MATH 702 – SPRING 2024 LOW LYING FRUIT – MARCH 13, 2024

(1) Let *R* be a (commutative) domain, *I* be an ideal in *R*, *K* be the quotient field of *R*, and φ : *I* → *R* be an *R*-module homomorphism. Prove that there exists a *K*-module homomorphism Φ : *K* → *K* such that Φ|_{*I*} = φ.

If *I* is the zero ideal, then take Φ to be identically zero. Henceforth, we assume that *I* is not the zero ideal. Fix an nonzero element *x* in *I*. Define $\Phi : K \to K$ by $\Phi(u) = u \frac{\phi(x)}{x}$. Observe that $\Phi : K \to K$ is a *K*-module homomorphism. (Or if you prefer, *K* is a one-dimensional vector space over *K* and Φ is a linear transformation from this vector space to itself.)

We still must show that the restriction of Φ to I is equal to ϕ . Let $y \in I$. We must show that $\Phi(y)$ is equal to $\phi(y)$ in K. We must show that $y\frac{\phi(x)}{x}$ is equal to $\phi(y)$ in K. We must show that $y\phi(x)$ is equal to $x\phi(y)$ in R. Of course, this is true. Indeed, $\phi: I \to R$ is an R-module homomorphism; hence

$$y\phi(x) = \phi(yx) = x\phi(y).$$

The first equality holds because $y \in R$ and $x \in I$. The second equality holds because $x \in R$ and $y \in I$.

(2) Suppose $k \subset E$ and $E \subseteq K$ are both finite dimensional Galois extensions. Does $k \subseteq K$ have to be a Galois extension? Prove or give a counter example.

NO! The extensions $\mathbb{Q} \subseteq \mathbb{Q}[\sqrt{2}]$ and $\mathbb{Q}[\sqrt{2}] \subseteq \mathbb{Q}[\sqrt[4]{2}]$ each have dimension two; hence each extension is Galois by (5a). However, the extension $\mathbb{Q} \subseteq \mathbb{Q}[\sqrt[4]{2}]$ is not Galois because three of the roots of the minimal polynomial of $\sqrt[4]{2}$ over \mathbb{Q} are not in $\mathbb{Q}[\sqrt[4]{2}]$.

(3) Let $k \subset K$ be a Galois extension of fields with $\dim_k K = p^2$, for some prime integer p. Suppose E is a field with $k \subseteq E \subseteq K$. Prove that $k \subseteq E$ is a Galois extension.

Let *G* be the Galois group $\operatorname{Aut}_{k} K$. The Fundamental Theorem of Galois Theory guarantees that the order of *G* is equal to $\dim_{k} K = p^{2}$. Every group of order p^{2} is Abelian. So every subgroup of *G* is a normal subgroup. If *E* is an intermediate field, then $E = K^{H}$ for some subgroup *H* of *G*. The fact that $H \triangleleft G$ ensures (again by the Fundamental Theorem of Galois Theory) that $\mathbf{k} \subseteq K^{H}$ is a Galois extension. (4) Give an example of a fields $k \subseteq E \subseteq K$ with $k \subseteq K$ a Galois extension of dimension p^3 for some prime integer p, but $k \subseteq E$ not a Galois extension.

Recall the Dihedral group D_4 which is the group of order 8 generated by σ and ρ with $\sigma^2 = id$, $\rho^4 = id$ and $(\sigma \rho)^2 = id$. The subgroup $\langle \sigma \rangle$ is not normal in D_4 .

I want a Galois extension $\mathbf{k} \subseteq K$ with Galois group equal to D_4 . Then $\mathbf{k} \subseteq K^{\langle \sigma \rangle}$ is an intermediate extension which is not Galois.

Here is the first example that comes to my mind; but this is cheating because you don't know it yet – but you will. Let F be a field and $K = F(x_1, x_2, x_3, x_4)$ be the field of rational functions over F. The symmetric group $S_4 = \text{Sym}\{x_1, x_2, x_3, x_4\}$ acts on the variables x_1, x_2, x_3, x_4 and hence on the field K. The subfield K^{S_4} is equal to $F(s_1, s_2, s_3, s_4)$ where

$$s_{1} = x_{1} + x_{2} + x_{3} + x_{4}$$

$$s_{2} = x_{1}x_{2} + x_{1}x_{3} + x_{1}x_{4} + x_{2}x_{3} + x_{2}x_{4} + x_{3}x_{4}$$

$$s_{3} = x_{1}x_{2}x_{3} + x_{1}x_{2}x_{4} + x_{1}x_{3}x_{4} + x_{2}x_{3}x_{4}$$

$$s_{4} = x_{1}x_{2}x_{3}x_{4}$$

are the four elementary symmetric polynomials in four variables. The extension $K^{D_4} \subseteq K$ is Galois with Galois group D_4 and the intermediate extension

$$K^{D_4} \subseteq K^{\langle \sigma \rangle}$$

is not Galois. (So, take $\mathbf{k} = K^{D_4}$ and $E = K^{\langle \sigma \rangle}$).

For another example of a Galois extension with Galois group D_4 , consider

$$\boldsymbol{k} = \mathbb{Q} \subseteq K = \mathbb{Q}[\sqrt[4]{2}, i].$$

The field K is the splitting field of the polynomial $x^4 - 2$; so the extension is Galois. There are four embeddings of $\mathbb{Q}[\sqrt[4]{2}]$ into K (namely send $\sqrt[4]{2}$ to $i^{\ell}\sqrt[4]{2}$ with $0 \leq \ell \leq 3$). For each of these embeddings, there are two extensions to an automorphism of K (namely send i to $\pm i$). So $\operatorname{Aut}_{\mathbf{k}} K$ is the eight element group $\langle \rho, \sigma \rangle$ where $\rho(\sqrt[4]{2}) = i\sqrt[4]{2}$, $\rho(i) = i$ and $\sigma(\sqrt[4]{2}) = \sqrt[4]{2}$ and $\sigma(i) = -i$. Observe that $\operatorname{Aut}_{\mathbf{k}} K$ is a copy of D_4 and $\mathbb{Q}[\sqrt[4]{2}] = K^{\langle \sigma \rangle}$ is an intermediate field with $\mathbb{Q} \subseteq K^{\langle \sigma \rangle}$ is not a Galois extension.

- (5) Let k be a field of characteristic not equal to 2, $k \subseteq K$ be a field extension with $\dim_k K = 2$, and u be an element of K which is not in k. Then the following statements hold.
 - (a) The field extension $k \subseteq K$ is Galois and the Automorphism group $Aut_k K$ is cyclic of order two.
 - (b) The minimal polynomial of u over k is

$$x^2 - (u + \tau(u))x + u\tau(u)$$

in k[x], where τ is the non-identity element of $Aut_k K$.

ALGEBRA II

(c) The field K is equal to $k(\Delta)$, with $\Delta^2 \in k$, for $\Delta = u - \tau(u)$.

The fact that $\mathbf{k} \subseteq \mathbf{k}(u) \subseteq K$, with $\dim_{\mathbf{k}} K = 2$ forces $\mathbf{k}(u) = K$. The minimal polynomial f of u over \mathbf{k} has degree 2; thus, $f(x) = x^2 + \alpha_1 x + \alpha_2$, for some α_1 and α_2 in \mathbf{k} . The derivative, $f'(x) = 2x + \alpha_1$, is not identically zero (since the characteristic of \mathbf{k} is not two); hence f is a separable polynomial and the splitting field of f over \mathbf{k} is a Galois extension of \mathbf{k} .

Observe that K is the splitting field of f over K. Indeed, $f \in K[x]$ and the element u of K is a root of f. It follows that (x-u) is a factor of f in K[x]. The other factor is monic and linear. Thus, there is an element $u' \in K$ with f = (x-u)(x-u') in K[x].

At this point all of assertion (5a) has been established. It is also clear that the non-identity element τ of $Aut_k K$ must carry u to u'. Now assertion (5b) is also clear.

We prove (5c). We first show that $\mathbf{k}[u] = \mathbf{k}[u-u']$. We already saw that $u' \in \mathbf{k}[u]$; thus $\mathbf{k}[u] \supseteq \mathbf{k}[u-u']$. On the other hand,

$$u = \frac{1}{2} \left(\underbrace{(u+u')}_{\in \mathbf{k}} + (u-u') \right) \in \mathbf{k}[u-u'];$$

hence, $\mathbf{k}[u] \subseteq \mathbf{k}[u-u']$; and $\mathbf{k}[u] = \mathbf{k}[u-u']$. Finally, observe that

$$(u-u')^2 = (\underbrace{u+u'}_{\in \mathbf{k}})^2 - 4(\underbrace{uu'}_{\in \mathbf{k}}) \in \mathbf{k}.$$

It might be helpful to realize that Δ^2 is the usual discriminant $b^2 - 4ac$ for the quadratic polynomial $ax^2 + bx + c$ with a = 1, b = u + u' and c = uu'.

(6) Let $k \subseteq K$ be a finite dimensional Galois extension of fields with $Aut_k K$ a cyclic group. Let σ be a generator of $Aut_k K$. Suppose that $E_1 \subseteq E_2$ are fields with

$$\boldsymbol{k} \subseteq E_1 \subseteq E_2 \subseteq K$$

and $\dim_{E_1} E_2 = 2$. If $u \in E_2 \setminus E_1$, then the minimal polynomial of u over E_1 is $(x-u)(x-\sigma(u))$.

The field extension $\mathbf{k} \subseteq K$ is Galois with an Abelian Galois group. Every subgroup of an Abelian group is normal; consequently, the fundamental theorem of Galois Theory guarantees that $E_1 \subseteq E_2$ is a Galois extension and that the non-identity element¹ of Aut_{E1} E_2 is $\sigma|_{E_2}$. Thus, u and $\sigma(u)$ are the roots of the minimal polynomial of u over E_1 and the minimal polynomial of u over E_1 is $(x - u)(x - \sigma(u))$ in $E_2[x]$.

¹This assertion is the proof of the fourth part of the fundamental theorem of Galois Theory; it is not recorded as part of the statement.