MATH 702 - SPRING 2024

LOW LYING FRUIT - MARCH 13, 2024
(1) Let R be a (commutative) domain, I be an ideal in R, K be the quotient field of R, and $\phi: I \rightarrow R$ be an R-module homomorphism. Prove that there exists a K-module homomorphism $\Phi: K \rightarrow K$ such that $\left.\Phi\right|_{I}=\phi$.
(2) Suppose $k \subset E$ and $E \subseteq K$ are both finite dimensional Galois extensions. Does $k \subseteq K$ have to be a Galois extension? Prove or give a counter example.
(3) Let $k \subset K$ be a Galois extension of fields with $\operatorname{dim}_{k} K=p^{2}$, for some prime integer p. Suppose E is a field with $k \subseteq E \subseteq K$. Prove that $k \subseteq E$ is a Galois extension.
(4) Give an example of a fields $k \subseteq E \subseteq K$ with $k \subseteq K$ a Galois extension of dimension p^{3} for some prime integer p, but $k \subseteq E$ not a Galois extension.
(5) Let k be a field of characteristic not equal to $2, k \subseteq K$ be a field extension with $\operatorname{dim}_{k} K=2$, and u be an element of K which is not in k. Then the following statements hold.
(a) The field extension $k \subseteq K$ is Galois and the Automorphism group $\operatorname{Aut}_{k} K$ is cyclic of order two.
(b) The minimal polynomial of u over k is

$$
x^{2}-(u+\tau(u)) x+u \tau(u)
$$

in $\boldsymbol{k}[x]$, where τ is the non-identity element of $\mathrm{Aut}_{\boldsymbol{k}} K$.
(c) The field K is equal to $k(\Delta)$, with $\Delta^{2} \in k$, for $\Delta=u-\tau(u)$.
(6) Let $k \subseteq K$ be a finite dimensional Galois extension of fields with Aut $_{k} K$ a cyclic group. Let σ be a generator of $\mathrm{Aut}_{k} K$. Suppose that $E_{1} \subseteq E_{2}$ are fields with

$$
k \subseteq E_{1} \subseteq E_{2} \subseteq K
$$

and $\operatorname{dim}_{E_{1}} E_{2}=2$. If $u \in E_{2} \backslash E_{1}$, then the minimal polynomial of u over E_{1} is $(x-u)(x-\sigma(u))$.

