MATH 702 - SPRING 2024 HOMEWORK 4

All modules in problems 13 and 14 are R-modules and all module homomorphisms in problems 13 and 14 are R-module homorphisms. In problem 13, I am thinking of R as a commutative ring.
13. Let $\phi: M \rightarrow P$ be a surjective homomorphism of R-modules. Suppose that P is a direct summand of a free R-module. Prove that P is a direct summand of M.
14. Let R be the ring $\mathbb{Z}[\sqrt{-5}]$ and let I be the ideal $(2,1+\sqrt{-5})$ of R. Prove that I is a summand of a free R-module.
15. Let V be a vector space of dimension 8 over the field k and let $T: V \rightarrow V$ be a linear transformation with $T^{8}=0$. Suppose that v_{0} is an element of V with the property that $\left\{T^{i}\left(v_{0}\right) \mid 0 \leq i \leq 7\right\}$ is a basis for V. Give the Jordan Canonical Form of T^{i} for each i, with $1 \leq i \leq 7$. For each i indicate the basis you use as you construct the Jordan Canonical Form of T^{i}.

For example when I construct the Jordan Canonical Form of T, I use the basis

$$
v_{0}, T\left(v_{0}\right), T^{2}\left(v_{0}\right), T^{3}\left(v_{0}\right), T^{4}\left(v_{0}\right), T^{5}\left(v_{0}\right), T^{6}\left(v_{0}\right), T^{7}\left(v_{0}\right)
$$

and my Jordan Canonical Form is

$$
J_{8}(0)=\left[\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right] .
$$

You may use a different convention for writing Jordan Canonical Form if you want, but do be sure to tell me what basis you are using for each matrix.

