9. Let M and N be $n \times n$ matrices over \mathbb{Q}. Suppose M and N are similar over \mathbb{C}. Prove M and N are similar over \mathbb{Q}. (Recall that the matrices M and N are similar over the field k if there exists an invertible matrix A with entries in k such that $M=A N A^{-1}$. In other words, the matrices M and N are similar over the field \boldsymbol{k} if the linear transformation $\boldsymbol{k}^{n} \rightarrow \boldsymbol{k}^{n}$, which is given by $v \mapsto M v$, is represented by the matrix N after a change of basis for \boldsymbol{k}^{n}.)
Let M^{\prime} and N^{\prime} be the rational canonical forms of M and N (respectively) over \mathbb{Q}. Of course, M and M^{\prime} are similar over \mathbb{Q} and N and N^{\prime} are similar over \mathbb{Q}. The matrices M and N are similar over \mathbb{C}; consequently, M and N have the same rational canonical, P, form over \mathbb{C}. On the other hand, the rational canonical form of M over \mathbb{Q} is exactly the same as the rational canonical form of M over \mathbb{C}; so, $M^{\prime}=P$. The exact same reasoning shows that $N^{\prime}=P$.
10. ${ }^{1}$ (This is not a computer problem. Do not use the computer in parts (10a) or (10c). After you have (10a) and (10c), as you find (10b) and (10d), I do not mind if you use a computer to multiply polynomials or to multiply matrices times column vectors. You may also use the computer to calculate a determinant. Do not use the computer for anything other than those three processes.) Let $T: \mathbb{R}^{8} \rightarrow \mathbb{R}^{8}$ be the linear transformation which is given by multiplication by the matrix

$$
A=\left[\begin{array}{llllllll}
2 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 3 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 2 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 2 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 3
\end{array}\right]
$$

(a) What is the Jordan canonical form of T ?
(b) What is the rational canonical form of T ?
(c) Find a basis \mathscr{B} for \mathbb{R}^{8} so that the matrix of T with respect to \mathscr{B} is your answer to (10a).
(d) Find a basis \mathscr{C} for \mathbb{R}^{8} so that the matrix of T with respect to \mathscr{C} is your answer to (10b).

[^0]Let e_{1}, \ldots, e_{8} be the standard basis for \mathbb{R}^{8}. (In other words, A is the matrix of T with respect to e_{1}, \ldots, e_{8}.) Let \mathscr{B} be named v_{1}, \ldots, v_{8}; and \mathscr{C} be named w_{1}, \ldots, w_{8}. Let B the the matrix of T with respect to \mathscr{B} and C be the matrix of T with respect to \mathscr{C}.

The characteristic polynomial of T is $(x-2)^{6}(x-3)^{2}$. I will put the Jordan blocks that correspond to the eigenvalue 2 before the Jordan blocks that correspond to the eigenvalue 3. The nullity ${ }^{2}$ of

$$
A-3 I=\left[\begin{array}{cccccccc}
-1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

is 1 . So there is one Jordan block associated to the eigenvalue 3 and that Jordan block is $J_{2}(3)=\left[\begin{array}{ll}3 & 0 \\ 1 & 3\end{array}\right]$. The eigenvector for $J_{2}(3)$ is $v_{8}=e_{4}$. The vector v_{7} must satisfy $T\left(v_{7}\right)=3 v_{7}+v_{8}$; so, v_{7} is a solution of $(A-3 I) v_{7}=e_{4}$. We already calculated $A-3 I$. It is obvious that $(A-3 I)\left(e_{8}\right)=e_{4}$. We take $v_{7}=e_{8}$. The nullity of

$$
A-2 I=\left[\begin{array}{llllllll}
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

is 3 ; so B has 3 Jordan blocks associated to the eigenvalue 2 . Three linearly independent eigenvectors which belong to the eigenvalue 2 are e_{1}, e_{2}, e_{3}. The nullity of $(A-2 I)^{2}$

$$
=\left[\begin{array}{llllllll}
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{llllllll}
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{llllllll}
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

is 4 ; so J has exactly one Jordan block of size 2 or more. Keep in mind that

$$
\operatorname{nullity}\left(J_{e}(2)-2 I\right)^{2}-\operatorname{nullity}\left(J_{e}(2)-2 I\right)= \begin{cases}0 & \text { if } e=1 \\ 1 & \text { if } e \leq 2\end{cases}
$$

[^1]There is only one partition of 6 with 3 pieces and exactly one piece of size 2 or more; namely, $6=4+1+1$. I am ready to answer (a):

$$
B=\left[\begin{array}{llllllll}
2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 3
\end{array}\right]
$$

I look for v_{3} with $T\left(v_{3}\right)=2 v_{3}+z$ for some non-zero element z of the eigenspace of A which belongs to the eigenvalue 2 . In other words, z is an element of the subspace of \mathbb{R}^{8} which is spanned by e_{1}, e_{2}, e_{3}. I want v_{3} with

$$
(A-2 I) v_{3}=\left[\begin{array}{c}
* \\
* \\
* \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

with some $*$ not zero. Look at $A-2 I$. I pick $v_{3}=e_{5}$ (and $v_{4}=e_{1}$.) To find v_{2}, I solve $(A-2 I) v_{2}=v_{3}$. So, I take $v_{2}=e_{6}$. To find v_{1}, I solve $(A-2 I) v_{1}=v_{2}$. So, I take $v_{2}=e_{7}$. I pick $v_{5}=e_{2}$ and $v_{6}=e_{3}$. My answer to (c) is:

$$
v_{1}=e_{7}, v_{2}=e_{6}, v_{3}=e_{5}, v_{4}=e_{1}, v_{5}=e_{2}, v_{6}=e_{3}, v_{7}=e_{8}, v_{8}=e_{4}
$$

I check that $A e_{7}=2 e_{7}+e_{6}, A e_{6}=2 e_{6}+e_{5}, A e_{5}=2 e_{5}+e_{1}, A e_{1}=2 e_{1}, A e_{2}=2 e_{2}$, $A e_{3}=2 e_{3}, A e_{8}=3 e_{8}+e_{4}$, and $A e_{4}=3 e_{4}$.

The invariant factors for T are $g_{1}=x-2, g_{2}=x-2$, and

$$
g_{3}=(x-2)^{4}(x-3)^{2}=x^{6}-14 x^{5}+81 x^{4}-248 x^{3}+424 x^{2}-384 x+144
$$

(A computer expanded g_{3} for me.) The answer to (b) is

$$
C=\left[\begin{array}{cccccccc}
2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -144 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 384 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & -424 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 248 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & -81 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 14
\end{array}\right]
$$

The basis vectors w_{1} and w_{2} are just v_{5} and v_{6} (in either order). To be concrete, we take $w_{1}=v_{5}=e_{2}$ and $w_{2}=v_{6}=e_{3}$. Let V_{3} be the T-invariant subspace of V which is generated by v_{1} and v_{7}. The minimal polynomial of $\left.T\right|_{V_{3}}$ is obviously equal to g_{3}, since
$(x-2)^{4}$ (which is the minimal polynomial of $\left.\left.T\right|_{\left(v_{1}, T\left(v_{1}\right), \ldots\right)}\right)$ and $(x-3)^{2}$, (which is the minimal polynomial of $\left.\left.T\right|_{\left(v_{7}, T\left(v_{7}\right), \ldots\right)}\right)$ both divide g_{3} and g_{3} is the minimal polynomial of T. If need be, we can use the Chinese Remainder Theorem to find a T-cyclic generator of V_{3}. On the other hand, I am confident that $v_{1}+v_{7}$ is a T-cyclic generator of the T-cyclic subspace generated by V_{3}. I'll just take $w_{3}=v_{1}+v_{7}=e_{7}+e_{8}, w_{4}=T\left(w_{3}\right)$, $w_{5}=T\left(w_{4}\right), w_{6}=T\left(w_{5}\right), w_{7}=T\left(w_{6}\right), w_{8}=T\left(w_{7}\right):$

$$
w_{3}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1 \\
1
\end{array}\right], w_{4}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0 \\
1 \\
2 \\
3
\end{array}\right], w_{5}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
6 \\
1 \\
4 \\
4 \\
9
\end{array}\right], w_{6}=\left[\begin{array}{c}
1 \\
0 \\
0 \\
27 \\
6 \\
12 \\
8 \\
27
\end{array}\right], w_{7}=\left[\begin{array}{c}
8 \\
0 \\
0 \\
108 \\
24 \\
32 \\
16 \\
81
\end{array}\right], w_{8}=\left[\begin{array}{c}
40 \\
0 \\
0 \\
405 \\
80 \\
80 \\
32 \\
243
\end{array}\right] .
$$

(A computer calculated $w_{i}=A W_{i-1}$ for $4 \leq i \leq 8$ for me.) Maybe the easiest way to verify that w_{1}, \ldots, w_{8} are linearly independent is to have a computer calculate that the determinant of

$$
\left[\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 1 & 8 & 40 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 6 & 27 & 108 & 405 \\
0 & 0 & 0 & 0 & 1 & 6 & 24 & 80 \\
0 & 0 & 0 & 1 & 4 & 12 & 32 & 80 \\
0 & 0 & 1 & 2 & 4 & 8 & 16 & 32 \\
0 & 0 & 1 & 3 & 9 & 27 & 81 & 243
\end{array}\right]
$$

is equal to 1 . You might also want to verify that

$$
A w_{8}-14 w_{8}+81 w_{7}-248 w_{6}+424 w_{5}-384 w_{4}+144 w_{3}=0
$$

11. Let $T: V \rightarrow V$ be a linear transformation of a finite dimensional vector space over the field F. Suppose that the minimal polynomial of T is equal to the characteristic polynomial of T. Prove that V is cyclic as a $\boldsymbol{k}[x]$-module, (where $x v=T(v)$ for all $v \in V)$.

Think about the rational canonical form of T. There are monic polynomials g_{1}, \ldots, g_{s} in $F[x]$ and T-cyclic subspaces V_{1}, \ldots, V_{s} of V, with $g_{1}|\ldots| g_{s}$, the minimal polynomial of T equal to g_{s}, the characteristic polynomial of T equal to $\prod_{i=1}^{s} g_{i}$, the minimal polynomial of $\left.T\right|_{V_{i}}=g_{i}$ for all i, and $\bigoplus_{i=1}^{s} V_{i}=V$. The minimal polynomial of T is equal to the characteristic polynomial of T; therefore, $s=1$ and the T-cyclic subspace V_{1} is equal to all of V.
12. Let k be a field, f be a polynomial in the ring $k[x]$, and a be an element of k.
(a) Prove that $f(a)=0$ if and only if f is in the ideal $(x-a)$.
(b) Prove that f has at most $\operatorname{deg} f$ roots in k.
(c) Let G be a finite subgroup of $(\boldsymbol{k} \backslash\{0\}, \times)$. Describe the group structure of the Abelian group G. Prove your answer. ${ }^{3}$
(12a). Apply the division algorithm to the pair f and $x-a$ to obtain $g(x) \in \boldsymbol{k}[x]$ and $\alpha \in k$ with

$$
f(x)=(x-a) g(x)+\alpha .
$$

Observe that $f(a)=\alpha$. It follows that $f(a)=0$ if and only if $\alpha=0$. Thus, $f(a)=0$ if and only if f is in the ideal $(x-a)$.
(12b). Let a_{1}, \ldots, a_{s} be the distinct roots of $f(x)$. Apply (12a) to see that

$$
f(x)=\left(x-a_{1}\right) f_{1}(x)
$$

for some $f_{1}(x) \in \boldsymbol{k}[x]$. Observe that

$$
0=f\left(a_{2}\right)=\left(a_{2}-a_{1}\right) f_{1}\left(a_{2}\right)
$$

The element $a_{2}-a_{1}$ of k is not zero; hence, $f_{1}\left(a_{2}\right)=0$. Apply (12a) again to obtain $f_{2}(x) \in \boldsymbol{k}[x]$ with $f(x)=\left(x-a_{1}\right)\left(x-a_{2}\right) f_{2}(x)$. Repeat this procedure s times to obtain

$$
f(x)=\prod_{i=1}^{s}\left(x-a_{i}\right) f_{s}(x)
$$

for some $f_{s}(x) \in \boldsymbol{k}[x]$. Observe that

$$
s \leq s+\operatorname{deg} f_{s}=\operatorname{deg} f
$$

(12c). According to the structure theorem for finitely generated Abelian groups, there are elements g_{1}, \ldots, g_{s} in G so that the group G is equal to the direct product

$$
\left\langle g_{1}\right\rangle \times \cdots \times\left\langle g_{s}\right\rangle
$$

and

$$
\operatorname{ord}\left(g_{1}\right)\left|\operatorname{ord}\left(g_{2}\right)\right| \cdots \mid \operatorname{ord}\left(g_{s}\right),
$$

where $\operatorname{ord}(g)$ is the order of the element g of G. It follows that

$$
|G|=\prod_{i=1}^{s} \operatorname{ord}\left(g_{i}\right) \quad \text { and } \quad g^{\operatorname{ord}\left(g_{s}\right)}=1, \forall g \in G
$$

Apply part (12b) to see that $|G| \leq \operatorname{ord}\left(g_{s}\right)$; hence, $s=1$ and G is cyclic.

[^2]
[^0]: ${ }^{1}$ I gave this problem in a previous course. In 2024 it is not important to me that you follow the precise instructions I gave in 2003. Nonetheless, these instructions do give a clear indication of which calculations are very easy to do by hand and which calculations I find irritating to do by hand.

[^1]: ${ }^{2}$ If T is a linear transformation of finite dimensional vector spaces, then the kernel of T is also a finite dimensional vector space. The nullity of T is the dimension of the kernel of T.

[^2]: ${ }^{3}$ We did this before. At that point we had not proven all of the pieces. Now we have proven all of the pieces. The purpose of this problem is to get you to think through and write down the various steps.

