MATH 702 – SPRING 2024 HOMEWORK 4

All modules in problems 13 and 14 are R-modules and all module homomorphisms in problems 13 and 14 are R-module homorphisms. In problem 13, I am thinking of R as a commutative ring.

13. Let $\phi : M \to P$ be a surjective homomorphism of *R*-modules. Suppose that *P* is a direct summand of a free *R*-module. Prove that *P* is a direct summand of *M*.

The hypothesis ensures that there is an index set I, a free R-module $F = \bigoplus_{i \in I} Re_i$, and R-module homomorphisms $\pi : F \to P$ and $i : P \to F$ such that $\pi \circ i = id_P$. Consider the picture

$$M \xrightarrow{\phi} P.$$

The homomorphism ϕ is surjective. For each $i \in I$ select $m_i \in M$ with $\phi(m_i) = \pi(e_i)$. We define an *R*-module homomorphism $\Phi: F \to M$ by sending e_i to m_i , for all *i*. Notice that Φ is a legitimate *R*-module homomorphism and $\phi \circ \Phi = \pi$. We finish the proof by observing that $\Phi \circ i$ is an *R*-module homomorphism from *P* to *M* with

$$\phi \circ (\Phi \circ i) = (\phi \circ \Phi) \circ i = \pi \circ i = \mathrm{id}_P.$$

each e_i .

14. Let *R* be the ring $\mathbb{Z}[\sqrt{-5}]$ and let *I* be the ideal $(2, 1 + \sqrt{-5})$ of *R*. Prove that *I* is a summand of a free *R*-module.

We define *R*-module homomorphisms $\pi : R^2 \to I$ and $i : I \to R^2$ such that $\pi \circ i = \operatorname{id}_I$. Define π by $\pi\left(\begin{bmatrix} r_1 \\ r_2 \end{bmatrix} \right) = 2r_1 + (1 + \sqrt{-5})r_2$. It is obvious that π is an *R*-module homomorphism. Let *K* be the quotient field of *R*. Define $i : I \to K$ by $i(x) = \begin{bmatrix} xz_1 \\ xz_2 \end{bmatrix}$,

where z_1 and z_2 are carefully chosen elements of K with the following properties:

•
$$z_1 I \subseteq R$$
,

•
$$z_2I \subseteq R$$
, and

• $2z_1 + (1 + \sqrt{-5})z_2 = 1$.

The first two items ensure that the image of *i* is contained in R^2 and hence $i : I \to R^2$ is an *R*-module homomorphism. The third item ensures that $\pi \circ i$ is the identity map on *I* because if $x \in I$, then

$$(\pi \circ i)(x) = \pi \left(\begin{bmatrix} xz_1 \\ xz_2 \end{bmatrix} \right) = x \left(2z_1 + (1 + \sqrt{-5})z_2 \right) = x.$$

It turns out that $z_1 = -1$ and $z_2 = \frac{1-\sqrt{-5}}{2}$ work. Indeed, $z_1I \subseteq R$, $z_2(2) = 1-\sqrt{-5} \in R$, and $z_2(1+\sqrt{-5}) = 3 \in R$, and $2z_1 + (1+\sqrt{-5})z_2 = 1$.

15. Let V be a vector space of dimension 8 over the field k and let $T: V \to V$ be a linear transformation with $T^8 = 0$. Suppose that v_0 is an element of V with the property that $\{T^i(v_0) \mid 0 \le i \le 7\}$ is a basis for V. Give the Jordan Canonical Form of T^i for each *i*, with $1 \le i \le 7$. For each *i* indicate the basis you use as you construct the Jordan Canonical Form of T^i .

For example when I construct the Jordan Canonical Form of T, I use the basis

$$v_0, T(v_0), T^2(v_0), T^3(v_0), T^4(v_0), T^5(v_0), T^6(v_0), T^7(v_0)$$

and my Jordan Canonical Form is

$$J_8(0) = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

You may use a different convention for writing Jordan Canonical Form if you want, but do be sure to tell me what basis you are using for each matrix.

Let diag (A_1, \ldots, A_r) be a block diagonal matrix with A_1, \ldots, A_r down the main diagonal, and zeros everywhere else.

• For T^2 , I use the basis:

$$v_0, T^2(v_0), T^4(v_0), T^6(v_0) | T(v_0), T^3(v_0), T^5(v_0), T^7(v_0)$$

The JCF is $diag(J_4(0), J_4(0))$.

• For T^3 , I use the basis:

$$v_0, T^3(v_0), T^6(v_0)|T(v_0), T^4(v_0), T^7(v_0)|T^2(v_0), T^5(v_0)|$$

The JCF is $diag(J_3(0), J_3(0), J_2(0))$.

• For T^4 , I use the basis:

$$v_0, T^4(v_0)|T(v_0), T^5(v_0)|T^2(v_0), T^6(v_0)|T^3(v_0), T^7(v_0)$$

The JCF is $diag(J_2(0), J_2(0), J_2(0), J_2(0))$.

• For T^5 , I use the basis:

 $v_0, T^5(v_0)|T(v_0), T^6(v_0)|T^2(v_0), T^7(v_0)|T^3(v_0)|T^4(v_0)|$

The JCF is diag $(J_2(0), J_2(0), J_2(0), J_1(0), J_1(0))$.

• For T^6 , I use the basis:

$$v_0, T^6(v_0)|T(v_0), T^7(v_0)|T^2(v_0)|T^3(v_0)|T^4(v_0)|T^5(v_0)|$$

The JCF is $diag(J_2(0), J_2(0), J_1(0), J_1(0), J_1(0), J_1(0))$.

• For T^7 , I use the basis:

$$v_0, T^7(v_0)|T(v_0)|T^2(v_0)|T^3(v_0)|T^4(v_0)|T^5(v_0)|T^6(v_0)$$

The JCF is $diag(J_2(0), J_1(0), J_1(0), J_1(0), J_1(0), J_1(0))$.