MATH 702 - SPRING 2024

HOMEWORK 2

DUE WEDNESDAY, JANUARY 31, 2024 BY THE BEGINNING OF CLASS.

5. Prove that a finitely generated module over a (commutative) Noetherian ring is Noetherian. The ring R is Noetherian if the ideals of R satisfy the Ascending Chain Condition. The R-module M is Noetherian if the R-submodules of M satisfy the Ascending Chain Condition.
6. Let \boldsymbol{k} be a field and $R=\boldsymbol{k}[x, y, z, w]$ and $S=\boldsymbol{k}\left[s_{0}, s_{1}, t_{0}, t_{1}\right]$ be polynomial rings over \boldsymbol{k}. Let $\phi: R \rightarrow S$ be the ring homomorphism with $\phi(x)=s_{0} t_{0}, \phi(y)=s_{1} t_{1}, \phi(z)=s_{1} t_{0}$, $\phi(w)=s_{0} t_{1}$, and the restriction of ϕ to k is the identity map. Prove that the kernel of ϕ is the ideal $(x y-z w)$ of R. The direction $(x y-z w) \subseteq \operatorname{ker} \phi$ is obvious. Your job is to prove the other inclusion. (This problem yields an algebraic proof that

$$
\frac{\boldsymbol{k}[x, y, z, w]}{(x y-z w)}
$$

is the homogeneous coordinate ring of the image of the Segre embedding of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ into \mathbb{P}^{3}.)
7. Prove Eisenstein's criterion for irreducibility. Let $f=a_{0}+\cdots+a_{n} x^{n}$ be a primitive polynomial in $\mathbb{Z}[x]$. Suppose there is a prime integer p with $p \mid a_{i}$ for $0 \leq i \leq n-1$, but $p^{2} X a_{0}$ and $p X a_{n}$. Prove that f is an irreducible polynomial in $\mathbb{Q}[x]$.
8. Let p be a prime integer. Prove that the polynomial $f=x^{p-1}+x^{p-2}+\cdots+x+1$ is irreducible in $\mathbb{Q}[x]$. Hint: Observe that $f(x)=\frac{x^{p}-1}{x-1}$ and that $f(x)$ is irreducible if and only if $f(x+1)$ is irreducible.

