
MATH 702 – SPRING 2024
HOMEWORK 1

DUE MONDAY, JANUARY 29, 2020 BY THE BEGINNING OF CLASS.

1. Prove that ℤ[
√

−5] is not a UFD.

Here is the plan.
(a) Find all units in ℤ[

√

−5].
(b) Observe that 3 ⋅ 3 = 9 = (2 +

√

−5) ⋅ (2 −
√

−5).
(c) Observe that 3, 2 +

√

−5, and 2 −
√

−5 all are irreducible elements of ℤ[
√

−5], but 3 ≠
u(2 +

√

−5) for any unit u of ℤ[
√

−5].
Let |a + bⅈ| =

√

a2 + b2 for a, b ∈ ℝ. Let � =
√

−5 and R = ℤ[�].

(a) We first prove that ±1 are the only units in R. Indeed, if u = a+ b� and v are units in R with

uv = 1, then |u|2|v|2 = uūvv̄ = 1; hence (a2 + 5b2)|v|2 = 1 in ℤ. The only units of ℤ are ±1,
thus, (a2 + 5b2) = ±1 so b = 0 and a = ±1. and
(b) There is nothing for us to do.

(c) It is clear that 3 ≠ u(2 +
√

−5) for any unit u (i.e., u = ±1) of ℤ[
√

−5]. We show that 3,

2 + � and 2 − � are all irreducible in R. Suppose that any one of these numbers factors as

# = (a + b�)(c + d�)

in R. Multiply by the conjugate equation to get

9 = (a2 + 5b2)(c2 + 5d2)

in ℤ. The positive factors of 9 in ℤ are 1, 3, 9. The factor (a2 +5b2) can not be 3. (If b ≠ 0, then
the factor is greater than 3. If b = 0, then 3 is not a perfect square in ℤ.) So, (a2 + 5b2) must be
1 or 9. So at least one of the factors (a2 + 5b2) or (c2 + 5d2) of 9 is 1. Thus, one of the factors
(a + b�) or (c + d�) of # must be a unit in R.

2. Express the ideal (2) in the ring ℤ[
√

−5] as the product of prime ideals. (If I and J are
ideals of the (commutative) ring R, then IJ is the smallest ideal of R that contains all
elements of the form ij with i ∈ I and j ∈ J .)

I claim that (2) = (2, 1 +
√

−5)(2, 1 −
√

−5) and that each of the ideals (2, 1 +
√

−5) and
(2, 1 −

√

−5) is a proper prime ideal of R = ℤ[
√

−5].
It is clear that (2, 1 +

√

−5)(2, 1 −
√

−5) ⊆ (2). Indeed,

2(2) = 4 ∈ (2), 2(1−
√

−5) ∈ (2), 2(1+
√

−5) ∈ (2), and (1−
√

−5)(1+
√

−5) = 6 ∈ (2).

It is also clear that (2) ⊆ (2, 1 +
√

−5)(2, 1 −
√

−5). Indeed, we just calculated that 6 and 4 are
in the ideal (2, 1 +

√

−5)(2, 1 −
√

−5). It follows that 6 − 4 is in (2, 1 +
√

−5)(2, 1 −
√

−5).
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If (2, 1 +
√

−5) is a proper ideal R, then it is clear that (2, 1 +
√

−5) is a maximal ideal of
R (hence a prime ideal of R). Indeed, the only elements of R∕(2, 1 +

√

−5) are 0̄ and 1̄. (In

particular, say,
√

−5 = −1 = 1.) It follows that there aren’t any ideals of R with

(2, 1 +
√

−5) ⊊ ideal ⊊ R.

A small calculation shows that (2, 1+
√

−5) is a proper ideal ofR. Indeed, if 1 ∈ (2, 1+
√

−5),
then there are integers a, b, c, d with

(0.0.1) 1 = 2(a + b
√

−5) + (c + d
√

−5)(1 +
√

−5).

1 = 2a + c − 5d +
√

−5(2b + c + d).
Equate the real and imaginary parts of the preceeding equation to obtain the inequlaities:

1 = 2a + c − 5d and 0 = 2b + c + d.

Thus
1 = 2a + (c + d) − 6d and − 2b = c + d.

Thus
1 = 2a − 2b − 6d.

The integer 1 is not an even integer; thus, the equation (0.0.1) has no solution and (2, 1 +
√

−5)
is a proper prime ideal of R.

One can repeat the argument to prove that (2, 1 −
√

−5) is a proper prime ideal of R. Or a
better idea is to prove that complex conjugation is an automorphism of R; then use the fact that
an automorphism carries a prime ideal of R to a prime ideal of R.
This answer mainly came from Keith Conrad’s notes:
https://kconrad.math.uconn.edu/blurbs/gradnumthy/idealfactor.pdf

3. Find a commutative domain R and an element r in R with r not 0, r not a unit, and r not
equal to a finite product of irreducible elements of R.

Consider the ascending chain of rings

ℤ[x] ⊆ ℤ[ 2
√

x] ⊆ ℤ[ 4
√

x] ⊆ ℤ[ 8
√

x] ⊆⋯ .

Each of these rings is a polynomial ring in one variable over a PID; hence a UFD. Let

R =
∞
⋃

n=1
ℤ[ 2n

√

x].

Observe that the only units of R are 1 and −1. Observe that if f ∈ ℤ[ 2n
√

x], for some n, and
f is irreducible in R, then f is also irreducible in ℤ[ 2n

√

x]. (The easiest way to see this is: any
factorization inℤ[ 2n

√

x] remains a factorization inR and elements ofℤ[ 2n
√

x]which are not units
in ℤ[ 2n

√

x] remain non-units in R.)
Observe that x is not zero in R, x is not a unit in R, and x can not be factored into a finite

product of irreducible elements. Indeed, if x factored into a finite product of irreducible elements
in R, then all of these irreducible factors would live in ℤ[ 2n

√

x], for some n. The ring ℤ[ 2n
√

x]
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is a UFD. The only factorization of x into irreducibles in ℤ[ 2n
√

x] is x = ( 2n
√

x)2n . This is a
contradiction because 2n

√

x is not irreducible in R.

4. Prove thatℤ[ⅈ] is a Euclidean domain. (LetR be a domain. Suppose that there is a function
f from R ⧵ {0} to the set of non-negative integers with the property that whenever a and
b are elements of R with b not zero, then there exists q and r in R such that a = bq + r and
either r = 0 or f (r) < f (b). In this case R is called a Euclidean Domain.)

Let R = ℤ[ⅈ]. This answer mainly came from
https://www.cmi.ac.in/∼shreejit/Gaussian.pdf
Let f (l +mⅈ) = l2 +m2 for l and m in ℤ, not both zero. Observe that f (r1r2) = f (r1)f (r2)

for r1 and r2 in R ⧵ {0}.
First, we treat the case where b ∈ ℤ and a = l + mⅈ , with l and m in ℤ and b ≠ 0. We find

q1, q2, r1, and r2 in ℤ with l = bq1 + r1, m = bq2 + r2, and −b∕2 ≤ r1, r2 ≤ b∕2. Observe that

a = l + mⅈ = b(q1 + q2ⅈ) + (r1 + r2ⅈ),

and either r1 + r2ⅈ = 0 or

f (r1 + r2ⅈ) = r21 + r
2
2 ≤ b2∕4 + b2∕4 < b2 = f (b).

Nowwe treat the general case, a, b ∈ Rwith b ≠ 0. Apply the first case to the pair of elements
ab̄ and bb̄ (where means complex conjugate). Of course, bb̄ is positive integer. Find q and r
in R with

ab̄ = qbb̄ + r and either r = 0 or f (r) < f (bb̄).
If r = 0, then ab̄ = qbb̄ and a = qb (because b ≠ 0) and this is fine. Henceforth, assume r ≠ 0.
Observe that

(a − qb)b̄ = r
and

f (a − qb)f (b̄) = f
(

(a − qb)b̄
)

= f (r) < f (bb̄) = f (b)f (b̄).
Thus,

f (a − qb) < f (b).
Hence,

a = qb + (a − qb) and f (a − qb) < f (b).
We have shown that R is a Euclidean domain.


