MATH 702 - SPRING 2024

HOMEWORK 1

DUE MONDAY, JANUARY 29, 2020 BY THE BEGINNING OF CLASS.

1. Prove that $\mathbb{Z}[\sqrt{-5}]$ is not a UFD.

Here is the plan.
(a) Find all units in $\mathbb{Z}[\sqrt{-5}]$.
(b) Observe that $3 \cdot 3=9=(2+\sqrt{-5}) \cdot(2-\sqrt{-5})$.
(c) Observe that $3,2+\sqrt{-5}$, and $2-\sqrt{-5}$ all are irreducible elements of $\mathbb{Z}[\sqrt{-5}]$, but $3 \neq$ $u(2+\sqrt{-5})$ for any unit u of $\mathbb{Z}[\sqrt{-5}]$.
Let $|a+b \stackrel{\imath}{ } \mathbf{|}|=\sqrt{a^{2}+b^{2}}$ for $a, b \in \mathbb{R}$. Let $\theta=\sqrt{-5}$ and $R=\mathbb{Z}[\theta]$.
(a) We first prove that ± 1 are the only units in R. Indeed, if $u=a+b \theta$ and v are units in R with $u v=1$, then $|u|^{2}|v|^{2}=u \bar{u} v \bar{v}=1$; hence $\left(a^{2}+5 b^{2}\right)|v|^{2}=1$ in \mathbb{Z}. The only units of \mathbb{Z} are ± 1, thus, $\left(a^{2}+5 b^{2}\right)= \pm 1$ so $b=0$ and $a= \pm 1$. and
(b) There is nothing for us to do.
(c) It is clear that $3 \neq u(2+\sqrt{-5})$ for any unit u (i.e., $u= \pm 1)$ of $\mathbb{Z}[\sqrt{-5}]$. We show that 3 , $2+\theta$ and $2-\theta$ are all irreducible in R. Suppose that any one of these numbers factors as

$$
\#=(a+b \theta)(c+d \theta)
$$

in R. Multiply by the conjugate equation to get

$$
9=\left(a^{2}+5 b^{2}\right)\left(c^{2}+5 d^{2}\right)
$$

in \mathbb{Z}. The positive factors of 9 in \mathbb{Z} are $1,3,9$. The factor $\left(a^{2}+5 b^{2}\right)$ can not be 3 . (If $b \neq 0$, then the factor is greater than 3 . If $b=0$, then 3 is not a perfect square in \mathbb{Z}.) So, $\left(a^{2}+5 b^{2}\right)$ must be 1 or 9 . So at least one of the factors $\left(a^{2}+5 b^{2}\right)$ or $\left(c^{2}+5 d^{2}\right)$ of 9 is 1 . Thus, one of the factors $(a+b \theta)$ or $(c+d \theta)$ of \# must be a unit in R.
2. Express the ideal (2) in the ring $\mathbb{Z}[\sqrt{-5}]$ as the product of prime ideals. (If I and J are ideals of the (commutative) ring R, then $I J$ is the smallest ideal of R that contains all elements of the form $i j$ with $i \in I$ and $j \in J$.)
I claim that $(2)=(2,1+\sqrt{-5})(2,1-\sqrt{-5})$ and that each of the ideals $(2,1+\sqrt{-5})$ and ($2,1-\sqrt{-5}$) is a proper prime ideal of $R=\mathbb{Z}[\sqrt{-5}]$.

It is clear that $(2,1+\sqrt{-5})(2,1-\sqrt{-5}) \subseteq(2)$. Indeed,
$2(2)=4 \in(2), \quad 2(1-\sqrt{-5}) \in(2), \quad 2(1+\sqrt{-5}) \in(2), \quad$ and $\quad(1-\sqrt{-5})(1+\sqrt{-5})=6 \in(2)$.
It is also clear that $(2) \subseteq(2,1+\sqrt{-5})(2,1-\sqrt{-5})$. Indeed, we just calculated that 6 and 4 are in the ideal $(2,1+\sqrt{-5})(2,1-\sqrt{-5})$. It follows that $6-4$ is in $(2,1+\sqrt{-5})(2,1-\sqrt{-5})$.

If $(2,1+\sqrt{-5})$ is a proper ideal R, then it is clear that $(2,1+\sqrt{-5})$ is a maximal ideal of R (hence a prime ideal of R). Indeed, the only elements of $R /(2,1+\sqrt{-5})$ are $\overline{0}$ and $\overline{1}$. (In particular, say, $\overline{\sqrt{-5}}=\overline{-1}=\overline{1}$.) It follows that there aren't any ideals of R with

$$
(2,1+\sqrt{-5}) \subsetneq \text { ideal } \subsetneq R .
$$

A small calculation shows that $(2,1+\sqrt{-5})$ is a proper ideal of R. Indeed, if $1 \in(2,1+\sqrt{-5})$, then there are integers a, b, c, d with

$$
\begin{gather*}
1=2(a+b \sqrt{-5})+(c+d \sqrt{-5})(1+\sqrt{-5}) . \tag{0.0.1}\\
1=2 a+c-5 d+\sqrt{-5}(2 b+c+d) .
\end{gather*}
$$

Equate the real and imaginary parts of the preceeding equation to obtain the inequaities:

$$
1=2 a+c-5 d \quad \text { and } \quad 0=2 b+c+d
$$

Thus

$$
1=2 a+(c+d)-6 d \quad \text { and } \quad-2 b=c+d
$$

Thus

$$
1=2 a-2 b-6 d
$$

The integer 1 is not an even integer; thus, the equation (0.0.1) has no solution and ($2,1+\sqrt{-5}$) is a proper prime ideal of R.

One can repeat the argument to prove that $(2,1-\sqrt{-5})$ is a proper prime ideal of R. Or a better idea is to prove that complex conjugation is an automorphism of R; then use the fact that an automorphism carries a prime ideal of R to a prime ideal of R.

This answer mainly came from Keith Conrad's notes:
https://kconrad.math.uconn.edu/blurbs/gradnumthy/idealfactor.pdf
3. Find a commutative domain R and an element r in R with r not $0, r$ not a unit, and r not equal to a finite product of irreducible elements of R.
Consider the ascending chain of rings

$$
\mathbb{Z}[x] \subseteq \mathbb{Z}[\sqrt[2]{x}] \subseteq \mathbb{Z}[\sqrt[4]{x}] \subseteq \mathbb{Z}[\sqrt[8]{x}] \subseteq \cdots
$$

Each of these rings is a polynomial ring in one variable over a PID; hence a UFD. Let

$$
R=\bigcup_{n=1}^{\infty} \mathbb{Z}[\sqrt[2 n]{x}]
$$

Observe that the only units of R are 1 and -1 . Observe that if $f \in \mathbb{Z}[\sqrt[2 n]{x}]$, for some n, and f is irreducible in R, then f is also irreducible in $\mathbb{Z}[\sqrt[n]{x}]$. (The easiest way to see this is: any factorization in $\mathbb{Z}[\sqrt[2 n]{x}]$ remains a factorization in R and elements of $\mathbb{Z}[\sqrt[2 n]{x}]$ which are not units in $\mathbb{Z}[\sqrt[2 n]{x}]$ remain non-units in R.)

Observe that x is not zero in R, x is not a unit in R, and x can not be factored into a finite product of irreducible elements. Indeed, if x factored into a finite product of irreducible elements in R, then all of these irreducible factors would live in $\mathbb{Z}[\sqrt[2 n]{x}]$, for some n. The ring $\mathbb{Z}[\sqrt[2 n]{x}]$
is a UFD. The only factorization of x into irreducibles in $\mathbb{Z}[\sqrt[n^{n}]{x}]$ is $x=(\sqrt[2^{n}]{x})^{2^{n}}$. This is a contradiction because $\sqrt[2 n]{x}$ is not irreducible in R.
4. Prove that $\mathbb{Z}\left[{ }^{i}\right]$ is a Euclidean domain. (Let R be a domain. Suppose that there is a function f from $R \backslash\{0\}$ to the set of non-negative integers with the property that whenever a and b are elements of R with b not zero, then there exists q and r in R such that $a=b q+r$ and either $r=0$ or $f(r)<f(b)$. In this case R is called a Euclidean Domain.)

Let $R=\mathbb{Z}\left[{ }^{i}\right]$. This answer mainly came from
https://www.cmi.ac.in/~shreejit/Gaussian.pdf
Let $f(\ell+m i)=\ell^{2}+m^{2}$ for ℓ and m in \mathbb{Z}, not both zero. Observe that $f\left(r_{1} r_{2}\right)=f\left(r_{1}\right) f\left(r_{2}\right)$ for r_{1} and r_{2} in $R \backslash\{0\}$.

First, we treat the case where $b \in \mathbb{Z}$ and $a=\ell+m i$, with ℓ and m in \mathbb{Z} and $b \neq 0$. We find q_{1}, q_{2}, r_{1}, and r_{2} in \mathbb{Z} with $\ell=b q_{1}+r_{1}, m=b q_{2}+r_{2}$, and $-b / 2 \leq r_{1}, r_{2} \leq b / 2$. Observe that

$$
a=\ell+m i=b\left(q_{1}+q_{2^{i}}{ }^{i}\right)+\left(r_{1}+r_{2^{j}}\right),
$$

and either $r_{1}+r_{2}{ }^{j}=0$ or

$$
f\left(r_{1}+r_{2}{ }^{i}\right)=r_{1}^{2}+r_{2}^{2} \leq b^{2} / 4+b^{2} / 4<b^{2}=f(b) .
$$

Now we treat the general case, $a, b \in R$ with $b \neq 0$. Apply the first case to the pair of elements $a \bar{b}$ and $b \bar{b}$ (where ${ }^{-}$means complex conjugate). Of course, $b \bar{b}$ is positive integer. Find q and r in R with

$$
a \bar{b}=q b \bar{b}+r \quad \text { and either } r=0 \text { or } \quad f(r)<f(b \bar{b}) .
$$

If $r=0$, then $a \bar{b}=q b \bar{b}$ and $a=q b$ (because $b \neq 0$) and this is fine. Henceforth, assume $r \neq 0$. Observe that

$$
(a-q b) \bar{b}=r
$$

and

$$
f(a-q b) f(\bar{b})=f((a-q b) \bar{b})=f(r)<f(b \bar{b})=f(b) f(\bar{b}) .
$$

Thus,

$$
f(a-q b)<f(b) .
$$

Hence,

$$
a=q b+(a-q b) \quad \text { and } \quad f(a-q b)<f(b) .
$$

We have shown that R is a Euclidean domain.

