MATH 702 - SPRING 2024
HOMEWORK 1
DUE MONDAY, JANUARY 29, 2020 BY THE BEGINNING OF CLASS.

1. Prove that Z[v/—5] is not a UFD.
Here is the plan.
(a) Find all units in Z[/-5].

(b) Observe that3-3=9=2+ V-5 -2 - V-5).
(c) Observe that 3, 2 + 4/—5, and 2 — 4/-5 all are irreducible elements of Z[1/—5], but 3 #

u(2 + 1/ -=5) for any unit u of Z[/-5].
Let |a+ bi| = Va2 + b2 fora,b € R. Let® = /-5 and R = Z[0].
(a) We first prove that +1 are the only units in R. Indeed, if u = a + b6 and v are units in R with
uv = 1, then |u|?|v|* = uitvd = 1; hence (a® + 5b*)|v|*> = 1 in Z. The only units of Z are +1,
thus, (a®> + 5b*>) = +1 sob=0and a = +1. and
(b) There is nothing for us to do.
(c) It is clear that 3 # u(2 + y/—5) for any unit u (i.e., u = +1) of Z[V/—5]. We show that 3,
2+ 0 and 2 — 6 are all irreducible in R. Suppose that any one of these numbers factors as
#=(a+ bO)(c+db)
in R. Multiply by the conjugate equation to get
9 = (a® + 5b*)(c* + 5d%)
in Z. The positive factors of 9 in Z are 1, 3,9. The factor (a®> + 5b*) can not be 3. (If b # 0, then
the factor is greater than 3. If b = 0, then 3 is not a perfect square in Z.) So, (a*> + 5b*) must be
1 or 9. So at least one of the factors (a®> + 5b%) or (¢? + 5d*) of 9 is 1. Thus, one of the factors
(a + bO) or (¢ + dO) of # must be a unit in R.

2. Express the ideal (2) in the ring Z[1/—5] as the product of prime ideals. (If / and J are
ideals of the (commutative) ring R, then /J is the smallest ideal of R that contains all
elements of the form ij withi € I and j € J.)

I claim that (2) = (2,1 + V-5)(2,1 — 4/=5) and that each of the ideals (2,1 + 1/—5) and
(2,1 —+/=5) is a proper prime ideal of R = Z[1/-5].
Itis clear that (2,1 + v/ —=5)(2,1 — v/ —=5) C (2). Indeed,

2)=4€2), 2(1-Vv-5€@), 2(1+V-5€2), and (I-V-5)(+V-5=6¢€ ().
It is also clear that (2) C (2,1 + V-=5)(2, 1 — v/=5). Indeed, we just calculated that 6 and 4 are
in the ideal (2,1 + v/-5)(2,1 — 4/=5). It follows that 6 — 4 is in (2,1 + \/=5)(2,1 — \/-=5).

1



2 ALGEBRA II

If (2,1 + v/=5) 1s a proper ideal R, then it is clear that (2,1 + v/ —5) is a maximal ideal of
R (hence a prime ideal of R). Indeed, the only elements of R/(2,1 4+ v/=5) are 0 and 1. (In

particular, say, /-5 = 1= T.) It follows that there aren’t any ideals of R with

2,1+ v-=5) Cideal C R.

A small calculation shows that (2, 1+4/—5) is a proper ideal of R. Indeed, if 1 € (2, 14+4/-5),
then there are integers a, b, ¢, d with

0.0.1) 1=2(a+bV=5)+(c +dV=5)1 + V-53).
1=2a+4c—5d+\V—=52b+c+d).

Equate the real and imaginary parts of the preceeding equation to obtain the inequlaities:
l1=2a+c—-5d and O0=2b+c+d.

Thus
1=2a+(c+d)—6d and -—-2b=c+d.
Thus
1 =2a—-2b-6d.
The integer 1 is not an even integer; thus, the equation (0.0.1) has no solution and (2, 1 + \/——5)
is a proper prime ideal of R.

One can repeat the argument to prove that (2,1 — \/——5) is a proper prime ideal of R. Or a
better idea is to prove that complex conjugation is an automorphism of R; then use the fact that
an automorphism carries a prime ideal of R to a prime ideal of R.

This answer mainly came from Keith Conrad’s notes:

https://kconrad.math.uconn.edu/blurbs/gradnumthy/idealfactor.pdf

3. Find a commutative domain R and an element r in R with r not O,  not a unit, and r not
equal to a finite product of irreducible elements of R.

Consider the ascending chain of rings

Z[x] C Z[3/x] € Z[{/x] C Z[{/x] C - .

Each of these rings is a polynomial ring in one variable over a PID; hence a UFD. Let
R=|]JzI¥/xl.
n=1

Observe that the only units of R are 1 and —1. Observe that if f € Z[ 2{/;], for some n, and
f is irreducible in R, then f is also irreducible in Z[ %]. (The easiest way to see this is: any
factorization in Z| 2\"/;] remains a factorization in R and elements of Z[ 2{/;] which are not units
in Z[ 2\"/;] remain non-units in R.)

Observe that x is not zero in R, x is not a unit in R, and x can not be factored into a finite

product of irreducible elements. Indeed, if x factored into a finite product of irreducible elements
in R, then all of these irreducible factors would live in Z] 2{/;], for some n. The ring Z[ 2{/§]
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is a UFD. The only factorization of x into irreducibles in Z[ 2{/;] isx = (2{/;)2". This is a
contradiction because 2\/§ is not irreducible in R.

. Prove that Z[/] is a Euclidean domain. (Let R be a domain. Suppose that there is a function
f from R\ {0} to the set of non-negative integers with the property that whenever a« and
b are elements of R with b not zero, then there exists ¢ and r in R such that a = bg + r and
either »r = 0 or f(r) < f(b). In this case R is called a Euclidean Domain.)

Let R = Z[7]. This answer mainly came from
https://www.cmi.ac.in/~shreejit/Gaussian.pdf

Let f(£ + mi) = £* + m? for £ and m in Z, not both zero. Observe that f(r,r,) = f(r))f(r,)
for r,and r, in R\ {0}.

First, we treat the case where b € Z and a = ¢ + mi, with £ and m in Z and b # 0. We find
4i» 4, 'y, and r, in Z with € = bq, + ry, m = bq, + r,, and —b/2 < r,,r, < b/2. Observe that

a=7¢+mi=>b(q + qi)+ (r, +r,h),
and either r, + r,i = 0 or
fri+rd)=ri+r <b/4+ b /4 < b = f(b).

Now we treat the general case, a, b € R with b # 0. Apply the first case to the pair of elements
ab and bb (where ~ means complex conjugate). Of course, bb is positive integer. Find ¢ and r
in R with

ab=gbb+r andeitherr =0o0r f(r) < f(bb).
If » = 0, then ab = gbb and a = gb (because b # 0) and this is fine. Henceforth, assume r # 0.
Observe that

(a—gbb=r
and
fla—gb)f(b) = f((a—gb)b) = f(r) < f(bb) = f(b)f (D).
Thus,
fla—qb) < f(b).
Hence,

a=qgb+(a—qgb) and f(a—gb) < f(b).

We have shown that R is a Euclidean domain.



