HOMEWORK 2

DUE WEDNESDAY, JANUARY 31, 2024 BY THE BEGINNING OF CLASS.

5. Prove that a finitely generated module over a (commutative) Noetherian ring is Noetherian. The ring R is Noetherian if the ideals of R satisfy the Ascending Chain Condition. The R-module M is Noetherian if the R-submodules of M satisfy the Ascending Chain Condition.

It suffices to show that R^{ℓ} is Noetherian for each positive integer ℓ. (Indeed M is a quotient of R^{ℓ} for some ℓ. Every quotient of a Noetherian module is Noetherian. If $A \subseteq B$ are R-modules, then submodules of B / A all have the form C / A where C is a submodule of B which contains A. If B is a Noetherian module, then B / A is a Noetherian module.) Let N be a submodule of R^{n}. Consider the projection proj : $R^{\ell} \rightarrow$ R which is given by

$$
\operatorname{proj}\left(\left[\begin{array}{c}
r_{1} \\
\vdots \\
r_{n}
\end{array}\right]\right)=r_{1}
$$

Observe that $\operatorname{proj}(N)$ is an ideal of R; thus, $\operatorname{proj}(N)$ is finitely generated. It follows that there are elements $n_{1}, \ldots, n_{\#}$ in N so that $N=R\left(n_{1}, \ldots, n_{\#}\right)+N^{\prime}$ where every element of N^{\prime} has the form

$$
\left[\begin{array}{c}
0 \\
* \\
\vdots \\
*
\end{array}\right] .
$$

It follows by induction on ℓ that N^{\prime} is finitely generated. Therefore, N is also finitely generated.
6. Let \boldsymbol{k} be a field and $R=\boldsymbol{k}[x, y, z, w]$ and $S=\boldsymbol{k}\left[s_{0}, s_{1}, t_{0}, t_{1}\right]$ be polynomial rings over \boldsymbol{k}. Let $\phi: R \rightarrow S$ be the ring homomorphism with $\phi(x)=s_{0} t_{0}, \phi(y)=s_{1} t_{1}$, $\phi(z)=s_{1} t_{0}, \phi(w)=s_{0} t_{1}$, and the restriction of ϕ to k is the identity map. Prove that the kernel of ϕ is the ideal $(x y-z w)$ of R. The direction $(x y-z w) \subseteq \operatorname{ker} \phi$ is obvious. Your job is to prove the other inclusion. (This problem yields an algebraic proof that

$$
R=\frac{k[x, y, z, w]}{(x y-z w)}
$$

is the homogeneous coordinate ring of the image of the Segre embedding of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ into \mathbb{P}^{3}.)

Consider the following list of monomials in S :

$$
\begin{array}{ll}
\left(s_{0} t_{0}\right)^{i}\left(s_{1} t_{1}\right)^{j} & 0 \leq i, j \\
\left(s_{0} t_{0}\right)^{i}\left(s_{1} t_{1}\right)^{j}\left(s_{0} t_{1}\right)^{k} & 0 \leq i, j \text { and } 1 \leq k \\
\left(s_{0} t_{0}\right)^{i}\left(s_{1} t_{1}\right)^{j}\left(s_{1} t_{0}\right)^{k} & 0 \leq i, j \text { and } 1 \leq k .
\end{array}
$$

Observe that no monomial on the above list is repeated! (Each monomial in the first line has the same degree in s_{1} and t_{1}. The monomials in the second line have more degree in t_{1} than they have in s_{1}. The monomials in the third line have more degree in s_{1} than they have in t_{1}.) In particular, the monomials in this list are linearly independent elements of S over k. If some element f of S is a k linear combination of monomials from the above list, then f is the zero element of S if and only if each coefficient of f is zero.

Here is the clever observation. Every element of R can be written as a polynomial which does not involve the product $z w$ plus an element of $(x y-z w)$. In other words, every element of R is a linear combination of

$$
\begin{array}{ll}
x^{i} y^{j} & 0 \leq i, j \\
x^{i} y^{j} w^{k} & 0 \leq i, j \text { and } 1 \leq k \\
x^{i} y^{j} z^{k} & 0 \leq i, j \text { and } 1 \leq k .
\end{array}
$$

plus an element of $(x y-z w)$. The homomorphism ϕ carries the listed monomials from R to the listed monomials from S. It follows that an element g of R is in the kernel of ϕ if and only if g is in the ideal $(x y-z w)$.
7. Prove Eisenstein's criterion for irreducibility. Let $f=a_{0}+\cdots+a_{n} x^{n}$ be a primitive polynomial in $\mathbb{Z}[x]$. Suppose there is a prime integer p with $p \mid a_{i}$ for $0 \leq i \leq n-1$, but $p^{2} X a_{0}$ and $p X a_{n}$. Prove that f is an irreducible polynomial in $\mathbb{Q}[x]$.
We proved in class (Cor. 3.44.(b)) that a primitive polynomial in $\mathbb{Z}[x]$ is irreducible in $\mathbb{Z}[x]$ if and only if it is irreducible in $\mathbb{Q}[x]$. Consequently, we need only show that f is irreducible in $\mathbb{Z}[x]$. Suppose that $f=g h$ in $\mathbb{Z}[x]$ with g and h primitive polynomials in $\mathbb{Z}[x]$. We must show that either g or h is a constant.

Write $g=\sum_{i} g_{i} x^{i}$ and $h=\sum h_{i} x^{i}$, with g_{i} and h_{i} in \mathbb{Z}. The hypothesis tells us that p divides $a_{0}=g_{0} h_{0}$. Let us say that $p \mid g_{0}$. The hypothesis also tells us that $p^{2} X a_{0}$; hence, $p \nmid h_{0}$. The hypothesis also tells us that $p \nless a_{n}$; hence there is a least index r with $p \nless g_{r}$. We look at the coefficient

$$
a_{r}=g_{r} h_{0}+g_{r-1} h_{1}+\ldots
$$

We see that $p \nmid a_{r}$; thus $r=n$ and $h=h_{0}$ is a constant.
8. Let p be a prime integer. Prove that the polynomial $f=x^{p-1}+x^{p-2}+\cdots+x+1$ is irreducible in $\mathbb{Q}[x]$. Hint: Observe that $f(x)=\frac{x^{p}-1}{x-1}$ and that $f(x)$ is irreducible if and only if $f(x+1)$ is irreducible.

I have made both observations. Let $g(x)=f(x+1)$. I show that $g(x)$ is irreducible. I see that

$$
\begin{gathered}
g(x)=\frac{(x+1)^{p}-1}{(x+1)-1}=\frac{\sum_{i=0}^{p}\binom{p}{i} x^{i}-1}{x}=\frac{x^{p}+\binom{p}{p-1} x^{p-1}+\cdots+\binom{p}{2} x^{2}+p x}{x} \\
=x^{p-1}+\binom{p}{p-1} x^{p-2}+\cdots+\binom{p}{2} x+p .
\end{gathered}
$$

Apply the Eisenstein criteria to see that g (and hence f) is irreducible.

