MATH 702 - SPRING 2024

HOMEWORK 4

All modules in problems 13 and 14 are R-modules and all module homomorphisms in problems 13 and 14 are R-module homorphisms. In problem 13, I am thinking of R as a commutative ring.
13. Let $\phi: M \rightarrow P$ be a surjective homomorphism of R-modules. Suppose that P is a direct summand of a free R-module. Prove that P is a direct summand of M.
The hypothesis ensures that there is an index set I, a free R-module $F=\bigoplus_{i \in I} R e_{i}$, and R-module homomorphisms $\pi: F \rightarrow P$ and $i: P \rightarrow F$ such that $\pi \circ i=\operatorname{id}_{P}$. Consider the picture

The homomorphism ϕ is surjective. For each $i \in I$ select $m_{i} \in M$ with $\phi\left(m_{i}\right)=\pi\left(e_{i}\right)$. We define an R-module homomorphism $\Phi: F \rightarrow M$ by sending e_{i} to m_{i}, for all i. Notice that Φ is a legitimate R-module homomorphism and $\phi \circ \Phi=\pi$. We finish the proof by observing that $\Phi \circ i$ is an R-module homomorphism from P to M with

$$
\phi \circ(\Phi \circ i)=(\phi \circ \Phi) \circ i=\pi \circ i=\operatorname{id}_{P}
$$

each e_{i}.
14. Let R be the ring $\mathbb{Z}[\sqrt{-5}]$ and let I be the ideal $(2,1+\sqrt{-5})$ of R. Prove that I is a summand of a free R-module.
We define R-module homomorphisms $\pi: R^{2} \rightarrow I$ and $i: I \rightarrow R^{2}$ such that $\pi \circ i=\operatorname{id}_{I}$.
Define π by $\pi\left(\left[\begin{array}{l}r_{1} \\ r_{2}\end{array}\right]\right)=2 r_{1}+(1+\sqrt{-5}) r_{2}$. It is obvious that π is an R-module homomorphism. Let K be the quotient field of R. Define $i: I \rightarrow K$ by $i(x)=\left[\begin{array}{l}x z_{1} \\ x z_{2}\end{array}\right]$, where z_{1} and z_{2} are carefully chosen elements of K with the following properties:

- $z_{1} I \subseteq R$,
- $z_{2} I \subseteq R$, and
- $2 z_{1}+(1+\sqrt{-5}) z_{2}=1$.

The first two items ensure that the image of i is contained in R^{2} and hence $i: I \rightarrow R^{2}$ is an R-module homomorphism. The third item ensures that $\pi \circ i$ is the identity map on I because if $x \in I$, then

$$
(\pi \circ i)(x)=\pi\left(\left[\begin{array}{l}
x z_{1} \\
x z_{2}
\end{array}\right]\right)=x\left(2 z_{1}+(1+\sqrt{-5}) z_{2}\right)=x
$$

It turns out that $z_{1}=-1$ and $z_{2}=\frac{1-\sqrt{-5}}{2}$ work. Indeed, $z_{1} I \subseteq R, z_{2}(2)=1-\sqrt{-5} \in R$, and $z_{2}(1+\sqrt{-5})=3 \in R$, and $2 z_{1}+(1+\sqrt{-5}) z_{2}=1$.
15. Let V be a vector space of dimension 8 over the field k and let $T: V \rightarrow V$ be a linear transformation with $T^{8}=0$. Suppose that v_{0} is an element of V with the property that $\left\{T^{i}\left(v_{0}\right) \mid 0 \leq i \leq 7\right\}$ is a basis for V. Give the Jordan Canonical Form of T^{i} for each i, with $1 \leq i \leq 7$. For each i indicate the basis you use as you construct the Jordan Canonical Form of T^{i}.

For example when I construct the Jordan Canonical Form of T, I use the basis

$$
v_{0}, T\left(v_{0}\right), T^{2}\left(v_{0}\right), T^{3}\left(v_{0}\right), T^{4}\left(v_{0}\right), T^{5}\left(v_{0}\right), T^{6}\left(v_{0}\right), T^{7}\left(v_{0}\right)
$$

and my Jordan Canonical Form is

$$
J_{8}(0)=\left[\begin{array}{llllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right] .
$$

You may use a different convention for writing Jordan Canonical Form if you want, but do be sure to tell me what basis you are using for each matrix.

Let diag $\left(A_{1}, \ldots, A_{r}\right)$ be a block diagonal matrix with A_{1}, \ldots, A_{r} down the main diagonal, and zeros everywhere else.

- For T^{2}, I use the basis:

$$
v_{0}, T^{2}\left(v_{0}\right), T^{4}\left(v_{0}\right), T^{6}\left(v_{0}\right) \mid T\left(v_{0}\right), T^{3}\left(v_{0}\right), T^{5}\left(v_{0}\right), T^{7}\left(v_{0}\right)
$$

The JCF is $\operatorname{diag}\left(J_{4}(0), J_{4}(0)\right)$.

- For T^{3}, I use the basis:

$$
v_{0}, T^{3}\left(v_{0}\right), T^{6}\left(v_{0}\right)\left|T\left(v_{0}\right), T^{4}\left(v_{0}\right), T^{7}\left(v_{0}\right)\right| T^{2}\left(v_{0}\right), T^{5}\left(v_{0}\right)
$$

The JCF is $\operatorname{diag}\left(J_{3}(0), J_{3}(0), J_{2}(0)\right)$.

- For T^{4}, I use the basis:

$$
v_{0}, T^{4}\left(v_{0}\right)\left|T\left(v_{0}\right), T^{5}\left(v_{0}\right)\right| T^{2}\left(v_{0}\right), T^{6}\left(v_{0}\right) \mid T^{3}\left(v_{0}\right), T^{7}\left(v_{0}\right)
$$

The JCF is $\operatorname{diag}\left(J_{2}(0), J_{2}(0), J_{2}(0), J_{2}(0)\right)$.

- For T^{5}, I use the basis:

$$
v_{0}, T^{5}\left(v_{0}\right)\left|T\left(v_{0}\right), T^{6}\left(v_{0}\right)\right| T^{2}\left(v_{0}\right), T^{7}\left(v_{0}\right)\left|T^{3}\left(v_{0}\right)\right| T^{4}\left(v_{0}\right)
$$

The JCF is $\operatorname{diag}\left(J_{2}(0), J_{2}(0), J_{2}(0), J_{1}(0), J_{1}(0)\right)$.

- For T^{6}, I use the basis:

$$
v_{0}, T^{6}\left(v_{0}\right)\left|T\left(v_{0}\right), T^{7}\left(v_{0}\right)\right| T^{2}\left(v_{0}\right)\left|T^{3}\left(v_{0}\right)\right| T^{4}\left(v_{0}\right) \mid T^{5}\left(v_{0}\right)
$$

The JCF is $\operatorname{diag}\left(J_{2}(0), J_{2}(0), J_{1}(0), J_{1}(0), J_{1}(0), J_{1}(0)\right)$.

- For T^{7}, I use the basis:

$$
v_{0}, T^{7}\left(v_{0}\right)\left|T\left(v_{0}\right)\right| T^{2}\left(v_{0}\right)\left|T^{3}\left(v_{0}\right)\right| T^{4}\left(v_{0}\right)\left|T^{5}\left(v_{0}\right)\right| T^{6}\left(v_{0}\right)
$$

The JCF is $\operatorname{diag}\left(J_{2}(0), J_{1}(0), J_{1}(0), J_{1}(0), J_{1}(0), J_{1}(0)\right)$.

