COURSE ANNOUNCEMENT

Course Title Math 746
Commutative Algebra
Semester Fall 2018

Time 1:15 pm - 2:30 pm, Tuesday and Thursday

Instructor Andy Kustin

Textbook Commutative algebra with a view toward Algebraic Geometry
by David Eisenbud

Prerequisite Math 702 (or consent of the graduate director)

Grades will be based on homework.

Commutative algebra is the branch of abstract algebra that studies commuta-
tive rings, their ideals, and modules over such rings. Both algebraic geometry and
algebraic number theory build on commutative algebra. Prominent examples of
commutative rings include polynomial rings, rings of algebraic integers, including
the ordinary integers Z, and p-adic integers.

Commutative algebra is the main technical tool in the local study of schemes.

Two main themes will be studied in Math 746: dimension and depth. The di-
mension of a commutative ring is an algebraic phenomenon (What is the length
of the longest chain of prime ideals in the ring?), a geometric phenomenon (Is the
ring the coordinate ring of a finite set of points?, a curve?, a surface?, a three-fold?,
etc.), and a combinatorial phenomenon (Let R be a ring with unique maximal ideal
m. For each non-negative integer n, the Hilbert function of R, evaluated at n, is
H (n) which is equal to the vector space dimension of m"/m"*!. For large n, the
Hilbert function is a polynomial. What is the degree of this polynomial?) Much of
the course will be spent defining these words carefully and proving the resulting
theorem about dimension.

The other main concept in Math 746 is depth. The depth of the ring R with
maximal ideal m is the length of the longest regular sequence in m on R. Regular
sequences and depth play an important role because many properties pass across
the ring homomorphism from R to R mod the regular sequence.

A ring with depth equal to dimension is called a Cohen-Macaulay ring. For such
a ring one is able to mod out by a regular sequence and obtain a zero-dimensional
ring. One often proves theorems about Cohen-Macaulay rings by induction on di-
mension. Many rings that arise in algebraic geometry are Cohen-Macaulay.

Consider the example R = k[z,y, z,w]/(zy — zw), where k is an infinite field.
The ring R has dimension 3. One of the saturated chains of prime ideals in R is

P0:<0) QPl:(a:,w)RQPQ:(x,y,w)RgP3:($,y,z,w)R.

The ring R is the coordinate ring of the 3-fold X, where X is the set of all points
(a1, as,a3,ay) in k* which satisfy ajas = agays. The 3-fold X is a three dimensional
geometric object. (One might also call it a hypersurface in 4-space. This hyper-
surface is “cut out by” one irreducible polynomial.) The Hilbert function of R is
H(n) = (n + 1)?; this particular Hilbert function is a polynomial function for all n.
(The Hilbert polynomial, as described above, always has degree one less than the
dimension of the ring.) The ring R is Cohen-Macaulay. One regular sequence on R
is z,y, z4+w. Thering R/(x,y, z+w) is equal to k[z, y, z, w]/(x,y, z+w, z?), which is



an example of a zero dimensional ring. (I made the above calculation of the Hilbert
function of R by hand using, essentially, Hilbert’s original proof. But one can make
such calculations on the computer using the Computer Algebra System Macaulay2.
One can use Macaulay2 to experiment and make hard calculations long before one
knows all of the theorems.)

It is our intention to offer a continuation of Math 746 in the Spring of 2019.
The two courses, Math 746 and its continuation, could be paired as a natural unit for
a comprehensive exam. Other combinations of commutative algebra and algebraic
geometry courses could also be used as units for the comprehensive exam.



