
MATH 702 – SPRING 2024
HOMEWORK 3

9. Let M and N be n × n matrices over Q. Suppose M and N are similar over
C. Prove M and N are similar over Q. (Recall that the matrices M and N are
similar over the field kkk if there exists an invertible matrix A with entries in kkk such
that M = ANA−1. In other words, the matrices M and N are similar over the field
kkk if the linear transformation kkkn → kkkn, which is given by v 7→ Mv, is represented
by the matrix N after a change of basis for kkkn.)

Let M ′ and N ′ be the rational canonical forms of M and N (respectively) over Q. Of
course, M and M ′ are similar over Q and N and N ′ are similar over Q. The matrices
M and N are similar over C; consequently, M and N have the same rational canonical,
P , form over C. On the other hand, the rational canonical form of M over Q is exactly
the same as the rational canonical form of M over C; so, M ′ = P . The exact same
reasoning shows that N ′ = P .

10. 1 (This is not a computer problem. Do not use the computer in parts (10a) or
(10c). After you have (10a) and (10c), as you find (10b) and (10d), I do not
mind if you use a computer to multiply polynomials or to multiply matrices times
column vectors. You may also use the computer to calculate a determinant. Do not
use the computer for anything other than those three processes.) Let T : R8 → R8

be the linear transformation which is given by multiplication by the matrix

A =



2 0 0 0 1 0 0 0
0 2 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 3 0 0 0 1
0 0 0 0 2 1 0 0
0 0 0 0 0 2 1 0
0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 3


(a) What is the Jordan canonical form of T?
(b) What is the rational canonical form of T?
(c) Find a basis B for R8 so that the matrix of T with respect to B is your answer

to (10a).
(d) Find a basis C for R8 so that the matrix of T with respect to C is your answer

to (10b).

1I gave this problem in a previous course. In 2024 it is not important to me that you follow the precise
instructions I gave in 2003. Nonetheless, these instructions do give a clear indication of which calculations
are very easy to do by hand and which calculations I find irritating to do by hand.
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Let e1, . . . , e8 be the standard basis for R8. (In other words, A is the matrix of T with
respect to e1, . . . , e8.) Let B be named v1, . . . , v8; and C be named w1, . . . , w8. Let B the
the matrix of T with respect to B and C be the matrix of T with respect to C .

The characteristic polynomial of T is (x − 2)6(x − 3)2. I will put the Jordan blocks
that correspond to the eigenvalue 2 before the Jordan blocks that correspond to the
eigenvalue 3. The nullity2 of

A− 3I =



−1 0 0 0 1 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 −1 1 0 0
0 0 0 0 0 −1 1 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0


is 1. So there is one Jordan block associated to the eigenvalue 3 and that Jordan block

is J2(3) =

[
3 0
1 3

]
. The eigenvector for J2(3) is v8 = e4. The vector v7 must satisfy

T (v7) = 3v7 + v8; so, v7 is a solution of (A − 3I)v7 = e4. We already calculated A − 3I.
It is obvious that (A− 3I)(e8) = e4. We take v7 = e8. The nullity of

A− 2I =



0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1


is 3; so B has 3 Jordan blocks associated to the eigenvalue 2. Three linearly independent
eigenvectors which belong to the eigenvalue 2 are e1, e2, e3. The nullity of (A− 2I)2

=



0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1





0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1


=



0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 2
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1


is 4; so J has exactly one Jordan block of size 2 or more. Keep in mind that

nullity(Je(2)− 2I)2 − nullity(Je(2)− 2I) =

{
0 if e = 1

1 if e ≤ 2.

2If T is a linear transformation of finite dimensional vector spaces, then the kernel of T is also a finite
dimensional vector space. The nullity of T is the dimension of the kernel of T .
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There is only one partition of 6 with 3 pieces and exactly one piece of size 2 or more;
namely, 6 = 4 + 1 + 1. I am ready to answer (a):

B =



2 0 0 0 0 0 0 0
1 2 0 0 0 0 0 0
0 1 2 0 0 0 0 0
0 0 1 2 0 0 0 0
0 0 0 0 2 0 0 0
0 0 0 0 0 2 0 0
0 0 0 0 0 0 3 0
0 0 0 0 0 0 1 3


.

I look for v3 with T (v3) = 2v3 + z for some non-zero element z of the eigenspace of A
which belongs to the eigenvalue 2. In other words, z is an element of the subspace of
R8 which is spanned by e1, e2, e3. I want v3 with

(A− 2I)v3 =



∗
∗
∗
0
0
0
0
0


,

with some ∗ not zero. Look at A − 2I. I pick v3 = e5 (and v4 = e1.) To find v2, I solve
(A− 2I)v2 = v3. So, I take v2 = e6. To find v1, I solve (A− 2I)v1 = v2. So, I take v2 = e7.
I pick v5 = e2 and v6 = e3. My answer to (c) is:

v1 = e7, v2 = e6, v3 = e5, v4 = e1, v5 = e2, v6 = e3, v7 = e8, v8 = e4.

I check that Ae7 = 2e7 + e6, Ae6 = 2e6 + e5, Ae5 = 2e5 + e1, Ae1 = 2e1, Ae2 = 2e2,
Ae3 = 2e3, Ae8 = 3e8 + e4, and Ae4 = 3e4.

The invariant factors for T are g1 = x− 2, g2 = x− 2, and

g3 = (x− 2)4(x− 3)2 = x6 − 14x5 + 81x4 − 248x3 + 424x2 − 384x+ 144.

(A computer expanded g3 for me.) The answer to (b) is

C =



2 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 0 0 0 0 0 −144
0 0 1 0 0 0 0 384
0 0 0 1 0 0 0 −424
0 0 0 0 1 0 0 248
0 0 0 0 0 1 0 −81
0 0 0 0 0 0 1 14


The basis vectors w1 and w2 are just v5 and v6 (in either order). To be concrete, we
take w1 = v5 = e2 and w2 = v6 = e3 . Let V3 be the T -invariant subspace of V which is
generated by v1 and v7. The minimal polynomial of T |V3 is obviously equal to g3, since
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(x − 2)4 (which is the minimal polynomial of T |(v1,T (v1),... )) and (x − 3)2, (which is the
minimal polynomial of T |(v7,T (v7),... )) both divide g3 and g3 is the minimal polynomial of
T . If need be, we can use the Chinese Remainder Theorem to find a T -cyclic generator
of V3. On the other hand, I am confident that v1 + v7 is a T -cyclic generator of the
T -cyclic subspace generated by V3. I’ll just take w3 = v1 + v7 = e7 + e8, w4 = T (w3),
w5 = T (w4), w6 = T (w5), w7 = T (w6), w8 = T (w7):

w3 =



0
0
0
0
0
0
1
1


, w4 =



0
0
0
1
0
1
2
3


, w5 =



0
0
0
6
1
4
4
9


, w6 =



1
0
0
27
6
12
8
27


, w7 =



8
0
0
108
24
32
16
81


, w8 =



40
0
0
405
80
80
32
243


.

(A computer calculated wi = AWi−1 for 4 ≤ i ≤ 8 for me.) Maybe the easiest way to
verify that w1, . . . , w8 are linearly independent is to have a computer calculate that the
determinant of 

0 0 0 0 0 1 8 40
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 6 27 108 405
0 0 0 0 1 6 24 80
0 0 0 1 4 12 32 80
0 0 1 2 4 8 16 32
0 0 1 3 9 27 81 243


is equal to 1. You might also want to verify that

Aw8 − 14w8 + 81w7 − 248w6 + 424w5 − 384w4 + 144w3 = 0.

11. Let T : V → V be a linear transformation of a finite dimensional vector space over
the field F . Suppose that the minimal polynomial of T is equal to the characteristic
polynomial of T . Prove that V is cyclic as a kkk[x]-module, (where xv = T (v) for all
v ∈ V ).

Think about the rational canonical form of T . There are monic polynomials g1, . . . , gs in
F [x] and T -cyclic subspaces V1, . . . , Vs of V , with g1| . . . |gs, the minimal polynomial of

T equal to gs, the characteristic polynomial of T equal to
s∏

i=1

gi, the minimal polynomial

of T |Vi
= gi for all i, and

s⊕
i=1

Vi = V . The minimal polynomial of T is equal to the

characteristic polynomial of T ; therefore, s = 1 and the T -cyclic subspace V1 is equal to
all of V .

12. Let kkk be a field, f be a polynomial in the ring kkk[x], and a be an element of kkk.
(a) Prove that f(a) = 0 if and only if f is in the ideal (x− a).
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(b) Prove that f has at most deg f roots in kkk.
(c) Let G be a finite subgroup of (kkk \ {0},×). Describe the group structure of the

Abelian group G. Prove your answer. 3

(12a). Apply the division algorithm to the pair f and x − a to obtain g(x) ∈ kkk[x] and
α ∈ kkk with

f(x) = (x− a)g(x) + α.

Observe that f(a) = α. It follows that f(a) = 0 if and only if α = 0. Thus, f(a) = 0 if
and only if f is in the ideal (x− a).

(12b). Let a1, . . . , as be the distinct roots of f(x). Apply (12a) to see that

f(x) = (x− a1)f1(x)

for some f1(x) ∈ kkk[x]. Observe that

0 = f(a2) = (a2 − a1)f1(a2).

The element a2 − a1 of kkk is not zero; hence, f1(a2) = 0. Apply (12a) again to obtain
f2(x) ∈ kkk[x] with f(x) = (x− a1)(x− a2)f2(x). Repeat this procedure s times to obtain

f(x) =
s∏

i=1

(x− ai)fs(x)

for some fs(x) ∈ kkk[x]. Observe that

s ≤ s+ deg fs = deg f.

(12c). According to the structure theorem for finitely generated Abelian groups, there
are elements g1, . . . , gs in G so that the group G is equal to the direct product

〈g1〉 × · · · × 〈gs〉

and
ord(g1)| ord(g2)| · · · | ord(gs),

where ord(g) is the order of the element g of G. It follows that

|G| =
s∏

i=1

ord(gi) and gord(gs) = 1, ∀g ∈ G.

Apply part (12b) to see that |G| ≤ ord(gs); hence, s = 1 and G is cyclic.

3We did this before. At that point we had not proven all of the pieces. Now we have proven all of the
pieces. The purpose of this problem is to get you to think through and write down the various steps.


