MATH 702 – SPRING 2024 LOW LYING FRUIT – MARCH 13, 2024

- (1) Let *R* be a (commutative) domain, *I* be an ideal in *R*, *K* be the quotient field of *R*, and φ : *I* → *R* be an *R*-module homomorphism. Prove that there exists a *K*-module homomorphism Φ : *K* → *K* such that Φ|_{*I*} = φ.
- (2) Suppose $k \subset E$ and $E \subseteq K$ are both finite dimensional Galois extensions. Does $k \subseteq K$ have to be a Galois extension? Prove or give a counter example.
- (3) Let $\mathbf{k} \subset K$ be a Galois extension of fields with $\dim_{\mathbf{k}} K = p^2$, for some prime integer p. Suppose E is a field with $\mathbf{k} \subseteq E \subseteq K$. Prove that $\mathbf{k} \subseteq E$ is a Galois extension.
- (4) Give an example of a fields $\mathbf{k} \subseteq E \subseteq K$ with $\mathbf{k} \subseteq K$ a Galois extension of dimension p^3 for some prime integer p, but $\mathbf{k} \subseteq E$ not a Galois extension.
- (5) Let k be a field of characteristic not equal to 2, $k \subseteq K$ be a field extension with $\dim_k K = 2$, and u be an element of K which is not in k. Then the following statements hold.
 - (a) The field extension $k \subseteq K$ is Galois and the Automorphism group $\operatorname{Aut}_k K$ is cyclic of order two.
 - (b) The minimal polynomial of u over k is

$$x^2 - (u + \tau(u))x + u\tau(u)$$

in $\boldsymbol{k}[x]$, where τ is the non-identity element of Aut_k K.

(c) The field K is equal to $\boldsymbol{k}(\Delta)$, with $\Delta^2 \in \boldsymbol{k}$, for $\Delta = u - \tau(u)$.

(6) Let $\mathbf{k} \subseteq K$ be a finite dimensional Galois extension of fields with $\operatorname{Aut}_{\mathbf{k}} K$ a cyclic group. Let σ be a generator of $\operatorname{Aut}_{\mathbf{k}} K$. Suppose that $E_1 \subseteq E_2$ are fields with

$$\boldsymbol{k} \subseteq E_1 \subseteq E_2 \subseteq K$$

and $\dim_{E_1} E_2 = 2$. If $u \in E_2 \setminus E_1$, then the minimal polynomial of u over E_1 is $(x-u)(x-\sigma(u))$.