.)

(b) Every projective R-module is flat. (At this point, an R-module P is projective if P is
a direct summand of a free R-module. Later, we will learn other equivalent charac-
terizations of projective modules.) The proof that every projective R-module is flat is
straightforward: Use the fact that if P is a projective module, then there is a module Q
such that P ⊕Q is free (hence flat) combined with the fact that direct sum commutes
with tensor product.

Here are a few projective modules.
(i) If R is the ring Z

(6)
, then R is the internal direct sum of I1 ⊕ I2, for I1 = (2)R and

I2 = (3)R. In other words, I1 + I2 = R and I1 ∩ I2 = (0). The R-modules I1 and
I2 are flat but not free. (Finitely generated free R-modules have a multiple of 6

elements.)
(ii) Here is a more interesting projective module which is probably not free. Let

S be the polynomial ring kkk[x, y, z] localized at the element u = x2 + y2 + z2.
That is S = kkk[x, y, z]u, where kkk is an arbitrary field. Consider the S-module
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homomorphisms

S

i=


x
y
z


−−−−→ S3

π=
[
x y z

]
−−−−−−−−→ S.

Observe that the composition π ◦ i is multiplication by a unit. It follows that
S3 = im i⊕kerπ as an internal direct sum. Thus, im i and kerπ are both projective
S-modules. It is clear that im i is a free S-module (isomorphic to S). I am fairly
certain that kerπ is not a free S-module, but I do not have a proof. See, for
example, [3, Example 19.8] where a topological argument is offered to prove
that a module similar to kerπ is not free.

(iii) Every ideal in a Dedekind domain D is a projective D-module, but not all of these
ideals are free. One large family of Dedekind Domains comes from Algebraic
Number Theory. Let K be a field which is a finite dimensional vector space over
Q (such fields are called algebraic number fields) and let D be the set of all
elements of K which satisfy a monic polynomial with integer coefficients. This
set D forms a ring, called the ring of algebraic integers in K. Furthermore, D is
a Dedekind domain. One example of a Dedekind domain is D = Z[

√
−5]. In D,

there are two factorizations of 6 into irreducible factors:

2 · 3 = (1 +
√
−5)(1−

√
−5).

This lack of unique factorization into irreducibles gives rise to the ideal

(2, 1 +
√
−5)D,

which is a projective D-module that is not free. (In order to be free, the ideal
would have to be principal.)

The purpose of this subsection is to prove Proposition 3.16 which states that if R is a
ring and U is a multiplicatively closed subset of R which does not contain 0, then U−1R is
a flat R-module.

First we make sense of the localization of a module U−1M with out making any reference
to tensor product. Then we prove U−1R ⊗R M = U−1M . Then we prove U−1R is a flat
R-module.

Definition-Observation 3.14. Let R be a ring, U be a multiplicatively closed subset of R
which does not contain 0, and M be an R-module. Define the set

U−1M =
{m
u
|m ∈M,u ∈ U}

m
u

= m′

u′
⇐⇒ ∃u′′ ∈ U such that u′′(u′m− um′) = 0

.

Define addition and scalar multiplication by U−1R in the obvious manner:
m

u
+
m′

u′
=
mu′ +m′u

uu′
and

r

u

m

u′
=
rm

uu′

and verify that these operations are indeed functions! (Remember that each element of
U−1R and each element of U−1M has many names.)
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Lemma 3.15. Let R be a ring, U be a multiplicatively closed subset of R which does not
contain 0, and M be an R-module. Then multiplication

U−1R⊗RM → U−1M

is an isomorphism of U−1R-modules.

Proof. Observe that multiplication

U−1R×M → U−1M

is an R-bilinear function. Thus,

(3.15.1) mult : U−1R⊗RM → U−1M

is also a legitimate R-module homomorphism. One easily sees that (3.15.1) is also a
legitimate U−1R-module homomorphism.

Now we define an inverse

α : U−1M → U−1R⊗RM

to (3.15.1). If m ∈ M and u ∈ U , then we hope to send m
u

to 1
u
⊗m. Suppose m

u
= m′

u′
in

U−1M , for some u′ ∈ U and m′ ∈ M . Then there exists u′′ ∈ U with u′′u′m = u′′um′ in M .
It follows that

1

u′′u′u
⊗ u′′u′m =

1

u′′u′u
⊗ u′′um′

in U−1R⊗RM . The must recent equation is the same as
1

u
⊗m =

1

u′
⊗m′

in U−1R⊗RM because elements of R are allowed to slide over the tensor product symbol.
Thus, α(m

u
) = 1

u
⊗m is a legitimate function. It is not hard to check that α is a U−1R-module

homomorphism and is the inverse of (3.15.1). �

Proposition 3.16. If R is a ring and U is a multiplicatively closed subset of R which does not
contain 0, then U−1R is a flat R-module.

Proof. It suffices to prove that if α : N →M is an injective R-module homomorphism, then
1⊗α : U−1R⊗RN → U−1R⊗RM is an injective U−1R-module homomorphism. It suffices
to show that if N ⊆ M , then U−1N ⊆ U−1M . This is obvious. If n ∈ N and u ∈ U with
n
u

= 0 in U−1M , then there exists u′ ∈ U with u′n = 0 in M . It follows that u′n = 0 in N

and n
u

= 0 in U−1N . �

Observation 3.17. If M is a finitely generated R-module, then MP 6= 0 if and only if
annM ⊆ P .

Proof. Suppose MP = 0. The module M is finitely generated; say by m1, . . . ,mN for some
integer N . For each mi, there is an element ui ∈ R \ P with uimi = 0 in M . Observe that
N∏
i=1

ui ∈ annM \ P .

Suppose u ∈ annM \ P . Then u is a unit in RP and uMP = 0. Thus MP = 0. �
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Observation 3.18. If M is an R-module then

M = 0 ⇐⇒ Mm = 0 for all maximal ideals m of R.

Proof. One direction is obvious. We prove (⇐). Suppose Mm = 0 for all maximal ideals m

of R. Let m ∈ M . It follows (say from the flatness of localization) that (m)m = 0 for all
m. Apply Observation 3.17 to say that ann(m) is not contained in any maximal ideal of R.
Thus, ann(m) = R and m = 0. Thus, every element of M is zero; hence, M = 0. �

Proposition 3.19. Let R be a ring, S be a flat R-algebra, and M and N be R-modules with
M finitely presented. Then

S ⊗R HomR(M,N) ∼= HomS(S ⊗RM,S ⊗R N).

Corollary 3.20. Let R be a Noetherian ring, U be a multiplicatively closed subset of R not
containing 0, and M and N be R-modules with M finitely generated. Then

U−1 HomR(M,N) ∼= HomU−1R(U−1M,U−1N).

Proof of Proposition 3.19. Apply HomR(−, N) followed by S ⊗R − to the exact sequence

(3.20.1) Rb φ−→ Ra →M → 0

to obtain the exact sequences

0→ HomR(M,N)→ HomR(Ra, N)
φ∗−→ HomR(Rb, N)

and

(3.20.2) 0→ S ⊗R HomR(M,N)→ S ⊗R HomR(Ra, N)
S⊗Rφ∗−−−−→ S ⊗R HomR(Rb, N)︸ ︷︷ ︸

(S⊗RN)a
ψ(φT)−−−→(S⊗RN)b

.

Apply S ⊗R − followed by HomS(−, S ⊗R N) to the exact sequence (3.20.1) to obtain the
exact sequences

S ⊗R Rb → S ⊗R Ra S⊗φ−−→ S ⊗RM → 0

and
(3.20.3)
0→ HomS(S ⊗RM,S ⊗R N)→ HomS(S ⊗R Ra, S ⊗R N)

(S⊗φ)∗−−−−→ HomS(S ⊗R Rb, S ⊗R N)︸ ︷︷ ︸
(S⊗RN)a

ψ(φT)−−−→(S⊗RN)b

Compare (3.20.2) and (3.20.3). There is a natural homomorphism

S ⊗R HomR(M,N)→ HomS(S ⊗RM,S ⊗R N),

which sends s⊗ φ to s⊗ φ. Observe that

0 // S ⊗R HomR(M,N) //

��

(S ⊗R N)a

∼=
��

ψ(φT)
// (S ⊗R N)b

∼=
��

0 // HomS(S ⊗RM,S ⊗R N) // (S ⊗R N)a
ψ(φT)

// (S ⊗R N)b
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is a commuting diagram with exact rows. This is enough to guarantee that the left most
map is an isomorphism. (There is probably a fancy way to say this. It is also easy to check
the assertion by hand.) �

3.H. Ideals which are maximal with respect to any plausible property are prime.

Observation 3.21. Let U be a multiplicatively closed subset of the ring R. If I is an ideal of
R which is maximal among the ideals of R which are disjoint from U , then I is a prime ideal
of R.

Proof. This proof is by contradiction. Suppose I is not a prime ideal of R. Then there exist
a and b in R \ I with ab ∈ I. The ideals (I, a) and (I, b) meet U ; so there exist i1, i2 in I and
r1, r2 in R with X = i1 + r1a and Y = i2 + r2b in U . Observe that XY ∈ I ∩ U , which is a
contradiction. �

The next result is very important in the unit on Primary Decomposition, Section 4.

Observation 3.22. Let R be a ring and M be an R-module. Consider the following set of
ideals

S = {ann(m) | m ∈M \ {0}}.
If I is a maximal element of S , then I is a prime ideal of R.

Proof. The ideal I is equal to annm for some non-zero element m of M . Suppose that a, b
are in R with ab ∈ I and a /∈ I. We prove b ∈ I.

The hypothesis that a ∈ I = annm ensures that am 6= 0. On the other hand,

I = ann(m) ⊆ ann(am),

with ann(am) ∈ S , and I is a maximal element of S . It follows that I = ann(am). The
hypotheses ab ∈ I = ann(m), ensures b ∈ ann(am) = I and the proof is complete. �

3.I. Rings and modules of finite length.

3.23. Why do we care?

(a) Rings of finite length are precisely the rings of Krull dimension zero. The main goal of
this course is to understand Krull dimension. The best place to start is Krull dimension
zero.

(b) One reason to study Commutative Algebra is that it provides a precise way to mea-
sure geometric phenomenon; like, for example, intersection multiplicity. (Draw some
secant lines converging to a tangent line at a smooth point. Play the “same game” at
a singular point.) This precise measure is almost always given by the length of some
module.

Definition 3.24. An R-module N is simple if the only submodules of N are N and (0).

Example 3.25. If m is a maximal ideal in the ring R then R/m is a simple R-module.
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Definition 3.26. The R-module M has finite length if there exists a finite chain of submod-
ules of M of the form:

(3.26.1) M = M0 )M1 )M2 ) · · · )Mn = 0,

for some non-negative integer n, such that Mi/Mi+1 is a simple R-module for 0 ≤ i ≤ n−1.
In this case, the chain of modules (3.26.1) is called a composition series of M . The length of
(3.26.1) is n (the number of inclusions) and the length of M , denoted `(M), is the length
of the shortest composition series of M .

Proposition 3.27. [3, 2.13] If M is an R-module of finite length, then every composition
series has the same length.

Proof. The argument has two steps.

Step 1. If N is a proper submodule of M , then `(N) < `(M). Let

M = M0 )M1 )M2 ) · · · )Mn = 0,

be a composition series for M with n = `(M). Intersect this chain with N to obtain

(3.27.1) N = (M ∩N) = (M0 ∩N) ⊇ (M1 ∩N) ⊇ (M2 ∩N) ⊇ · · · ⊇ (Mn ∩N) = 0.

Use the isomorphism theorem
A+B

B
∼=

A

A ∩B
to see

Mi

Mi+1

⊇ (Mi ∩N) +Mi+1

Mi+1

=
A+B

B
∼=

A

A ∩B
=

Mi ∩N
(Mi ∩N) ∩Mi+1

=
Mi ∩N
Mi+1 ∩N

.

The ith factor in (3.27.1) is either (0) or naturally isomorphic to Mi

Mi+1
.

Claim. Some factor must be (0).

Proof of this claim. Otherwise, by induction one proves that N = M . Indeed, if
Mn−1 ∩N
Mn ∩N

=
Mn−1

Mn

,

then Mn−1 ∩N = Mn−1; hence Mn−1 ⊆ N . If Mn−2∩N
Mn−1∩N is also equal to Mn−2

Mn−1
, then

Mn−2 ∩N = Mn−2

Proceed in this manner to see that M ⊆ N . �

At this point one deletes enough terms from (3.27.1) to remove the zero factors. One
obtains a composition series for N which has length less than `(M). Hence,

`(N) ≤ the length of this composition series < `(M).

Step 2. Let
M = N0 ) N1 ) N2 ) · · · ) Nk

be a chain of submodules of M . We prove (by induction on `(M)) that k ≤ `(M).
If `(M) = 0, then M = 0; hence k = 0.
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If 1 ≤ `(M), then k − 1 ≤ `(N1) by induction and `(N1) ≤ `(M) − 1 by Step 1; hence
k ≤ `(M). �

Definition 3.28. The ring R is Artinian if every descending chain of ideals of R stabilizes.
That is, if

I0 ⊇ I1 ⊇ I2 ⊇ I3 ⊇ · · ·
are ideals of R, the there exists i0 such that Ii0 = Ii0+k for all positive integers k. (One says
that the ideals of R satisfy the Descending Chain Condition (DCC).)

Examples 3.29.

(a) The ring Z/(n) is Artinian for any integer n with 2 ≤ n.
(b) Any ring which contains a field kkk and is finite dimensional as a vector space over kkk is

Artinian.
(c) The rings Z and kkk[x] are not Artinian.

Thursday, October 4. Last time we thought about the following issues:

(1) A module M has finite length if it has a composition series:

M = M0 )M1 )M2 ) · · · )Mn = 0,

with Mi/Mi+1 a simple module for each i.
(2) If M has finite length then every composition series for M has the same length.
(3) If M has one composition series, then there is an absolute bound on the length of

strictly descending chains of submodules of M , namely `(M). (This was step two of
the proof that every composition series has the same length.) This last remark deserves
further discussion. It says that if M has finite length, then the submodules of M satisfy
the descending chain condition! It also says that, if M has finite length, then the
submodules of M satisfy the ascending chain condition!

Observation 3.30. Let R be a ring and

0→ A
α−→ B

β−→ C → 0

be a short exact sequence of R-modules. Then

(a) B has finite length if and only if A and C have finite length, and
(b) if B has finite length, then

`(B) = `(A) + `(C).

One says that “length is additive on short exact sequences.”

Proof. It suffices to prove the result when A ⊆ B and C = B/A because A is isomorphic to
the image of α and C is isomorphic to B/ imα. In this case, we consider

B ⊇ A ⊇ (0).

(a) If A and B/A have finite length, then they have composition series. Paste these compo-
sition series together to get a composition series for B. Conclude that B has finite length.
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If B has finite length, then we proved (in Step 2 of Proposition 3.27) that every strictly
descending chain of submodules of B has length at most `(B); hence A and B/A have
finite length.

Finally, one composition series for B is obtained by pasting together a composition series
for A and a composition series for B/A. All composition series for B have the same length.
It follows that `(B) = `(A) + `(B/A). �

Theorem 3.31. [3, 2.14] The following statements about the ring R are equivalent:

(a) R is Noetherian and all prime ideals of R are maximal ideals;
(b) R has finite length as an R-module; and
(c) R is Artinian.

Remark. The Krull dimension of a ring R is the longest length of a chain

P0 ( P1 ( P2 ( · · · ( Pd

of prime ideals in R. Consequently Theorem 3.31 also gives that if R is a Noetherian ring,
then R has finite length if and only if R has Krull dimension zero.

Proof.
(a) =⇒ (b) We prove that if R is Noetherian but not of finite length, then there exists
some prime ideal of R which is not a maximal ideal.

Consider the set of ideals I of R such that R/I does not have finite length. This set is
non-empty because it contains the zero ideal. The ring R is Noetherian, so we select a
maximal element I of this set. Suppose a /∈ I. The ideal (I, a) is strictly larger than I; so,
R/(I, a) has finite length. Consider the short exact sequence

0→ R/(I : a)
a−→ R/I︸︷︷︸

not finite length

→ R/(I, a)︸ ︷︷ ︸
finite length

→ 0.

Length is additive on short exact sequences. It follows that R/(I : a) does not have finite
length. But I ⊆ (I : a) forces I = (I : a). Hence I is prime. The ideal I is not maximal
because fields have finite length.

(b) =⇒ (c) This is clear.

(c) =⇒ (a) The main intermediate result is

3.31.1. If R is Artinian, then 0 is the product of a finite collection of maximal ideals of R.

Assume (3.31.1) for now and finish the proof. Let 0 = M1 · · ·Mn, with each Mi a max-
imal ideal of R (repetitions are allowed). Consider the descending chain of submodules
(i.e., ideals):

R ⊇M1 ⊇M1M2 ⊇ · · · ⊇M1 · · ·Mn.

The factor

(3.31.2)
M1 · · ·Ms−1

M1 · · ·Ms−1Ms
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is a vector space over R/Ms. The ring R is Artinian and subspaces of (3.31.2) correspond
to ideals of R; hence, the vector space (3.31.2) is finite dimensional. Thus, this vector
space has a composition series; and therefore, R has composition series. Thus, R has finite
length. (It follows that R is Noetherian. We proved in 3.27, Step 2, that if `(R) <∞, then
`(R) is an absolute bound on the length of strictly descending chains of submodules (i.e.,
ideals) of R. No strictly ascending chain of ideals can have length exceeding this absolute
bound either; because one can turn an ascending chain of ideals into a descending chain
of ideals.)

If P is a prime ideal of R, then

M1 · · ·Mn = 0 ⊆ P ;

hence Mi ⊆ P for some i and P = Mi, which is a maximal ideal of R.

• Now we prove 3.31.1.
Let J be minimal among the set of ideals in R which are equal to a product of maximal

ideals of R. We prove J = 0. Suppose J 6= 0.
Well J2 is also a product of maximal ideals and J2 ⊆ J . It follows that J2 = J .
Let I be minimal among all ideals of R which do not annihilate J . Observe that

0 6= IJ = IJ2;

so IJ does not annihilate J and IJ ⊆ I. It follows that IJ = I.
There must be an element f ∈ I with fJ 6= 0. Again (f) ⊆ I; (f) has a property; and I

is minimal among the ideals with this property. Thus, (f) = I.
Observe that (f)J = (f). Thus, there is an element g ∈ J with fg = f . In other words,

f(1 − g) = 0. The element g is in every maximal ideal of R (because if M is a maximal
ideal of R, then JM is a product of maximal ideals and JM ⊆ J; hence JM = J and in
particular, M ⊇ J .) At any rate, 1 − g is not in any maximal ideal of R; that is 1 − g is a
unit of R. Thus, f = 0, which is a contradiction. �

Remark 3.32. One consequence of the proof of Theorem 3.31 is that Artinian rings only
have a finite number of maximal ideals. (If M is a maximal ideal of R, then M1 · · ·Mn =

(0) ⊆M; hence, M = Mi for some i.)

Proposition 3.33. [3, 2.16] Every Artinian ring is the direct product of local Artinian rings.

Proof.

Key idea. If R is an Artinian ring and M and M′ are maximal ideals of R, then

(RM)M′ =

{
RM, if M = M′, and
0 if M 6= M′.

Assume the Key idea for the time being. Finish the proof.
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Let R be an Artinian ring. Recall from Remark 3.32 that R only has a finite number of
maximal ideals M1, . . . ,Mn. Let

α : R→
⊕
i

RMi

send 1 to (1, . . . , 1). Let C be the cokernel of α and K be the kernel of α. So

0→ K → R
α−→
⊕
i

RMi
→ K → 0

is an exact sequence of R-modules. The Key idea tells us that

αM : RM → (
⊕
i

RMi
)M = RM

is an isomorphism for each maximal ideal M of R. Localization is exact; thus, KM = 0 and
CM = 0 for each maximal ideal M of R. Recall from Observation 3.18 that if a module is
locally zero, then the module is zero. Thus, α is an isomorphism.

• Proof of the Key idea.
It is clear that (RM)M = RM. We focus on (RM)M′ with M 6= M′. We show that if

M is a maximal ideal of the Artinian ring R, then RM is also Artinian and each factor in
a composition series for RM is R/M. This is enough because (R/M)M′ = 0 since some
element of M is not in M′. (This element acts like a unit on (R/M)M′ and also annihilates
(R/M)M′.)

The ring R is Artinian; so R has a composition series

R = I0 ) I1 ) I2 ) · · · ) In = 0;

and each factor is R/Mi for some maximal ideal Mi of R. Now localize:

RM = (I0)M ⊇ (I1)M ⊇ (I2)M ⊇ · · · ⊇ (In)M = 0.

(Keep in mind that localization is flat!) The only non-zero factors are (R/M)M = R/M. �

Proposition 3.34. [3, 2.17] Let M be a finitely generated module over the Noetherian ring
R. The following statements are equivalent:

(a) M has finite length, and
(b) R/ annM is an Artinian ring.

Proof.
(b) =⇒ (a) The ring R/ annM is Artinian. Thus, R/ annM has finite length as a module
over R/ annM and also as a module over R. Thus,⊕

finite

R/ annM

has finite length as a module over R/ annM and also as a module over R. Thus, any
quotient of ⊕

finite

R/ annM
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(in particular, say M) has finite length as a module over R/ annM and also as a module
over R.

(a) =⇒ (b) The R-module M has finite length; so

M = M0 ⊇M1 ⊇ · · · ⊇Mn = (0)

and Mi/Mi+1
∼= R/Mi for some maximal ideal Mi of R. Thus

M0M ⊆M1

M1M0M ⊆M2

...

Mn−1 · · ·M1M0M ⊆Mn = (0).

Thus, a finite product of maximal ideals annihilates M . Let P be a prime ideal of R which
contains annM . Then

Mn−1 · · ·M1M0 ⊆ annM ⊆ P.

It follows that some Mi is contained in P ; indeed, some Mi is equal to P . The ring
R/ annM is Noetherian and has the property that every prime ideal is maximal. It follows
from Theorem 3.31 that R is Artinian. �
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4. PRIMARY DECOMPOSITION

Primary Decomposition is Emmy Noether’s main contribution to Commutative Algebra.
There was some form of Primary Decomposition which worked for rings of algebraic inte-
gers and which was proved using ad hoc number theory techniques; and there was some
form for rings from geometry which was proved using geometric techniques. Noether re-
alized that both forms of the theorem could be established with one proof based on the
Ascending Chain Condition.

The main way I use primary decomposition is in the following result. Everybody who
took the syzygies course saw that we used this result very often.

Theorem 4.1. Let R be a Noetherian ring, I be an ideal of R, and M be a non-zero finitely
generated R-module. If every element of I is a zero-divisor on M , then there exists a non-zero
element m ∈M with Im = 0.

There are two steps to the proof. One proves that the set of zero divisors on M is equal
to the union of a finite set of primes ideals and each of these prime ideals is equal to the
annihilator of some element of non-zero element of M . (This is the main result about
Primary Decomposition.) One also proves the Prime Avoidance Lemma.

Lemma 4.2. (The Prime Avoidance Lemma) Let I1, . . . , In, J be ideals in the ring R with

J ⊆
n⋃
i=1

Ii. If R contains an infinite field or if at most two of the Ij are not prime, then J ⊆ Ii,

for some i.

Proof.
Case 1. Suppose R contains an infinite field kkk. Each of the ideals J , J ∩ I1, ... ,J ∩ In is a

vector space over kkk and J =
n⋃
i=1

(J ∩ Ii). A vector space over an infinite field can not be the

union of a finite collection of proper subspaces2; hence J ∩ Ii0 = J for some i0; therefore,
J ⊆ Ii0.

Case 2. By induction on n, we may assume that J is not contained in the union of any
proper subset of {I1, . . . , In}. Label the ideals so that if 3 ≤ n, then In is prime. For each
i0, select fi0 ∈ J \

⋃
i 6=i0

Ii. It follows that fi0 ∈ Ii0. Consider the element

θ = f1 · · · fn−1 + fn ∈ J.
2Let V be a vector space over the infinite field kkk. We use contradiction to show that V is not the union of

any finite collection of proper subspaces. Assume V1, . . . , Vn are proper subspaces of V and V is the union

V =
n⋃

i=1

V1. If such an example exists, we take the smallest such example. For i equals 1 and 2, take vi ∈ Vi,

with vi not in any of the other Vj . (The element v1 exists because of the minimality of our example. In
particular V1 is not the union of V1∩V2 , V1∩V3, . . . , V1∩Vn. The element v2 exists because of an analogous

explanation.) As α roams over kkk there are infinitely many choices for v1 + αv2 ∈ V =
N⋃
i=1

V1. Two of these

choices must be in the same Vk, for some k. If v1 + αv2 and v1 + βv2 are in Vk for some α 6= β ∈ kkk and some
index k, then v1 and v2 are both in Vk, which is not possible.
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Observe that θ /∈ Ij, for j < n, because fn /∈ Ij. Observe that θ /∈ In. Indeed, if n = 2, then
θ = f1 + f2 and f1 /∈ I2 and if 3 ≤ n, then In is prime and f1 · · · fn−1 /∈ In. �

Primary Decomposition works for finitely generated modules over Noetherian rings.

Definition 4.3. Let M be a non-zero finitely generated module over the Noetherian ring
R.

(a) If p is a prime ideal of R and p = annm for some non-zero m ∈ M , then p is an
associated prime of M .

(b) The set of associated primes of M is denoted AssM .
(c) The submodule N of M is called a primary submodule of M if Ass M

N
has exactly one

element. If Ass M
N

= {p}, then N is called p-primary.

Theorem 4.4. Let M be a non-zero finitely generated module over the Noetherian ring R.

(a) The set AssM is finite.
(b) The set of zero divisors on M is equal to

⋃
p∈AssM

p.

(c) If p a prime ideal of R which is minimal in the support of M (In other words annM ⊆ p

and there aren’t any prime ideals of R which sit properly between annM and p.), then
p ∈ AssM .

(d) If N is a submodule of M and Ass M
N

= {p1, . . . , p`} then N = N1 ∩ · · · ∩N`, where Ni is
pi-primary. Furthermore, if pi is minimal in Supp M

N
, then Ni is uniquely determined.

Remark. However, in (d) if pi is not minimal in Supp M
N

, then Ni is NOT uniquely deter-
mined. In this case, Ni is an “embedded component” of N .

Example 4.5. Let I be the ideal (x)(x, y) in R = Q[x, y]. Then AssR/I = {(x), (x, y)},
ann x̄ = (x, y), ann ȳ = (x). Two primary decompositions of I in R are (x)∩ (x2, y) = I and
(x) ∩ (x2, xy, y2) = I.

Here is a little Macaulay2 session that I made on September 30, 2018 (and updated on
October 17, 2018) which verifies all of these claims:

kustin@comath-Kustin03:~$ M2

Macaulay2, version 1.12

with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems, LLLBases,

PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : R=QQ[x,y]

o1 = R

o1 : PolynomialRing

i2 : I=ideal(x^2,x*y)
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2

o2 = ideal (x , x*y)

o2 : Ideal of R

i3 : associatedPrimes(I)

o3 = {ideal x, ideal (y, x)}

o3 : List

i4 : I:x

o4 = ideal (y, x)

o4 : Ideal of R

i5 : I:y

o5 = ideal x

o5 : Ideal of R

i7 : associatedPrimes ideal(x)

o7 = {ideal x}

o7 : List

i8 : associatedPrimes ideal(x^2,y)

o8 = {ideal (y, x)}

o8 : List

i9 : associatedPrimes ideal(x^2,x*y,y^2)

o9 = {ideal (y, x)}

o9 : List
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i10 : intersect(ideal(x),ideal(x^2,y))==I

o10 = true

i11 : intersect(ideal(x),ideal(x^2,x*y,y^2))==I

o11 = true

There are links to the Macaulay2 website given on the course homepage.

The class on Tuesday, October 23, 2018:
Today R is a Noetherian ring and M is a non-zero finitely generated R-module. Recall

that p is an associated prime of M means that p is a prime ideal of R and p = annRm for
some m ∈M . We want to prove

(1) AssR(M) is finite,
(2) the set of zero divisors on M is equal to⋃

p∈AssR(M)

p,

(3) if p is minimal in the support of M , then p ∈ AssRM ,
(4) if N is a submodule of M and AssR(M

N
) = {p1, · · · , pn}, then ∃ submodules N1, . . . , Nn

of M with N = N1 ∩ · · · ∩Nn and AssR(M/Ni) = {pi}. Furthermore, if pi is minimal in
SuppM , then Ni is uniquely determined.

Last time, we looked at an example. My argument was, Macaulay can do this instantly.
As I thought about it, I realized, I would not be satisfied with that argument; so lets give a
real argument. The point being that a real argument might be grubby, but it isn’t hard.

Let R = kkk[x,y]
(x2,xy)

, M = R, and N = 0. We want to work out all of the assertions of
Noether’s Primary Decomposition Theorem for this example.

Of course, 0 in R is a zero-divisor on M and (0) = annM 1 . There is no need to think
about 0 ∈ R further.

Let r = α0 + α1x + yf(y) be a non-zero element of R and m = β0 + β1x + yg(y) be a
non-zero element of M , where α0, α1, β0, β1 ∈ kkk and f(y), g(y) ∈ kkk[y], with

rm = 0.

Thus,

0 = α0β0 + x(α0β1 + α1β0) + y
(
α0g(y) + β0f(y) + f(y)g(y)

)
in M.

Thus, 
0 = α0β0 and
0 = α0β1 + α1β0 and
0 = α0g(y) + β0f(y) + f(y)g(y)

in kkk[y].
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Thus, 
0 = α0 and
0 = α1β0 and
0 = f(y)

(
β0 + g(y)

) or


0 = β0 and
0 = α0β1 and
0 = g(y)

(
α0 + f(y)

) in kkk[y].

Thus,
0 = α0 = α1 and
0 6= f(y) and
0 = β0 = g(y) and
β1 6= 0

or

{
0 = α0 = β0 and
0 = f(y)g(y)

or


0 = β0 = β1 and
0 6= g(y) and
0 = α0 = g(y) and
α1 6= 0

or

{
0 = β0 = α0 and
0 = g(y)f(y)

in kkk[y].

The last situation is a duplicate. The second situation splits into two cases: Thus,
0 = α0 = α1 and
0 6= f(y) and
0 = β0 = g(y) and
β1 6= 0

or


0 = α0 = β0 and
0 = f(y) and
α1 6= 0

or


0 = α0 = β0 and
0 = g(y) and
β1 6= 0

or


0 = β0 = β1 and
0 6= g(y) and
0 = α0 = g(y) and
α1 6= 0

in kkk[y].

We conclude that if r is a non-zero element of R and m is a non-zero element of M with
rm = 0, then either

r = yf(y) and m = β1x,

or
r = α1x and m = β1x+ yg(y),

or
r = α1x+ yf(y) and m = β1x,

or
r = α1x and m = yg(y).

Line 1 is a special case of line 3 and line 4 is a special case of line 2. If r is a non-zero
element of R and m is a non-zero element of M with rm = 0, then either

r = α1x and m = β1x+ yg(y)

or
r = α1x+ yf(y) and m = β1x.

Thus,

{annR(m) | m ∈M with m 6= 0} = {annR(1) = (0), annR(x) = (x, y), annR(y) = (x)}.

We conclude

(a) AssRM = {(x), (x, y)},
(b) the set of zero divisors on M is equal to

(x, y) =
⋃

p∈AssRM

p,

and
(c) (x), which is the only prime ideal of R which is minimal in SuppM , is in AssRM .
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Notice that (x) is an (x)-primary submodule of M because M
(x)

is kkk[x,y]
(x)

and

AssR
kkk[x,y]
(x)

= {annR(1) = (x)R}.

Notice that (x2, y) and (x2, xy, y2) are (x, y)-primary submodules of M . Indeed,

M

(x2, y)
=
kkk[x, y]

(x2, y)
,

M

(x2, xy, y2)
=

kkk[x, y]

(x2, xy, y2)
,

the only prime ideal of R in the support of kkk[x,y]
(x2,y)

is (x, y)R, and the only prime ideal of R

in the support of kkk[x,y]
(x2,xy,y2)

is (x, y)R. It follows that

AssR
kkk[x, y]

(x2, y)
= {(x, y)R}

and

AssR
kkk[x, y]

(x2, xy, y2)
= {(x, y)R}.

We use the fact that kkk[x, y] is a UFD to see that

(x)R ∩ (x2, y)R = (0)R

and

(x)R ∩ (x2, xy, y2)R = (0)R.

In each case ⊇ is obvious. In the top situation, if

xf = x2g + yh+ some element of (x2, xy)kkk[x, y],

for f, g, h in kkk[x, y], then x divides h and xf is zero in R. Similarly, if

xf = x2g + xyh+ y2`+ some element of (x2, xy)kkk[x, y],

for f, g, h, ` in kkk[x, y], then x divides ` and xf is zero in R.

Example 4.6. Let R be a Noetherian domain. What is the primary decomposition of the
submodule (0) of the module M = R?

The answer is that (0) is (0)-primary and (0) = (0).

Example 4.7. Let R = Z and n be a positive integer. What is the primary decomposition
of the submodule (n) of the module M = R?

Write n = pe11 · · · penn where the pi are distinct positive prime integers. Observe that
(peii ) is a (pi)-primary submodule of Z. (In other words, AssZ( Z

(p
ei
i )

= {(pi)}.) Observe
(n) = ∩i(peii ) is the desired primary decomposition.
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Example 4.8. Let R = Q[b, c, d, e] and I be the ideal generated by the 2× 2 minors of the
matrix [

0 b d
b c e

]
.

In other words,
I = (b2, bd, be− dc).

Then AssR/I = {(d, b), (c, b)}, (d, b) = ann b̄, (c, b) = ann(d̄2),

I = (I, d2) ∩ (b, c),

(b, c) is (b, c)-primary, and (I, d2) is (b, d)-primary. Here is a little Macaulay2 session that I
made in 2013 which verifies all of these claims:

kustin@kustin-Latitude-E6520:~$ M2

Macaulay2, version 1.4

with packages: ConwayPolynomials, Elimination, IntegralClosure, LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : R=QQ[b,c,d,e]

o1 = R

o1 : PolynomialRing

i2 : M=matrix{{0,b,d},{b,c,e}}

o2 = | 0 b d |

| b c e |

2 3

o2 : Matrix R <--- R

i3 : I=minors(2,M)

2

o3 = ideal (-b , -b*d, - c*d + b*e)

o3 : Ideal of R

i4 : associatedPrimes(I)

o4 = {ideal (c, b), ideal (d, b)}

o4 : List
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i6 : I:ideal(b)

o6 = ideal (d, b)

o6 : Ideal of R

i7 : I:ideal(d^2)

o7 = ideal (c, b)

o7 : Ideal of R

i8 : intersect(ideal (I,d^2),ideal(b,c))

2

o8 = ideal (c*d - b*e, b*d, b )

o8 : Ideal of R

i9 : o8==I

o9 = true

i10 : primaryDecomposition(I)

2 2

o10 = {ideal (c, b), ideal (d , c*d - b*e, b*d, b )}

o10 : List

i11 :

Proposition 4.9. Let M be a non-zero finitely generated module over a Noetherian ring R.
Then

the set of zero divisors on M =
⋃

p∈AssM

p.

Remark. Recall that the element r of the ring R is a zero-divisor on M if there exists an
non-zero element m ∈M with rm = 0.

Proof.
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⊇ This inclusion is obvious.

⊆ If r is a zero divisor on M , then rm0 = 0 for some non-zero element m0 of M . Thus,
r ∈ annm0. Consider the set of ideals

S = {ann(m) | m ∈M \ {0}}

of R. The ideal annm0 is in S . The ring R is Noetherian, so there exists a maximal element
annm1 of S which contains annm0. Recall from Observation 3.21 that annm1 is a prime
ideal of R and hence an associated prime of M . �

Remark. One consequence of Proposition 4.9 is that if M is a non-zero finitely generated
module over a Noetherian ring R, then AssRM is not empty. Indeed, there is a non-zero
element m ∈ M . Thus the set S is not empty. Now, just continue with the proof of
Proposition 4.9

Proposition 4.10. Let M be a non-zero finitely generated module over a Noetherian ring R.
Then

p ∈ AssRM ⇐⇒ pRp ∈ AssRp Mp.

Proof.
(⇒) Assume p = annR(m), for some m ∈ M . We show that pRp = annRp(m). If r

s
m = 0 in

Mp (for some r ∈ R and s ∈ R \ p), then there exists s′ ∈ R \ p with s′rm = 0 in M ; hence,
s′r ∈ p and r ∈ p.
(⇐) Assume pRp = annRp(

m
s

) for some m
s
∈ Mp. (In particular, m ∈ M and s ∈ R \ p.) We

show that p = annR(m). If r ∈ R and rm = 0 in R, then rm
s

= 0 in Mp so r ∈ pRp. In
other words, there exists s′ ∈ R \ p with s′r ∈ p in R. It follows that s′r ∈ p in R; hence
r ∈ p. �

Proposition 4.11. Let R be a Noetherian ring and

0→M ′ →M →M ′′ → 0

be a short exact sequence of finitely generated R-modules. Then

AssRM ⊆ AssRM
′ ∪ AssRM

′′.

Proof. It suffices to prove the result when M ′ ⊆ M and M ′′ = M/M ′. Notice that if
p = annRm for some m ∈ M and r ∈ R, then either r ∈ p and rm = 0 or r 6∈ p and
annR(rm) = p.

Let p ∈ AssRM . In particular, there is an element m ∈ M with annRm = p. There are
two possibilities. Either Rm ∩M ′ 6= 0 or Rm ∩M ′ = 0. If Rm ∩M ′ 6= 0, then there is an
element r ∈ R with rm 6= 0 and rm ∈ M ′. In this case, annR rm = p and rm ∈ M ′; hence
p ∈ AssRM

′. If Rm ∩M ′ = 0, then m̄ is a non-zero element of M/M ′. If rm̄ = 0 in M/M ′,
then rm ∈ RM ∩M ′ = 0; hence r ∈ annRM = p. (Of course, pm̄ = 0 in M/M ′.) In this
case, annR m̄ = p and p ∈ AssRM/M ′. �
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Proposition 4.12. If M is a non-zero finitely generated module over a Noetherian ring, then
AssRM is finite.

Proof. We exhibit an ascending chain of submodules of M

(0) = M0 (M1 ⊂M2 (M3 ( · · ·

with Mi/Mi−1 ∼= R/pi for some prime ideal pi of R. Of course, this chain is finite because
M is a Noetherian R-module and Proposition 4.11 guarantees that AssRM ⊆ {p1, · · · }.
To find M1, we use the fact that M 6= 0 =⇒ AssRM 6= ∅. Once we have chosen M1, if
M1 6= M , then M/M1 6= 0 =⇒ AssRM/M1 6= ∅; hence there exists a submodule M2 of M
with M1 ⊆M2 and M2/M1

∼= R/p2. Repeat as necessary. �

Observation 4.13. If M is a non-zero finitely generated module over a Noetherian ring R,
then AssRM ⊆ SuppM .

Proof. The module M is non-zero; so AssRM is non-empty and there is a non-zero element
m ∈ M with annR(m) = p for some prime ideal p. Observe that (Rm)p is not zero. But
localization is flat, so (m) ⊆M =⇒ (m)p ⊆Mp; hence Mp 6= 0 and p ∈ SuppM . �

Proposition 4.14. Let M be a non-zero finitely generated module over a Noetherian ring R
and let p be a prime ideal of R. If p is minimal in SuppM , then p ∈ SuppM .

Proof. The hypothesis that p is minimal in SuppM guarantees that Mp 6= 0 and

SuppMp = {pRp};

hence,
∅ 6= AssRp Mp ⊆ SuppMp = {pRp}.

It follows that AssRp Mp = {pRp}. Apply Proposition 4.10 to see that

pRp ∈ AssRp =⇒ p ∈ AssRM.

�

At this point we have established all of Noether’s Theorem except the last assertion.
The last assertion in Noether’s Theorem. Let R be a Noetherian ring and M be a non-
zero finitely generated R-module. If N is a submodule of M and AssR(M

N
) = {p1, · · · , pn},

then ∃ submodules N1, . . . , Nn of M with N = N1 ∩ · · · ∩ Nn and Ni is an pi-primary
submodule of M . Furthermore, if pi is minimal in SuppM , then Ni is uniquely determined.

It does no harm to prove this result for N = 0. (One merely is replacing the old M with
M/N .)

There are a handful of steps.

(a) If I is an ideal in a ring R, then the radical of I is
√
I = {r ∈ R | rn ∈ I for some n}.

It turns out that √
I =

⋂
I⊆p

p a prime ideal of R

p.
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(b) If M is a module with exactly one associated prime p, then pnM = 0 for some n.
(c) Define the notion of irreducible submodule.
(d) Prove that every submodule is a finite intersection of irreducible submodules.
(e) If N1 and N2 are p-primary submodules of M , then N1 ∩N2 is a p-primary submodule

of M .
(f) Every irreducible submodule of M is a primary submodule of M .
(g) Let M be a non-zero finitely generated module over a Noetherian ring R and N be a

submodule of M . Suppose N1, . . . , Nr are submodules of M with
• N = N1 ∩ · · · ∩Nr,
• the intersection is irredundant in the sense that N1 ∩ · · · ∩ N̂i ∩ · · · ∩ Nr 6= N for

any i,
• Ni is a pi-primary submodule of M for each i (in the sense that AssR

M
Ni

= {pi}),
and
• the primes p1, . . . , pr are distinct.

Then AssM/N = {p1, . . . , pr}.
(h) Let M be a non-zero finitely generated module over a Noetherian ring R and N be a

submodule of M . Suppose N1, . . . , Nr are submodules of M with
• N = N1 ∩ · · · ∩Nr,
• the intersection is irredundant in the sense that N1 ∩ · · · ∩ N̂i ∩ · · · ∩ Nr 6= N for

any i,
• Ni is a pi-primary submodule of M for each i (in the sense that AssR

M
Ni

= {pi}),
and
• the primes p1, . . . , pr are distinct.

If pi is minimal in the support of M/N , for some i, then

Ni = ker
(
M → (M/N)pi

)
.

Proof of (a). We prove that √
I =

⋂
I⊆p

p.

If an ∈ I, then an ∈ p for all prime ideals p which contain I; hence a ∈ p and

a ∈
⋂
I⊆p

p.

If an 6∈ I, for any n, then consider the set of ideals which contain I but are disjoint from
{1, a, a2, · · · }. This set of ideals is non-empty (because it contains I) and has a maximal
element J (for us because R is Noetherian, but in general one can use a Zorn’s Lemma
argument at this point). This maximal element is a prime ideal (by a slight modification
of Observation 3.21). We have found a prime ideal which contains I but does not contain
a. It follows that

a /∈
⋂
I⊆p

p.
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Proof of (b). We prove that if M is a module with exactly one associated prime p, then
pnM = 0 for some n. (As always, M is a non-zero finitely generated module over a
Noetherian ring.)

Key thought. Every element of R \ p is regular on M ; so it suffices to prove that (pnM)p
is zero.

(The element r of the ring R is regular on the R-module M if rm = 0 implies m = 0 for
m ∈M . Every element of R is either a zero-divisor on M or is regular on M .)

The ring ( R
annM

)p has exactly one prime ideal, namely pRp. (If AssRM = {p}, then p is
minimal in the support of M . On the other hand, the only prime ideals that live in Ringp

are the prime ideals of Ring that are contained in p.) Apply (a) (or our work with Artinian
rings and modules; see especially, Proposition 3.34 and Theorem 3.31) to see that√

(annM)Rp = pRp.

The ideal p is finitely generated, so pnRp ⊆ (annM)Rp for some n. Therefore, pnMp = 0

and hence pnM = 0 (by the key thought).

(c). The submodule N of the module M is called irreducible if whenever N1 and N2 are
submodules of M with N = N2 ∩N2, then either N1 = N or N2 = N .

(d). Let M be a non-zero finitely generated module over the Noetherian ring R. Then
every submodule of M is a finite intersection of irreducible submodules of M .

Proof. Let S be the set of submodules of M which are not the finite intersection of irre-
ducible submodules of M . If S is non-empty, then S has a maximal element N because
R is Noetherian. This submodule N is reducible. Hence N = N1 ∩N2, for submodules N1

and N2 with N ( N1 and N ( N2. Neither N1 nor N2 can be in S . So N1 and N2 both
are the finite intersection of irreducible submodules of M and so is N = N1 ∩N2. This is a
contradiction; hence S must be empty and every submodule of M is a finite intersection
of irreducible submodules of M . �

(e). If N1 and N2 are p-primary submodules of M , then N1 ∩N2 is a p-primary submodule
of M . (As always, M is a non-zero finitely generated module over a Noetherian ring.)

Proof. Consider the homomorphism

M → M

N1

⊕ M

N2

.

Obtain an injection
M

N1 ∩N2

→ M

N1

⊕ M

N2

.

Notice that AssR(M
N1
⊕ M

N2
) = {p}. If this statement isn’t immediately obvious, then apply

Proposition 4.11 to the short exact sequence

0→ M

N1

→ M

N1

⊕ M

N2

→ M

N2

→ 0.
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�

(f). If M is a non-zero finitely generated module over a Noetherian ring R, then every
irreducible submodule of M is a primary submodule of M .

Proof. It suffices to prove the result for the submodule (0) of M . (If you want to prove
the result for the submodule N of M , then study the submodule (0) of M/N .) We prove
that if p1 6= p2 are in AssR

M
(0)

, then (0) is a reducible submodule of M . Pick mi in M with
annRmi = pi. Notice that

Rm1 ∩Rm2 = (0).

Indeed, if m is a nonzero element of the left side then

p1 = annRm = p2,

and this is a contradiction. �

(g). Let M be a non-zero finitely generated module over a Noetherian ring R and N be a
submodule of M . Suppose N1, . . . , Nr are submodules of M with

• N = N1 ∩ · · · ∩Nr,
• the intersection is irredundant in the sense that N1 ∩ · · · ∩ N̂i ∩ · · · ∩ Nr 6= N for

any i,
• Ni is a pi-primary submodule of M for each i (in the sense that AssR

M
Ni

= {pi}),
and
• the primes p1, . . . , pr are distinct.

Then AssM/N = {p1, . . . , pr}.

Proof. It suffices to prove the result for the submodule (0) of M . (If you want to prove the
result for the submodule N of M , then study the submodule (0) of M/N .)

Consider the homomorphism

(4.14.1) M → M

N1

⊕ . . .⊕ M

Nr

.

The kernel is N1 ∩ · · · ∩Nr = (0); so (4.14.1) is an injection and

AssRM ⊆ AssR(M
N1
⊕ . . .⊕ M

Nr
) = {p1, . . . , pr}.

We prove p1 ∈ AssRM . Take
x ∈ N2 ∩ · · · ∩Nr,

with x 6= 0. Observe that

(4.14.2) annR x = N1 :R x ⊆ (the set of zero divisors of M
N1

) = p1.

Recall from (b) that there is a positive integer n with pn1M ⊆ N1. Identify the number λ
with

(4.14.3) pλ1x 6= 0 but pλ+1
1 x = 0.
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Take a non-zero element y ∈ pλ1x. Observe that annR y = p1. Indeed, (4.14.2) (with x

replaced by y) shows annR y ⊆ p1 and (4.14.3) shows p1 ⊆ annR y. Thus, p1 ∈ AssRM .
The same argument works for each of the pi. �

The lecture for November 1, 2018.
Opening Remark. Last time we proved that if (M/N1 is a non-zero finitely generated
module over a Noetherian ring and) Ass(M/N1) = {p}, then there exists a non-negative
integer t with ptM ⊆ N1. One consequence of this is that if q ∈ Supp(M/N1), then p ⊆ q

(because pn ⊆ annM/N1 ⊆ q).

Claim 4.15. Let M be a finitely generated non-zero module over the Noetherian ring R and
N be a submodule of M . Suppose that p1 is a prime ideal of R which is minimal in the support
of M/N . Then the p1-primary component of M/N (denoted N1) is

{m ∈M | ∃s ∈ R \ p1 with sm ∈ N}.

Proof. The inclusion ⊇ holds always. (That is, this inclusion holds even without the special
hypothesis that p1 is minimal in the support of M/N .) Suppose s ∈ R \ p1, m ∈ M , and
sm ∈ N . We prove m ∈ N1. We know that sm ∈ N ⊆ N1; hence, sm̄ = 0 in M/N1. We also
know that Ass(M/N1) = {p1}. So, s is regular on M/N1. Therefore m̄ = 0 in M/N1 and
m ∈ N1.

(⊆) Let N = N1 ∩ · · · ∩Nr be a primary decompsition of N , with AssM/Ni = {pi}. Notice
that pi 6⊆ p1 for any i with 2 ≤ i. So p1 6∈ SuppM/Ni for 2 ≤ i. So (M/Ni)p1 = 0 and
(Ni)p1 = Mp1 for 2 ≤ i. Localize N = N1 ∩ · · · ∩Nr at p1. Get

Np1 = (N1)p1 ∩ · · · ∩ (Nr)p1 = (N1)p1 ∩Mp1 ∩ · · · ∩Mp1 = (N1)p1 .

Focus on (N1)p1 ⊆ Np1. If n1 ∈ N1, then there exists s ∈ R \ p1 with sn1 ∈ N . �
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5. KRULL DIMENSION

We will have to prove Nakayama’s Lemma and the Artin-Rees Lemma along the way, but
I am eager to get started on Krull dimension; so lets start.

These lectures are mainly taken from [5, Section 13].

Definition 5.1. Let R be a ring.

(a) The Krull dimension of R is

dimR = sup{r | ∃pi ∈ SpecR with p0 ( p1 ( · · · ( pr}.

(b) If p ∈ SpecR, then the height of R is

ht p = sup{r | ∃pi ∈ SpecR with p0 ( p1 ( · · · ( pr = p}.

(In particular,
ht p = dimRp

for all prime ideals p of R.)
(c) If I is an arbitrary ideal of R, then

ht(I) = min{ht p | I ⊆ p}.

Remark. We will prove that in a Noetherian ring, all ideals have finite height.

Our first goal. Let R be a semi-local Noetherian ring and M be a finitely generated R-
module. Then

dimM = d(M) = δ(M),

where these symbols have the following meaning.

(1) The dimension of M is dimM = dimR/ annM ,
(2) Let I be an ideal of R with (radR)ν ⊆ I ⊆ (radR). Then there exists a polynomial

(which depends on M and I) such that

`

(
M

In+1M

)
= poly(n),

for 0 � n. The degree of this polynomial depends only on M . We call this degree
d(M).

(3) The parameter δ(M) is defined to be the least integer n such that there exist x1, . . . , xn ∈
rad(R) such that (M/(x1, . . . , xn)) has finite length.

Example 5.2. Take R = kkk[x1, . . . , xs](x1,...,xs), M = R, and m = (x1, . . . , xs)R. Observe that

0 ( (x1) ( (x1, x2) ( · · · ( (x1, . . . , xs)

is a chain of prime ideals in R. We conclude s ≤ dimR.
Observe that the length of R/mn+1 is the number of monomials of degree at most n is s

variables, and this is the number of monomials of degree exactly n in s+1 variables, which
is
(
n+s
n

)
= (n+s)···(n+1)

s!
. This is a polynomial of degree s in n. Thus, d(R) = s.

Of course `(R/(x1, . . . , xs)) = 1, so δ(R) ≤ s.
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For quite a while, we focus on the combinatorial approach d(M). We think about the
associated graded ring

grI(R) =
∞⊕
i=0

I i

I i+1
=
R

I
⊕ I

I2
⊕ I2

I3
⊕ . . .

and the associated graded module

grI(M) =
∞⊕
i=0

I iM

I i+1M
=

M

IM
⊕ IM

I2M
⊕ I2M

I3M
⊕ . . . .

First we prove the relevant results about arbitrary graded rings and graded modules, then
we apply the general results to grI(R) and grI(M).

5.A. Graded rings and modules. A ring R is graded if R =
⊕

0≤iRi as an Abelian group
under addition and Ri ·Rj ⊆ Ri+j. For example, R = kkk[x1, . . . , xs] is graded by total degree
and Ri is the set of homogeneous forms of degree i.

Remark. One could use any commutative semi-group with identity in place of the set of
non-negative integers.

If R is a graded ring and M is an R-module, then M is a graded R-module if

M =
⊕
i∈Z

Mi

as an Abelian group and RiMj ⊆Mi+j.

The lecture for November 8, 2018.
Today’s goal: Let R be a standard graded algebra over the Artinian ring R0 (So, R is

generated as an algebra over R0 by R1, and R1 is finitely generated as an R0-module.) and
M =

⊕
0≤iMi be a finitely generated graded R-module. Then there exists a polynomial

with poly(n) = `R0(Mn), for 0� n.
Of course, if we are interested in a finitely generated module M over a semi-local ring

R, then grRR and grRM satisfy the hypotheses and one can use the conclusion to learn
about `R/I(M/InM) for large n.

Definition and Comment 5.3. An ideal I of a graded ring R is homogeneous if whenever
r =

∑
i ri ∈ I, with ri ∈ Ri, then each ri is an element of I. (It is easy to see that the ideal

I is homogeneous if and only if I has a generating set which consists of homogeneous
elements.)

Observation 5.4. LetR be a graded ring. ThenR is Noetherian if and only ifR0 is Noetherian
and R is finitely generated as an R0-algebra.
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Proof.
(⇐) This follows from the Hilbert Basis Theorem.
(⇒) Let I be an ideal of R0. Then IR is a homogeneous ideal of R. By hypothesis, IR

is a finitely generated ideal. Pick a finite set of homogeneous generators for IR. From this
generating set select the elements of degree zero. This set generates I. Conclude that R0

is Noetherian.
Now we show that R is finitely generated as an R0-algebra. Consider the ideal

R+ =
∑
0<i

Ri

of R. This ideal is finitely generated and homogeneous. Let θ1, . . . , θN be a homogeneous
generating set for the ideal R+ of R. We claim that

R = R0[θ1, . . . , θN ].

It suffices to show that each Ri is contained in R0[θ1, . . . , θN ]. Use induction. It is clear that
R0 ⊆ R0[θ1, . . . , θN ]. Suppose Ri ⊆ R0[θ1, . . . , θN ] for all i < i0. Then

Ri0 =
N∑
j=1

Ri0−deg θjθj ⊆ R0[θ1, . . . , θN ].

�

Theorem 5.5. Let R =
⊕

0≤nRn be a Noetherian graded ring with R0 Artinian and let
M =

⊕
0≤nMn be a finitely generated R-module. Then the Hilbert series of M is a rational

function.

Remark. The Hilbert series of M is the formal power series HSM(t) =
∑

n `R0(Mn)tn. A
combinatorist would refer to this Hilbert series as the generating function for the sequence
{`R0(Mn)}.

Proof. Write R = R0[θ1, . . . , θN ], where θi is a homogeneous element of degree di.
We induct on N .
If N = 0, then Mi is zero all except a finite number of i; so HSM(t) is a polynomial.
For 1 ≤ N , consider the exact sequence

0→ (0 :M θN)→M
θN−→M → M

θNM
→ 0.

Length is additive on short exact sequences; so

`
(
( M
θNM

)n
)
− `(Mn) + `(Mn−dN )− `((0 :M θN)n−dN ) = 0.

Multiply by tn:

`
(
( M
θNM

)n
)
tn − `(Mn)tn + `(Mn−dN )tn − `((0 :M θN)n−dN )tn = 0.

Add
∞∑
n=0

`
(
(
M

θNM
)n
)
tn −

∞∑
n=0

`(Mn)tn +
∞∑
n=0

`(Mn−dN )tn −
∞∑
n=0

`((0 :M θN)n−dN )tn = 0.
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Re-write
∞∑
n=0

`
(
(
M

θNM
)n
)
tn−

∞∑
n=0

`(Mn)tn+tdN
∞∑
n=0

`(Mn−dN )tn−dN−tdN
∞∑
n=0

`((0 :M θN)n−dN )tn−dn = 0.

Thus,
HS M

θNM
(t)− HS`(Mn)(t) + tdN HSM(t)− tdN HS0:MθN (t) = 0

HS M
θNM

(t)− tdN HS0:MθN (t) = (1− tdN ) HSM(t)

The modules M
θNM

and 0 :M θN which are studied on the left are modules over

R0[θ1, . . . , θN ]/(θN);

consequently, the left side is a rational function by induction. Indeed the left side is
polynomial

(1− td1) · · · (1− tdN−1)
.

�

Doodle 5.6.
1

(1− t)d
=

∞∑
i=0

(
i+ d− 1

d− 1

)
ti

Proof.

1

1− t
=

∞∑
i=0

ti

1

(1− t)2
=

∞∑
i=0

iti−1 =
∞∑
i=0

(i+ 1)ti

1

(1− t)3
=

∞∑
i=0

(i+ 1)i

2
ti−1 =

∞∑
i=0

(
i+ 2

2

)
ti

...

1

(1− t)d
=

∞∑
i=0

(
i+ d− 1

d− 1

)
ti

�

Corollary 5.7. Let R be a standard graded algebra over the Artinian ring R0 (So, R is
generated as an algebra over R0 by R1 and R1 is a finitely generated R0-module.) and M =⊕

0≤iMi be a finitely generated graded R-module. (So, HSM = poly /(1 − t)power.) Define d
to be the least exponent so that (1− t)d HSM is a polynomial. Then there exists a polynomial
of degree d− 1 such that poly(n) = `R0(Mn), for 0� n.
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The lecture for November 13, 2018.
Last time we saw that

• If R =
⊕

0≤iRi is a standard graded ring with R0 Artinian and M =
⊕

0≤iMi is a
finitely generated R-module, then∑

`R0(Mn)tn =
f(t)

(1− t)d

for some d and some polynomial f(t) with integer coefficients.
•

1

(1− t)d
=
∞∑
i=0

(
i+ d− 1

d− 1

)
ti.

Today’s first project: Assume d is as small as possible. (That is, assume f(1) 6= 0.) Then
there exists a polynomial poly(t) (with rational coefficients) of degree d− 1 so that

`R0(Mn) = poly(n)

for all large n.

Proof. Start with HSM(t) = f(t)
(1−t)d , where f(1) 6= 0. Write f(t) =

∑s
i=0 ait

i, with ai ∈ Z.
Observe that∑

`R0(Mn)tn = HSM(t) =
f(t)

(1− t)d
=

s∑
i=0

ait
i

∞∑
i=0

(
i+ d− 1

d− 1

)
ti

= lower terms +
∞∑
n=s

(
a0

(
n+ d− 1

d− 1

)
+ a1

(
n+ d− 2

d− 1

)
+ · · ·+ as

(
n+ d− 1− s

d− 1

))
︸ ︷︷ ︸

I am a polynomial in n which appears to have degree d− 1

tn

The polynomial is

a0
(n+ d− 1) · · · (n+ 1)

(d− 1)!
+ a1

(n+ d− 2) · · · (n)

(d− 1)!
+ · · ·+ as

(n+ d− 1− s) · · · (n− s+ 1)

(d− 1)!
.

The coefficient of nd−1 is
∑
i ai

(d−1)! = f(1)
(d−1)! 6= 0. �

Example 5.8. Lets work out the Hilbert polynomial for

R =
k[x0, . . . , xr]

(a homogeneous polynomial of degree s)
.

There is an exact sequence
0→ P (−s)→ P → R→ 0,

(where P = k[x0, . . . , xr]). Thus, for large n,

`k(Rn) = `(Pn)− `(Pn−s) =

(
n+ r

r

)
−
(
n− s+ r

r

)

=
1

r!
nr + a1n

r−1 + l.o.t.−

 1

r!
(n− s)r︸ ︷︷ ︸

nr−rsnr−1+a1(n−s)r−1

+l.o.t.


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=
1

r!

(
nr − (nr − rsnr−1)

)
+ a1(some polynomial in n of degree r − 2) + l.o.t.

=
s

(r − 1)!
nr−1 + l.o.t..

The normalized leading coefficient of the Hilbert polynomial is the constant s. Commuta-
tive Algebraists call s the multiplicity of the ring R. Algebraic Geometers call s the degree
of the hypersurface defined by the homogeneous polynomial of degree s.

Go back to the original setting: R is semi-local and Noetherian, I is an ideal of definition
of R,

grI(R) =
∞⊕
i=0

I i

I i+1
=
R

I
⊕ I

I2
⊕ I2

I3
⊕ . . .

and

grI(M) =
∞⊕
i=0

I iM

I i+1M
=

M

IM
⊕ IM

I2M
⊕ I2M

I3M
⊕ . . . .

(Recall that Ris semi-local means that R only has a finite number of maximal ideals. Also,
the ideal I is an ideal of definition means that rad(R)v ⊆ I ⊆ rad(R) for some integer v,
where rad(R) is the intersection of the maximal ideals of R.) We have shown that there
exists a polynomial HP(t) with rational coefficients such that HP(n) = `R/I(

InM
In+1M

) for
all large n. It is not a big deal, but we can re-configure this information to produce a
polynomial HSP(t) (of one degree higher) such that

HSP(n) = `R(M/In+1M).

This polynomial is called the Hilbert-Samuel polynomial. If the Hilbert polynomial is

integer
(d− 1)!

nd−1 + l.o.t.,

then the corresponding Hilbert-Samuel polynomial is
same integer

d!
nd + l.o.t..

Reconfiguration 5.9. Suppose `R/I(InM/In+1M) = HP(n) for c ≤ n. Let HP(t) =
d−1∑
j=0

qjt
j.

Then

`(M/In+1M) = `(M/IcM) +
n∑
i=c

HP(i)

= `(M/IcM)−
c−1∑
i=0

HP(i) +
n∑
i=0

HP(i)

(Let C be the constant C = `(M/IcM)−
c−1∑
i=0

HP(i).)
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=
n∑
i=0

HP(i) + C

=
n∑
i=0

d−1∑
j=0

qji
j + C

=
d−1∑
j=0

qj

n∑
i=0

ij + C

=
d−1∑
j=0

qj
nj+1

j + 1
+ l.o.t. + C I’ll do this step on the side.

= qd−1
nd

d
+ l.o.t.

Claim 5.10.
n∑
i=1

ij =
nj+1

j + 1
+ l.o.t.

Examples 5.11.
n∑
i=1

i0 = n

n∑
i=1

i1 = n(n+ 1)/2

n∑
i=1

i2 = n(n+ 1)(2n+ 1)/6

n∑
i=1

i3 = n2(n+ 1)2/4

Proof. Use induction on j. Assume the result for j − 1.

nj+1 − 0 =
n∑
i=1

(ij+1 − (i− 1)j+1)

=
n∑
i=1

(
(j + 1)ij −

(
j + 1

2

)
ij−1 +

(
j + 1

3

)
ij−2 + . . .

)

= (j + 1)
n∑
i=1

ij + a polynomial in n of degree j.

We conclude that
n∑
i=1

ij =
nj+1

j + 1
+ l.o.t. .

�
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Observation 5.12. Let R be a Noetherian semi-local ring, M be a finitely generated R-
module, and I and J be ideals of definition ofR. Then the polynomials which give `(M/In+1M)

and `(M/Jn+1M), for large n, have the same degree.

Proof. We begin with rad(R)v ⊆ I ⊆ rad(R) and rad(R)w ⊆ J ⊆ rad(R) for some integers
v and w. Thus, there are positive integers a and b with Ia ⊆ J and J b ⊆ I. Anyhow, there
is a surjective map

R/(Ia)n+1 → R/Jn+1;

(with kernel Jn+1/(Ia)n+1) hence

`(R/Jn+1) ≤ `(R/(Ia)n+1)

and HSPJ(n) ≤ HSPI(an + a − 1) for all large n. (I am writing HSPI(n) and HSPJ(n) for
the polynomials which give `(M/In+1M) and `(M/Jn+1M), respectively, for all large n.)
This forces deg HSPJ ≤ deg HSPI . (This is a calculus statement.) Use J b ⊆ I to get the
other inequality. �

Theorem 5.13. Let R be a Noetherian semi-local ring and let

0→M ′ →M →M ′′ → 0

be a short exact sequence of finitely generated R-modules. Then

(a) d(M) = max{d(M ′), d(M ′′)}, and
(b) If I is an ideal of definition of R, then HSPI

M −HSPI
M ′′ and HSPI

M ′ have the same degree
and leading term.

(Recall that d(M) is the degree of the Hilbert-Samuel polynomial HSPI
M(t) which gives

`R(M/In+1M) for all large n, where I is an ideal of definition of R. The degree of HSPI
M(t)

does not depend on the choice of I.)

Proof. Let I be an ideal of definition. No harm is done if we take M ′ to be a submodule of
M and M ′′ to be M/M ′. In this case,

M ′′

InM ′′ =
M
M ′

In M
M ′

=
M

M ′ + InM
.

Consider the filtration
0 ⊆ InM ⊆M ′ + InM ⊆M.

We see that

`

(
M

InM

)
= `

(
M

M ′ + InM

)
︸ ︷︷ ︸

`( M′′
InM′′ )

+ `

(
M ′ + InM

InM

)
︸ ︷︷ ︸

`( M′
InM∩M′ )

.

The Artin-Rees Lemma says that if R is a Noetherian ring, M is a finitely generated R-
module, N is a submodule of M , and I is an ideal of R, then there is an integer c such
that InM ∩N = In−c(IcM ∩N), for all n with c ≤ n. We did not yet prove the Artin-Rees
Lemma; but we will use it anyhow.
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Fix c with InM ∩M ′ = In−c(IcM ∩M ′). We have shown that

(5.13.1) `

(
M

InM

)
= `

(
M ′′

InM ′′

)
+ `

(
M ′

In−c(IcM ∩M ′)

)
.

The length on the left is used to find d(M); the middle length is used to find d(M ′′); the
modules on the right are similar enough to the modules that are used to compute d(M ′).
We will show that for large n, the length of these modules is given by a polynomial and
that this polynomial has the same degree and the same leading coefficient as the Hilbert-
Samuel polynomial HSPI

M ′.
Consider the short exact sequence

0→ (IcM ∩M ′)

In−c(IcM ∩M ′)
→ M ′

In−c(IcM ∩M ′)
→ M ′

(IcM ∩M ′)
→ 0

The module on the right has fixed finite length.
There is a polynomial so that the length of the module on the left is equal to poly(n) for

all large n.
Thus, there is a polynomial p(t) such that the length of the module in the middle, namely

M ′

In−c(IcM ∩M ′)
=

M ′

(InM ∩M ′)
,

is given by p(n) for all large n. At any rate, (5.13.1) gives

HSPM(n) = HSPM ′′(n) + p(n)

for all large n. It follows that

deg HSPM(t) = deg
(

HSPM ′′(n) + p(n)
)

= max{deg HSPM ′′(t), deg p(t)}

(The last equality holds because deg HSPM ′′(t) and deg p(t) both have POSITIVE leading
coefficients!) and the leading coefficient of HSPM(t) − HSPM ′′(t) is equal to the leading
coefficient of p(t).

We finish the proof by showing that p(t) and HSPM ′(t) have the same degree and the
same leading coefficient. Observe that

InM ′ ⊆ InM ∩M ′ = In−c(IcM ∩M ′) ⊆ In−cM ′

(The equality in the middle is the Artin-Rees Lemma.) Thus,

M ′

InM ′
// // M ′

InM∩M ′
// // M ′

In−cM ′

and
HSPM ′(n− c) ≤ p(n) ≤ HSPM ′(n)

for all large n. Use calculus to see that the polynomials HSPM ′(t) and p(t) have the same
degree and the same leading coefficient. �

Lemma 5.14. [Nakayama’s Lemma] Let M be a finitely generated module over the Noe-
therian semi-local ring R. If rad(R) ·M = M , then M = 0.
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Proof. Let m1, . . . ,mN be a generating set for M . Identify elements ri,j in rad(R) withm1
...
mN

 =

r1,1 . . . r1,N
...

...
rN,1 . . . rN,N

m1
...
mN


Rewrite this equation as 0 = (I − φ)

m1
...
mN

, where each entry of φ is in rad(R). Multiply

both sides of the equation on the left by the classical adjoint of I − φ. Get

0 = det(I − φ)

m1
...
mN

 .
Thus, det(I − φ) ·M = 0. On the other hand, det(I − φ) is equal to one plus an element of
rad(R); hence, det(I − φ) is not in any maximal ideal of R. Thus, det(I − φ) is a unit of R
(I think I used that R is Noetherian at this point.) and M is the zero module. �

5.B. Proof of the main Theorem.

Theorem 5.15. Let R be a semi-local Noetherian ring and M be a finitely generated R-
module, then dimM = d(M) = δ(M).

(Recall that dim(M) is the Krull dimension of M , d(M) is the degree of the Hilbert-
Samuel polynomial of M , and δ(M) is the least number of elements r1, . . . , rn in rad(R)

such that M/(r1, . . . , rn)M has finite length.)

Proof.

Claim 5.16. dimR ≤ d(R)

Proof. Induct on d(R).
If d(R) = 0, then `(R/(radR)n) is constant for large n. It follows that there exists n

with (radR)n = (radR)n+1. Apply Nakayama’s Lemma to conclude that (radR)n = 0. It
follows that rad(R) is contained in every prime ideal of R. Thus, every prime ideal of R is
a maximal ideal and R has Krull dimension zero.

If 0 < d(R). (We know that d(R) is finite. We do not yet know that dim(R) is finite; but
we will learn that very soon.)

Consider a chain of prime ideals

p0 ( p1 ( · · · ( pe

in R. Pick x ∈ p1 \ p0. Consider the short exact sequence

0→ R/p0
x−→ R/p0 → R/(p0 + x)→ 0.

Recall from Theorem 5.13 that

HSPR/p0︸ ︷︷ ︸
middle

−HSPR/(p0,x) and HSPR/p0︸ ︷︷ ︸
left
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have the same degree and the same leading coefficient. Thus,

d(R/(p0, x)) < d(R/p0) ≤ d(R).

Thus, induction gives
dim(R/(p0, x)) ≤ d(R/(p0, x)).

In particular,
e− 1 ≤ dim(R/(p0, x)) ≤ d(R/(p0, x)) < d(R).

Thus, dimR <∞ and dimR− 1 < d(R); hence dimR ≤ d(R). This completes the proof of
Claim 5.16. �

Claim 5.17. dimM ≤ d(M)

Proof. The proof has two steps.

Step 1. We observe that if
0→M ′ →M →M ′′ → 0

is a short exact sequence of finitely generated R-modules then

d(M) = max{d(M ′), d(M ′′)} and dim(M) = max{dim(M ′), dim(M ′′)}

Step 2. We identify a filtration

0 = M0 ⊆M1 ⊆ · · · ⊆Mn = M

of M with Mi/Mi−1 = R/pi.
Actually, the left assertion in Step 1 is established in Theorem 5.13 and we did Step 2 in

the proof of Proposition 4.12, when we proved that AssM is finite. We still must do the
right assertion in Step 1. This is easy. Now that we know that the set of prime ideals in a
Noetherian ring satisfy Descending Chain Condition, we know

dimM = max{dimR/p | p ∈ SuppM}.

Furthermore,

(5.17.1) SuppM = SuppM ′ ∪ SuppM ′′.

We prove (5.17.1).

(⊆) If Mp 6= 0, then at least one of M ′
p or M ′′

p is non-zero.

(⊇) If either M ′
p 6= 0 or M ′′

p 6= 0, then Mp is also non-zero.
Equation (5.17.1) is established.
We prove the assertion on the right of Step 1. Observe that

dimM = max{dimR/p | p ∈ SuppM} = max{dimR/p | p ∈ SuppM ′ ∪ SuppM ′′}
= max{max{dimR/p | p ∈ SuppM ′},max{dimR/p | p ∈ SuppM ′′}}
= max{dimM ′, dimM ′′}.
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Now we can finish the proof of Claim 5.17. Iterate the statements about how dim and d
behave on short exact sequences and apply Claim 5.16 to see that

dim(M) = max{dim(R/pi)}
≤ max{d(R/pi)} Claim 5.16

= d(R/pi)

This completes the proof of Claim 5.17. �

Claim 5.18. d(M) ≤ δ(M).

Proof.

Observe first that

δ(M) = 0 =⇒ `(M) = 0 =⇒ HSPM(t) is a constant =⇒ d(M) = 0.

The Key Calculation If x ∈ rad(R) and M1 = M/(x)M , then

`(M/(radR)n ·M)− `(M/(radR)n−1 ·M) ≤ `(M1/(radR)n ·M1).

Assume The Key Calculation (for the time being) and finish the argument.
The Key Calculation yields that if x ∈ rad(R), then d(M) − 1 ≤ d(M/xM). Assume

δ(M) = s and M/(x1, . . . , xs)M has finite length.
Then

d(M)− s ≤ · · · ≤ d(M/(x1, · · · , xs−1)− 1 ≤ d(M/(x1, · · · , xs)) = 0.

Thus, d(M) ≤ s = δ(M).
Prove the Key Calculation. Consider the short exact sequence

(5.18.1) 0→ xM + (radR)n ·M
(radR)n ·M

→ M

(radR)n ·M
→ M

xM + (radR)n ·M︸ ︷︷ ︸
M1

(radR)n·M1

→ 0.

Observe that multiplication by x induces a surjection

M → xM + (radR)n ·M
(radR)n ·M

with kernel
(radR)nM :M x.

Thus
M

(radR)nM :M x

∼=−→ xM + (radR)n ·M
(radR)n ·M

.

Of course, (radR)n−1M ⊆ (radR)nM :M x; so there is a surjection

M
(radR)n−1M

// M
(radR)nM :Mx

∼= // xM+(radR)n·M
(radR)n·M .
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It follows that

(5.18.2) `

(
xM + (radR)n ·M

(radR)n ·M

)
≤ `

(
M

(radR)n−1M

)
.

Combine (5.18.1) and (5.18.2) to see that

`

(
M

(radR)n ·M

)
= `

(
M1

(radR)n ·M1

)
+ `

(
xM + (radR)n ·M

(radR)n ·M

)
≤ `

(
M1

(radR)n ·M1

)
+ `

(
M

(radR)n−1M

)
This completes the proof of Claim 5.18. �

Class on Nov. 27, 2018
We are proving the following Theorem. If R is a Noetherian semi-local ring and M is a

finitely generated R-module, then dimM = d(M) = δ(M), where dimM is the length of
the longest chain of prime ideals in R/ annM , d(M) is the degree of HSPI

M , where HSPI
M is

the polynomial with HSPI
M(n) = `(M/In+1M) for all large n (and I is an ideal of definition

of R), and δ(M) is the least integer s with the property that there exist x1, . . . , xs in rad(R)

with `(M/(x1, . . . , xs)M) finite.
Last time we proved dimM ≤ d(M) ≤ δ(M).
The mathematical key to dimM ≤ d(M) is: If p is a prime ideal of R and x ∈ R \ p, then

every chain of primes in R/(x, p) is shorter then the corresponding chain of primes in R/p
and we can employ the exact sequence

0→ R/p
x−→ R/p→ R/(x, p)→ 0

to see that d(R/(x, p)) < d(R/p). (The in-between step is the Theorem that says that if

0→M ′ →M →M ′′ → 0

is a short exact sequence of finitely generatedR-modules, then HSPM −HSPM ′′ and HSPM ′

have the same degree and the same leading coefficient.)
The mathematical key to d(M) ≤ δ(M) is an estimate for how small d(M/xM) can be

when x ∈ rad(R). Indeed,

d(M)− 1 ≤ d(M/xM) ≤ d(M).

The reason is

`(M/(radR)nM)− `(M/(radR)n−1M) ≤ `((M/xM)/(radR)n(M/xM)).

Once one gets this, one learns

HSPM(n)− HSPM(n− 1) ≤ HSPM/xM(n).

The combinatorial key is: if f(t) is a polynomial in Z[t], then f(t)−f(t−1) is a polynomial
with degree equal to degree f minus 1. Indeed, if f = art

r + ar−1t
r−1 + l.o.t., with ar 6= 0,

then
f(t)− f(t− 1) = ar(t

r − (t− 1)r) + ar−1(t
r−1 − (t− 1)r−1) + l.o.t.
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= ar(rt
r−1 + l.o.t.) + ar−1((r − 1)tr−2 + l.o.t.) + l.o.t. = arrt

r−1 + l.o.t.

and this has degree r − 1.

Finally, we prove δ(M) ≤ dimM .
Observe that

dimM = 0 =⇒ all prime ideals of R/ annM are maximal ideals

=⇒ R/ annM is an Artinian ring by Theorem 3.31

=⇒ M has finite length by Proposition 3.34

=⇒ δM = 0.

Henceforth, we assume dimM is positive. Let p1, . . . , pt be the prime ideals in R which
are minimal over annM and which have dimM = dimR/pi. Observe that every chain of
prime ideals in R/ annM which exhibits dimM contains one of these pi. None of these
prime ideals is a maximal ideal; so rad(R) 6⊆ pi for any i and therefore, by the Prime
Avoidance Lemma,

radR 6⊆
t⋃
i=1

pi.

So, there exists an element x, with x ∈ rad(R) but x 6∈ pi for any i. Thus, the chains of
primes which live in SuppR/ ann(M/xM) all are SHORTER than the maximal chains of
primes in SuppR/ annM . Thus, dimM/xM < dimM . Induction on dim gives δ(M/xM) ≤
dim(M/xM). Of course, δ(M) ≤ δ(M/xM) + 1. Thus,

δ(M)− 1 ≤ δ(M/xM) ≤ dim(M/xM) ≤ dimM − 1,

and δ(M) ≤ dim(M), as desired. This completes the proof of Theorem 5.15 �

5.C. Quick consequences of the main Theorem.

Corollary 5.19. [Krull Principal Ideal Theorem] Let R be a Noetherian ring and I be an
ideal of R which can be generated by r elements. If p is a prime ideal of R which is minimal
over I, then ht p ≤ r.

Proof. Observe that
ht p = dimRp = δ(dimRp) ≤ r

because Rp mod the r generators of I has finite length! �

Theorem 5.20. Let p be a prime ideal of height r in a Noetherian ring R. The following
statements hold.

(a) There exist r elements a1, . . . , ar in p, with p minimal over (a1, . . . , ar).
(b) If b1, . . . , bs are elements of p, then

ht p− s ≤ ht p/(b1, . . . , bs) ≤ ht p.

(c) If a1, . . . , ar are in p, with p minimal over (a1, . . . , ar), then ht p− s = ht p/(a1, . . . , as).
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Proof.
(a) We calculate in Rp. We know ht p = dimRp = δ(Rp). Thus, there exist α1, · · · , αr in pRp

with the property that Rp/(α1, · · · , αr)Rp has finite length. Write αi as ai/si with αi ∈ p

and si ∈ R \ p. It follows that Rp/(a1, · · · , ar)Rp has finite length. In particular, pRp is
minimal over (a1, · · · , ar)Rp; and therefore, p is minimal over (a1, · · · , ar)R.

(b) It suffices to show that

ht p− s ≤ ht p/(b1, . . . , bs).

Let t = ht p/(b1, . . . , bs). By (a), there exist elements c1, . . . , ct in R with p minimal over
(c1, . . . , ct, b1, . . . , bs). At this point, the Krull Principal Ideal Theorem guarantees that

r = ht p ≤ t+ s;

thus,

ht p− s = r − s ≤ t = ht p/(b1, . . . , bs).

(c) The ideal p has height r and p is minimal over (a1, . . . , ar). We are supposed to prove
that

ht p/(a1, . . . as) = ht p− s.

We know from (b) that

ht p− s ≤ ht p/(a1, . . . as).

On the other hand, p/(a1, . . . as) is minimal over (as+1, . . . , ar)R/(a1, . . . as); hence the Krull
Principal Ideal Theorem yields that

ht p/(a1, . . . as) ≤ r − s.

�

5.D. Proof of the Artin-Rees Lemma. This is the proof from Chapter 5 in [3]; it is beau-
tiful!

Lemma 5.21. [The Artin-Rees Lemma] If R is a Noetherian ring, M is a finitely generated
R-module, N is a submodule of M , and I is an ideal of R, then there is an integer c such that
InM ∩N = In−c(IcM ∩N), for all n with c ≤ n.

Proof. Let R(I) be the graded R-algebra

R(I) = R⊕ I ⊕ I2 ⊕ . . . .

(This R-algebra is called the Rees algebra of I.) Notice that the component in degree zero
is R (which is Noetherian), the component in degree 1 is I (which is finitely generated
as an R-module), and R(I) is generated over the zero component by the first component.
Thus, R(I) is a Noetherian ring. Consider the graded R(I)-module

M = M ⊕ IM ⊕ I2M ⊕ . . . .
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Notice that the generators of M as an R-module generate M as an R(I)-module; hence
M is a finitely generated R(I)-module. Consider also the graded R(I)-submodule

N = N ⊕ (IM ∩N)⊕ (I2M ∩N)⊕ . . .

of M . Notice that N is a graded submodule of a graded Noetherian module. It follows
that N is generated by a finite set of homogeneous elements! Let c be the largest degree
among this finite set of homogeneous generators of N . It follows that

InM ∩N = In−c(IcM ∩N).

�

5.E. The amazing Corollary of Nakayama’s Lemma. We proved (see 5.14) that if M is
a finitely generated module over the Noetherian local ring (R,m) with mM = M , then
M = 0.

Corollary 5.22. Let M be a finitely generated module over the Noetherian local ring (R,m, kkk)

and let m1, . . . ,mn be elements of M . Then m1, . . . ,mn generate M if and only if m̄1, . . . m̄n

generate M/mM .

Proof. The assertion (⇒) is obvious. We prove (⇐). We assume M = R(m1, . . . ,mn)+mM .
We prove M = R(m1, . . . ,mn). Let N = M/R(m1, . . . ,mn). Observe that

mN =
mM +R(m1, . . . ,mn)

R(m1, · · · ,mn)
=

M

R(m1, · · · ,mn)
= N ;

thus N = 0 by Nakayama’s Lemma and M = R(m1, . . . ,mn). �

The point is that M/mM is a finite dimensional vector space over kkk. Every linearly
independent subset is part of a basis. Every generating set contains a basis. If one has
the right number (dimkkkM/mM) of linearly independent elements, then these elements
automatically generate. If one has the the right number (dimkkkM/mM) of elements and
they generate, then they automatically are linearly independent.

Ifm is an arbitrary non-zero element in a finitely generated moduleM over a Noetherian
local ring, then m is part of a minimal generating set for M . (Nothing like this is true for
modules over non-local rings. Think of the Z-module of even integers: 4 is a non-zero
even integer, but 4 is not part of a minimal generating set for (2)Z.) If m2 is in M but not
in (m), then m,m2 is part of a minimal generating for M .

5.F. Chains of homogeneous prime ideals. I want to prove a little result.

Proposition 5.23. Let R be a non-negatively graded Noetherian ring and p be a homogeneous
ideal R with ht p = r. Then there exists a chain of homogeneous prime ideals in R

p0 ( p1 ( · · · ( pr = p.
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Obviously, there can be chains of prime ideals in R which exhibit ht p and which involve
non-homogeneous prime ideals:

(0) ( (x+ y2) ( (x, y)

in kkk[x, y]. (One can apply Eisenstein’s criteria to the ring (kkk[x])[y] to see that x + y2 is an
irreducible polynomial in a Unique Factorization Domain and therefore generates a prime
ideal.) The Proposition makes no assertion about every chain, it merely makes an assertion
about some chain.

Homogeneous ideals are interesting because folks that do geometry in projective space
are interested only in homogeneous ideals!

The proof is a little bit delicate; but it uses the results we proved after we proved dim =

d = δ.
There is one preliminary Lemma that we need.

Lemma 5.24. LetR be a non-negatively graded Noetherian ring andM be a finitely generated
homogeneous R-module. If p ∈ AssM , then p is homogeneous.

Proof. Let p be in AssM . Then there exists a non-zero element m ∈ M with annm = p.
Write m = ma +ma+1 + . . .ma+s, with mi ∈Mi. Let f = fb + fb+1 + · · ·+ fb+t be in p with
fi ∈ Ri. We prove fb ∈ p. To do this, we prove fNb m = 0 for some large N . Observe that

0 = fm = (fb + fb+1 + · · ·+ fb+t)(ma +ma+1 + . . .ma+s)

= fbma + (fbma+1 + fb+1ma) + . . . .

Thus, fbma = 0, f 2
bma+1 = 0, f 3

bma+2 = 0, . . . , and f a large power
b m = 0 as desired. �

The class on Dec. 4, 2018.

Last time we proved:

Lemma. Let R be a non-negatively graded Noetherian ring and M be a finitely generated
graded R-module. If p ∈ AssM , then p is homogeneous.

Today’s first project is

Proposition. Let R be a non-negatively graded Noetherian ring and p be a homogeneous
ideal R with ht p = r. Then there exists a chain of homogeneous prime ideals in R

p0 ( p1 ( · · · ( pr = p.

Proof of Proposition 5.23. Let
p0 ( p1 ( · · · ( pr = p

be a chain of primes R. The prime p0 is a minimal prime of R, so p0 ∈ AssR and therefore,
p0 is homogeneous by Lemma 5.24. If r = 0, we are finished. Otherwise, we use induction.
We prove the conclusion for p

p0
in R

p0
. That, is we assume R is a graded domain and we use

the old notation: p is a homogeneous ideal of height r in the domain R. We prove that
there exists a chain of homogeneous prime ideals of length r descending from p.
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Let b be a non-zero homogeneous element in p. Observe that

r − 1 ≤ ht
p

(b)
≤ r − 1.

The inequality on the left is Theorem 5.20.(b) which says that

b ∈ p =⇒ ht p− 1 ≤ ht
p

(b)

always! The inequality on the right is due to the fact that every maximal chain of prime
ideals in R starts at (0). This (0) is not an ideal in R/(b); thus every maximal chain
of primes in R/(b) is shorter than the corresponding chain of primes in R. Consider a
maximal chain of prime ideals in R of the form

q1 ⊆ · · · ⊆ qr

with b ∈ q1. The ideal q1 is minimal over (b); hence q1 ∈ AssR/(b) and q1 is homogeneous.
Now look at p

q1
, which is a homogeneous prime of height r − 1 in the graded ring R/q1.

Apply induction. �

5.G. Examples.

Example 5.25. Consider the ring R = P/I2(X), where P is the polynomial ring

P = kkk[x1,1, x1,2, x1,3, x2,1, x2,2, x2,3]

and X is the matrix

X =

[
x1,1 x1,2 x1,3
x2,1 x2,2 x2,3

]
.

(There is a spot or two where it might be necessary to assume that the field kkk is infinite.)
Here is my list of objectives.

(i) I want to prove that I2(X) is a prime ideal.
(ii) I want to explore the sense in which R is the homogeneous coordinate ring for the

Segre embedding of P1 × P2 into P5.
(iii) I want to explore the dimension of R in terms of chains of prime ideals.
(iv) I want to explore the dimension of R in terms of the Hilbert-Samuel polynomial. In

particular, I want to identify the multiplicity of R (which is the normalized leading
coefficient of the Hilbert-Samuel polynomial). Our main tool in this sub-project is the
free resolution of R by free P -modules.

(v) I want to explore the dimension of R in terms of how many homogeneous forms
are needed to make R/(λ1, . . . , λs) have finite length. If possible, I want to choose
these forms to be linear and I want to choose the forms in such a way that R and
R/(λ1, . . . , λs) have the same multiplicity. In this case, what is the geometric signifi-
cance of this “multiplicity”?

Remark. If you are bothered that R is a graded but not local ring; and our Theorem is
about local rings (or semi-local rings), then think about the localization Rm where m is the
maximal homogeneous ideal of R. Of course, to figure out HSPRm we immediately pass to
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gr(Rm), which is equal to R. (The ring Rm is the the ring of rational functions which are
defined at the origin on the cone in affine 6-space of the the image of the Segre embedding.
Draw the standard cone picture.)

Lets get to work.

(i) First we prove that I2(X) is a prime ideal.

Claim 5.26. If

φ : P = kkk[x1,1, x1,2, x1,3, x2,1, x2,2, x2,3]→ kkk[X1Y1, X1Y2, X1Y3, X2Y1, X2Y2, X2Y3]

is the homomorphism defined by φ(xi,j) = XiYj, then

ker(φ) = I2

[
x1,1 x1,2 x1,3
x2,1 x2,2 x2,3

]
︸ ︷︷ ︸

X

.

Proof. It is clear that the containment ⊇ holds. We prove ⊆. We replace all appearances of

x1,1x2,2, x1,1x2,3, and x1,2x2,3

(with x1,2x2,1, x1,3x2,1, and x1,3x2,2, respectively). If f is an arbitrary element of P , then

f = x1,1F (x1,1, x2,1, x1,2, x1,3)+x1,2G(x1,2, x1,3, x2,1, x2,2)+H(x1,3, x2,1, x2,2, x2,3)+an element of I2(X).

Suppose f is in ker(φ) and is homogeneous. We want to prove that F , G, and H are
identically zero. Observe that

0 = φ(f) =


+X1Y1F (X1Y1, X2Y1, X1Y2, X1Y3) every term has Y3 deg < X1 deg

+X1Y2G(X1Y2, X1Y3, X2Y1, X2Y2) every term has Y3 deg < X1 deg

+H(X1Y3, X2Y1, X2Y2, X2Y3) every term has X1 deg ≤ Y3 deg

So H(X1Y3, X2Y1, X2Y2, X2Y3) is the zero polynomial. Write

H(x1,3, x2,1, x2,2, x2,3) =
∑
i

xi1,3Hi(x2,1, x2,2, x2,3)

We know that
0 = φ(H) =

∑
i

(X1Y3)
iHi(X2Y1, X2Y2, X2Y3)

Use the x1 deg to see that Hi(X2Y1, X2Y2, X2Y3) = 0 for each i. But Hi is homogeneous. We
may factor out XdegHi

2 to see that Hi(Y1, Y2, Y3) is identically zero; hence Hi is identically
zero for each i and H is identically zero.

At this point,

0 = φ(f) =

{
+X1Y1F (X1Y1, X2Y1, X1Y2, X1Y3) every term has X2 deg < Y1 deg

+X1Y2G(X1Y2, X1Y3, X2Y1, X2Y2) every term has X2 deg = Y1 deg

So, G(X1Y2, X1Y3, X2Y1, X2Y2) is identically zero. Write

G(x1,2, x1,3, x2,1, x2,2) =
∑
i

xi1,3Gi(x1,2, x2,1, x2,2).
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We know
0 = φ(G) =

∑
i

(X1Y3)
iGi(X1Y2, X2Y1, X2Y2).

Use Y3 degree to see that each Gi(X1Y2, X2Y1, X2Y2) = 0. Write

Gi(x1,2, x2,1, x2,2) =
∑
j

(x1,2)
j
∑
j

Gi,j(x2,1, x2,2).

We know
0 = φ(Gi(x1,2, x2,1, x2,2)) =

∑
j

(X1Y2)
j
∑
j

Gi,j(X2Y1, X2Y2).

Use X1 degree to see that each homogeneous formGi,j(X2Y1, X2Y2) is zero. Now factor out
X

degGi,j
2 to see that each Gi,j(Y1, Y2) is zero. Conclude that each Gi,j(x2,1, x2,2) is identically

zero. It follows that each Gi(x1,2, x2,1, x2,2) is identically zero and G(x1,2, x1,3, x2,1, x2,2) is
zero. One treats F the same way. First F =

∑
i x

i
2,1Fi(x1,1, x1,2, x1,3). Apply φ. Use X2

degree to see that each φ(Fi) = 0. Factor a power of X1 from φ(Fi) = 0 to see that each Fi
is identically zero. �

(ii) Affine space is nice; but it isn’t compact and curves that “should” intersect (like parallel
lines) don’t intersect “until infinity”. One introduces projective space to “correct” these
quirks. Ah, but projective space has its own issues. The product of two projective spaces
isn’t a projective space. But the Segre embedding embeds a product of projective spaces
into a projective space. In particular, the Segre embedding

P1 × P2 → P5

is given by
([a1 : a2], [b1 : b2 : b3]) 7→ [a1b1 : a1b2 : a1b3 : a2b1 : a2b2 : a2b3].

If the coordinates of P5 are

[x1,1 : x1,2 : x1,3 : x2,1 : x2,2 : x2,3],

then it is clear that the image of the Segre embedding vanishes when plugged into I2(X):

x1,ix2,j − x1,jx2,i|[a1b1:a1b2:a1b3:a2b1:a2b2:a2b3] = (a1bi)(a2bj)− (a1bbj)(a2bi) = 0.

It turns out that the ideal I2(X) is equal to the set of polynomials which vanish on the
image of the above Segre embedding. We proved this in our claim! If f ∈ P vanishes on
the image of the Segre embedding, then φ(f) is identically zero (hence, maybe kkk must be
infinite here) φ(f) is the zero polynomial and f ∈ I2(X).

(iii) One chain of prime ideals in P that contains I2(X) is

I2(X) ( (x1,1, x2,1, x1,2x2,3 − x1,3x2,2) ( (x1,1, x2,1, x1,2, x2,2) ( (x1,1, x2,1, x1,2, x2,2, x1,3) ( m.

To show that x1,2x2,3− x1,3x2,2 generates a prime ideal in the Unique Factorization Domain
kkk[x1,2, x2,3, x1,3, x2,2] one can probably use tricks that were learned in the first year graduate
sequence.
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(iv) Let ∆i be the determinant of X with column i deleted. Observe that

(5.26.1) F : 0→ P (−3)2
X transpose

−−−−−→ P (−2)3
[
∆1 −∆2 ∆3

]
−−−−−−−−−−−−→ P

is a complex with zero-th homology equal to R. This complex is actually a resolution. We
first compute (∆1,∆2) : ∆3.

The argument I propose for this is pretty cute.

(∆1,∆2) ⊆ (x1,3, x2,3).

So,
(∆1,∆2) : ∆3 ⊆ (x1,3, x2,3) : ∆3.

But, (x1,3, x2,3) is a prime ideal and ∆3 /∈ (x1,3, x2,3). Thus, (x1,3, x2,3) : ∆3 = (x1,3, x2,3).
When you agreed that (5.26.1) is a complex, you agreed that (x1,3, x2,3) ⊆ (∆1,∆2) : ∆3.
Thus,

(x1,3, x2,3) ⊆ (∆1,∆2) : ∆3 ⊆ (x1,3, x2,3) : ∆3 = (x1,3, x2,3).

At this point we know that the kernel of[
∆1 −∆2 ∆3

]
looks like x1,1 x2,1 ∗

x1,2 x2,2 ∗
x1,3 x2,3 0

 ,
where [

∗
∗

]
consists of all relations on [

∆1 −∆2

]
for which ∗∗

0


is not already in the column space of x1,1 x2,1

x1,2 x2,2
x1,3 x2,3

 .
It turns out that ∆1 and ∆2 are each irreducible (we discussed this) and neither one is a
unit times the other. Thus, the relations on[

∆1 −∆2

]
are generated by ∆2

∆1

0


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and this relation is in the column space ofx1,1 x2,1
x1,2 x2,2
x1,3 x2,3

 .
That finishes the proof.

We immediately read that

`(Rn) = `(Pn)− 3`(Pn−2) + 2`(Pn−3)∑
n

`(Rn)tn =
∑
n

`(Pn)tn − 3
∑
n

`(Pn−2)t
n + 2

∑
n

`(Pn−3)t
n

Thus,

∑
n

`

(
mn

mn+1

)
tn =

∑
n

`(Rn)tn =
(∑

n

`(Pn)tn
)

(1− 3t2 + 2t3) =
(1− t)2(1 + 2t)

(1− t)6

=
1 + 2t

(1− t)4
= (1 + 2t)

∑
n

(
n+ 3

3

)
tn =∗

∑
n

[
1

(
n+ 3

3

)
+ 2

(
n+ 2

3

)]
tn

=
∑
n

[
3n3

3!
+ l.o.t.

]
tn

The step labeled ∗ might only work for large n. Thus, for large n,

`(R/mn+1) =
n∑

i=n0

(
3i3

3!
+ l.o.t.

)
+ constant =

3n4

4!
+ l.o.t..

We conclude that dimR (or if you prefer, dimRm) is 4 and the multiplicity of R is 3. This
might be a good time to notice that if P is replace by a polynomial ring P ′ in d variables
(for some d with 2 ≤ d); but otherwise the resolution

0→ P ′(−3)2 → P ′(−2)3 → P ′

remains “the same” (i.e., fix a homomorphism P → P ′ and apply P ′ ⊗P − to the original
resolution and still get a resolution!), then the Hilbert Series∑

n

`

(
(mP ′)n

(mP ′)n+1

)
tn

will still be
1 + 2t

(1− t)d−2
and the length

`

(
P ′

(mP ′)n+1

)
will still be

3nd−2

(d− 2)!
+ l.o.t..
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(v) One collection of linear forms with the property that R/(λ1, . . . , λ4)R has finite length
is

λ1 = x2,1, λ2 = x1,3, λ3 = x2,2 − x1,1, λ4 = x1,2 − x2,3

because
R

(λ1, . . . , λ4)R
=

kkk[x1,1, x1,2]

I2

([
x1,1 x1,2 0
0 x1,1 x1,2

]) =
kkk[x1,1, x1,2]

(x1,1, x1,2)2
,

which has length 3 .
An Algebraic Geometer thinks “If I have a (Cohen-Macaulay) variety of dimension dim

and degree deg and I slice this variety with dim hyperplanes in general position, then I
end up with deg points, if I count the multiplicity correctly.” (Our specialization produced
the origin counted with multiplicity 3.)

A commutative algebraist thinks, “If I have a Cohen-Macaulay local ring of dimension
dim and multiplicity mult, and I mod out by a regular sequence of dim elements from
m \m2, then I end up with a local ring of length equal to mult.”

Be sure to notice that if P ′ = P/(λ1, λ2, λ3, λ4), then P ′ ⊗P F , for F given in (5.26.1)
becomes

0→ P ′(−3)2


x1,1 0
x1,2 x1,1
0 x1,2


−−−−−−−−→ P ′(−2)3

[
x21,2 −x1,1x1,2 x21,1

]
−−−−−−−−−−−−−−−−→ P ′.

One can easily check by hand that P ′ ⊗P F is a resolution of P ′/(x1,1, x1,2)2.

Examples 5.27. (a) Let R0 be a Noetherian domain and R be the polynomial ring R =

R0[x1, . . . , xn]. Then the prime ideal (x1, . . . , xi) of R has height i for all i. Of course,

(0) ( (x1) ( (x1, x2) ( · · · ( (x1, . . . , xi)

is a chain of prime ideals in R which demonstrates i ≤ ht(x1, . . . , xi). On the other
hand, (x1, . . . , xi) is a prime ideal minimal over an ideal (namely (x1, . . . , xi)) which
can be generated by i elements; so the Krull Principal Ideal Theorem guarantees that
ht(x1, . . . , xi) ≤ i.

(b) Let R0 be a Noetherian ring and R be the polynomial ring R = R0[x1, . . . , xn]. Let p0
be a minimal prime ideal of R0. Then the prime ideal (p0, x1, . . . , xi) of R has height i
for all i. (For example, if R0 = Z/(6), then p0 could be (2)R0 or (3)R0.) Of course,

(p0)R ( (p0, x1)R ( (p0, x1, x2)R ( · · · ( (p0, x1, . . . , xi)R

is a chain of prime ideals in R which demonstrates i ≤ ht(p0, x1, . . . , xi)R. On the other
hand, (p0, x1, . . . , xi) is a prime ideal of R which is minimal over an ideal (namely
(x1, . . . , xi)) which can be generated by i elements; so the Krull Principal Ideal Theo-
rem guarantees that ht(p0, x1, . . . , xi)R ≤ i.



64 COMMUTATIVE ALGEBRA

I want to prove that (p0, x1, . . . , xi) is a prime ideal of R which is minimal over
(x1, . . . , xi). Suppose q is a prime ideal of R with

(x1, . . . , xi)R ⊆ q ⊆ (p0, x1, . . . , xi)R

Intersect with R0 to get

(x1, . . . , xi)R ∩R0︸ ︷︷ ︸
(0)

⊆ q ∩R0 ⊆ (p0, x1, . . . , xi)R ∩R0︸ ︷︷ ︸
p0R

.

Thus, q ∩ R0 is a prime ideal of R0 which is contained in the minimal prime ideal
p0; hence q ∩ R0 = p0 and (p0, x1, . . . , xi) is a prime ideal of R which is minimal over
(x1, . . . , xi) as claimed.
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