MATH 702 - SPRING 2024
LOW LYING FRUIT - MARCH 13, 2024
(1) Let R be a (commutative) domain, I be an ideal in R, K be the quotient field of R, and $\phi: I \rightarrow R$ be an R-module homomorphism. Prove that there exists a K-module homomorphism $\Phi: K \rightarrow K$ such that $\left.\Phi\right|_{I}=\phi$.

If I is the zero ideal, then take Φ to be identically zero. Henceforth, we assume that I is not the zero ideal. Fix an nonzero element x in I. Define $\Phi: K \rightarrow K$ by $\Phi(u)=u \frac{\phi(x)}{x}$. Observe that $\Phi: K \rightarrow K$ is a K-module homomorphism. (Or if you prefer, K is a one-dimensional vector space over K and Φ is a linear transformation from this vector space to itself.)

We still must show that the restriction of Φ to I is equal to ϕ. Let $y \in I$. We must show that $\Phi(y)$ is equal to $\phi(y)$ in K. We must show that $\frac{\phi(x)}{x}$ is equal to $\phi(y)$ in K. We must show that $y \phi(x)$ is equal to $x \phi(y)$ in R. Of course, this is true. Indeed, $\phi: I \rightarrow R$ is an R-module homomorphism; hence

$$
y \phi(x)=\phi(y x)=x \phi(y)
$$

The first equality holds because $y \in R$ and $x \in I$. The second equality holds because $x \in R$ and $y \in I$.
(2) Suppose $k \subset E$ and $E \subseteq K$ are both finite dimensional Galois extensions. Does $k \subseteq K$ have to be a Galois extension? Prove or give a counter example.

NO! The extensions $\mathbb{Q} \subseteq \mathbb{Q}[\sqrt{2}]$ and $\mathbb{Q}[\sqrt{2}] \subseteq \mathbb{Q}[\sqrt[4]{2}]$ each have dimension two; hence each extension is Galois by (5a). However, the extension $\mathbb{Q} \subseteq \mathbb{Q}[\sqrt[4]{2}]$ is not Galois because three of the roots of the minimal polynomial of $\sqrt[4]{2}$ over \mathbb{Q} are not in $\mathbb{Q}[\sqrt[4]{2}]$.
(3) Let $k \subset K$ be a Galois extension of fields with $\operatorname{dim}_{k} K=p^{2}$, for some prime integer p. Suppose E is a field with $k \subseteq E \subseteq K$. Prove that $k \subseteq E$ is a Galois extension.

Let G be the Galois group $\mathrm{Aut}_{k} K$. The Fundamental Theorem of Galois Theory guarantees that the order of G is equal to $\operatorname{dim}_{k} K=p^{2}$. Every group of order p^{2} is Abelian. So every subgroup of G is a normal subgroup. If E is an intermediate field, then $E=K^{H}$ for some subgroup H of G. The fact that $H \triangleleft G$ ensures (again by the Fundamental Theorem of Galois Theory) that $k \subseteq K^{H}$ is a Galois extension.
(4) Give an example of a fields $k \subseteq E \subseteq K$ with $k \subseteq K$ a Galois extension of dimension p^{3} for some prime integer p, but $k \subseteq E$ not a Galois extension.

Recall the Dihedral group D_{4} which is the group of order 8 generated by σ and ρ with $\sigma^{2}=\mathrm{id}, \rho^{4}=\mathrm{id}$ and $(\sigma \rho)^{2}=\mathrm{id}$. The subgroup $\langle\sigma\rangle$ is not normal in D_{4}.

I want a Galois extension $k \subseteq K$ with Galois group equal to D_{4}. Then $k \subseteq K^{\langle\sigma\rangle}$ is an intermediate extension which is not Galois.

Here is the first example that comes to my mind; but this is cheating because you don't know it yet - but you will. Let F be a field and $K=F\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ be the field of rational functions over F. The symmetric group $S_{4}=\operatorname{Sym}\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ acts on the variables $x_{1}, x_{2}, x_{3}, x_{4}$ and hence on the field K. The subfield $K^{S_{4}}$ is equal to $F\left(s_{1}, s_{2}, s_{3}, s_{4}\right)$ where

$$
\begin{aligned}
& s_{1}=x_{1}+x_{2}+x_{3}+x_{4} \\
& s_{2}=x_{1} x_{2}+x_{1} x_{3}+x_{1} x_{4}+x_{2} x_{3}+x_{2} x_{4}+x_{3} x_{4} \\
& s_{3}=x_{1} x_{2} x_{3}+x_{1} x_{2} x_{4}+x_{1} x_{3} x_{4}+x_{2} x_{3} x_{4} \\
& s_{4}=x_{1} x_{2} x_{3} x_{4}
\end{aligned}
$$

are the four elementary symmetric polynomials in four variables. The extension $K^{D_{4}} \subseteq K$ is Galois with Galois group D_{4} and the intermediate extension

$$
K^{D_{4}} \subseteq K^{\langle\sigma\rangle}
$$

is not Galois. (So, take $k=K^{D_{4}}$ and $E=K^{\langle\sigma\rangle}$).
For another example of a Galois extension with Galois group D_{4}, consider

$$
\boldsymbol{k}=\mathbb{Q} \subseteq K=\mathbb{Q}[\sqrt[4]{2}, i]
$$

The field K is the splitting field of the polynomial $x^{4}-2$; so the extension is Galois. There are four embeddings of $\mathbb{Q}[\sqrt[4]{2}]$ into K (namely send $\sqrt[4]{2}$ to $i^{\ell} \sqrt[4]{2}$ with $0 \leq \ell \leq 3$). For each of these embeddings, there are two extensions to an automorphism of K (namely send i to $\pm i$). So Aut k is the eight element group $\langle\rho, \sigma\rangle$ where $\rho(\sqrt[4]{2})=i \sqrt[4]{2}, \rho(i)=i$ and $\sigma(\sqrt[4]{2})=\sqrt[4]{2}$ and $\sigma(i)=-i$. Observe that Aut ${ }_{k} K$ is a copy of D_{4} and $\mathbb{Q}[\sqrt[4]{2}]=K^{\langle\sigma\rangle}$ is an intermediate field with $\mathbb{Q} \subseteq K^{\langle\sigma\rangle}$ is not a Galois extension.
(5) Let k be a field of characteristic not equal to $2, k \subseteq K$ be a field extension with $\operatorname{dim}_{k} K=2$, and u be an element of K which is not in k. Then the following statements hold.
(a) The field extension $k \subseteq K$ is Galois and the Automorphism group Aut $_{k} K$ is cyclic of order two.
(b) The minimal polynomial of u over k is

$$
x^{2}-(u+\tau(u)) x+u \tau(u)
$$

in $\boldsymbol{k}[x]$, where τ is the non-identity element of Aut $_{k} K$.
(c) The field K is equal to $k(\Delta)$, with $\Delta^{2} \in k$, for $\Delta=u-\tau(u)$.

The fact that $\boldsymbol{k} \subsetneq \boldsymbol{k}(u) \subseteq K$, with $\operatorname{dim}_{\boldsymbol{k}} K=2$ forces $\boldsymbol{k}(u)=K$. The minimal polynomial f of u over \boldsymbol{k} has degree 2 ; thus, $f(x)=x^{2}+\alpha_{1} x+\alpha_{2}$, for some α_{1} and α_{2} in \boldsymbol{k}. The derivative, $f^{\prime}(x)=2 x+\alpha_{1}$, is not identically zero (since the characteristic of k is not two); hence f is a separable polynomial and the splitting field of f over k is a Galois extension of k.

Observe that K is the splitting field of f over K. Indeed, $f \in K[x]$ and the element u of K is a root of f. It follows that $(x-u)$ is a factor of f in $K[x]$. The other factor is monic and linear. Thus, there is an element $u^{\prime} \in K$ with $f=(x-u)\left(x-u^{\prime}\right)$ in $K[x]$.

At this point all of assertion (5a) has been established. It is also clear that the non-identity element τ of Aut $_{k} K$ must carry u to u^{\prime}. Now assertion (5b) is also clear.

We prove (5c). We first show that $\boldsymbol{k}[u]=\boldsymbol{k}\left[u-u^{\prime}\right]$. We already saw that $u^{\prime} \in \boldsymbol{k}[u]$; thus $\boldsymbol{k}[u] \supseteq \boldsymbol{k}\left[u-u^{\prime}\right]$. On the other hand,

$$
u=\frac{1}{2}(\underbrace{\left(u+u^{\prime}\right)}_{\in \boldsymbol{k}}+\left(u-u^{\prime}\right)) \in \boldsymbol{k}\left[u-u^{\prime}\right] ;
$$

hence, $\boldsymbol{k}[u] \subseteq \boldsymbol{k}\left[u-u^{\prime}\right]$; and $\boldsymbol{k}[u]=\boldsymbol{k}\left[u-u^{\prime}\right]$. Finally, observe that

$$
\left(u-u^{\prime}\right)^{2}=(\underbrace{u+u^{\prime}}_{\in \boldsymbol{k}})^{2}-4(\underbrace{u u^{\prime}}_{\in \boldsymbol{k}}) \in \boldsymbol{k} .
$$

It might be helpful to realize that Δ^{2} is the usual discriminant $b^{2}-4 a c$ for the quadratic polynomial $a x^{2}+b x+c$ with $a=1, b=u+u^{\prime}$ and $c=u u^{\prime}$.
(6) Let $k \subseteq K$ be a finite dimensional Galois extension of fields with Aut $_{k} K$ a cyclic group. Let σ be a generator of $\operatorname{Aut}_{k} K$. Suppose that $E_{1} \subseteq E_{2}$ are fields with

$$
\boldsymbol{k} \subseteq E_{1} \subseteq E_{2} \subseteq K
$$

and $\operatorname{dim}_{E_{1}} E_{2}=2$. If $u \in E_{2} \backslash E_{1}$, then the minimal polynomial of u over E_{1} is $(x-u)(x-\sigma(u))$.

The field extension $k \subseteq K$ is Galois with an Abelian Galois group. Every subgroup of an Abelian group is normal; consequently, the fundamental theorem of Galois Theory guarantees that $E_{1} \subseteq E_{2}$ is a Galois extension and that the non-identity element ${ }^{1}$ of Aut $_{E_{1}} E_{2}$ is $\left.\sigma\right|_{E_{2}}$. Thus, u and $\sigma(u)$ are the roots of the minimal polynomial of u over E_{1} and the minimal polynomial of u over E_{1} is $(x-u)(x-\sigma(u))$ in $E_{2}[x]$.

[^0]
[^0]: ${ }^{1}$ This assertion is the proof of the fourth part of the fundamental theorem of Galois Theory; it is not recorded as part of the statement.

