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(1) Let R be a (commutative) domain, I be an ideal in R, K be the quotient field
of R, and φ : I → R be an R-module homomorphism. Prove that there exists
a K-module homomorphism Φ : K → K such that Φ|I = φ.

If I is the zero ideal, then take Φ to be identically zero. Henceforth, we assume
that I is not the zero ideal. Fix an nonzero element x in I. Define Φ : K → K by
Φ(u) = uφ(x)

x
. Observe that Φ : K → K is a K-module homomorphism. (Or if you

prefer, K is a one-dimensional vector space over K and Φ is a linear transformation
from this vector space to itself.)

We still must show that the restriction of Φ to I is equal to φ. Let y ∈ I. We must
show that Φ(y) is equal to φ(y) in K. We must show that y φ(x)

x
is equal to φ(y) in

K. We must show that yφ(x) is equal to xφ(y) in R. Of course, this is true. Indeed,
φ : I → R is an R-module homomorphism; hence

yφ(x) = φ(yx) = xφ(y).

The first equality holds because y ∈ R and x ∈ I. The second equality holds
because x ∈ R and y ∈ I.

(2) Suppose kkk ⊂ E and E ⊆ K are both finite dimensional Galois extensions.
Does kkk ⊆ K have to be a Galois extension? Prove or give a counter example.

NO! The extensions Q ⊆ Q[
√

2] and Q[
√

2] ⊆ Q[ 4
√

2] each have dimension two;
hence each extension is Galois by (5a). However, the extension Q ⊆ Q[ 4

√
2] is not

Galois because three of the roots of the minimal polynomial of 4
√

2 over Q are not
in Q[ 4

√
2].

(3) Let kkk ⊂ K be a Galois extension of fields with dimkkkK = p2, for some prime
integer p. Suppose E is a field with kkk ⊆ E ⊆ K. Prove that kkk ⊆ E is a Galois
extension.

Let G be the Galois group AutkkkK. The Fundamental Theorem of Galois Theory
guarantees that the order of G is equal to dimkkkK = p2. Every group of order p2

is Abelian. So every subgroup of G is a normal subgroup. If E is an intermediate
field, then E = KH for some subgroup H of G. The fact that H /G ensures (again
by the Fundamental Theorem of Galois Theory) that kkk ⊆ KH is a Galois extension.
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2 ALGEBRA II

(4) Give an example of a fields kkk ⊆ E ⊆ K with kkk ⊆ K a Galois extension of
dimension p3 for some prime integer p, but kkk ⊆ E not a Galois extension.

Recall the Dihedral group D4 which is the group of order 8 generated by σ and
ρ with σ2 = id, ρ4 = id and (σρ)2 = id. The subgroup 〈σ〉 is not normal in D4.

I want a Galois extension kkk ⊆ K with Galois group equal to D4. Then kkk ⊆ K〈σ〉

is an intermediate extension which is not Galois.
Here is the first example that comes to my mind; but this is cheating because you

don’t know it yet – but you will. Let F be a field and K = F (x1, x2, x3, x4) be the
field of rational functions over F . The symmetric group S4 = Sym{x1, x2, x3, x4}
acts on the variables x1, x2, x3, x4 and hence on the field K. The subfield KS4 is
equal to F (s1, s2, s3, s4) where

s1 = x1 + x2 + x3 + x4

s2 = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4

s3 = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4

s4 = x1x2x3x4

are the four elementary symmetric polynomials in four variables. The extension
KD4 ⊆ K is Galois with Galois group D4 and the intermediate extension

KD4 ⊆ K〈σ〉

is not Galois. (So, take kkk = KD4 and E = K〈σ〉).
For another example of a Galois extension with Galois group D4, consider

kkk = Q ⊆ K = Q[
4
√

2, i].

The field K is the splitting field of the polynomial x4 − 2; so the extension is
Galois. There are four embeddings of Q[ 4

√
2] into K (namely send 4

√
2 to i` 4

√
2

with 0 ≤ ` ≤ 3). For each of these embeddings, there are two extensions to an
automorphism of K (namely send i to ±i). So AutkkkK is the eight element group
〈ρ, σ〉 where ρ( 4

√
2) = i 4

√
2, ρ(i) = i and σ( 4

√
2) = 4

√
2 and σ(i) = −i. Observe that

AutkkkK is a copy of D4 and Q[ 4
√

2] = K〈σ〉 is an intermediate field with Q ⊆ K〈σ〉 is
not a Galois extension.

(5) Let kkk be a field of characteristic not equal to 2, kkk ⊆ K be a field extension with
dimkkkK = 2, and u be an element of K which is not in kkk. Then the following
statements hold.
(a) The field extension kkk ⊆ K is Galois and the Automorphism group AutkkkK

is cyclic of order two.
(b) The minimal polynomial of u over kkk is

x2 − (u+ τ(u))x+ uτ(u)

in kkk[x], where τ is the non-identity element of AutkkkK.
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(c) The field K is equal to kkk(∆), with ∆2 ∈ kkk, for ∆ = u− τ(u).

The fact that kkk ( kkk(u) ⊆ K, with dimkkkK = 2 forces kkk(u) = K. The minimal
polynomial f of u over kkk has degree 2; thus, f(x) = x2 + α1x + α2, for some α1

and α2 in kkk. The derivative, f ′(x) = 2x + α1, is not identically zero (since the
characteristic of kkk is not two); hence f is a separable polynomial and the splitting
field of f over kkk is a Galois extension of kkk.

Observe that K is the splitting field of f over K. Indeed, f ∈ K[x] and the
element u ofK is a root of f . It follows that (x−u) is a factor of f inK[x]. The other
factor is monic and linear. Thus, there is an element u′ ∈ K with f = (x−u)(x−u′)
in K[x].

At this point all of assertion (5a) has been established. It is also clear that the
non-identity element τ of AutkkkK must carry u to u′. Now assertion (5b) is also
clear.

We prove (5c). We first show that kkk[u] = kkk[u−u′]. We already saw that u′ ∈ kkk[u];
thus kkk[u] ⊇ kkk[u− u′]. On the other hand,

u = 1
2

(
(u+ u′)︸ ︷︷ ︸

∈kkk

+(u− u′)
)
∈ kkk[u− u′];

hence, kkk[u] ⊆ kkk[u− u′]; and kkk[u] = kkk[u− u′]. Finally, observe that

(u− u′)2 = (u+ u′︸ ︷︷ ︸
∈kkk

)2 − 4( uu′︸︷︷︸
∈kkk

) ∈ kkk.

It might be helpful to realize that ∆2 is the usual discriminant b2 − 4ac for the
quadratic polynomial ax2 + bx+ c with a = 1, b = u+ u′ and c = uu′.

(6) Let kkk ⊆ K be a finite dimensional Galois extension of fields with AutkkkK a
cyclic group. Let σ be a generator of AutkkkK. Suppose that E1 ⊆ E2 are fields
with

kkk ⊆ E1 ⊆ E2 ⊆ K

and dimE1 E2 = 2. If u ∈ E2 \ E1, then the minimal polynomial of u over E1 is
(x− u)(x− σ(u)).

The field extension kkk ⊆ K is Galois with an Abelian Galois group. Every subgroup
of an Abelian group is normal; consequently, the fundamental theorem of Galois
Theory guarantees that E1 ⊆ E2 is a Galois extension and that the non-identity
element1 of AutE1 E2 is σ|E2. Thus, u and σ(u) are the roots of the minimal poly-
nomial of u over E1 and the minimal polynomial of u over E1 is (x− u)(x− σ(u))

in E2[x].

1This assertion is the proof of the fourth part of the fundamental theorem of Galois Theory; it is not
recorded as part of the statement.


