MATH 701 - FALL 2023
 HOMEWORK 7
 DUE MONDAY, NOVEMBER 13 BY THE BEGINNING OF CLASS.

17. Prove that A_{4} does not have a subgroup of order 6 .
18. Let $\phi: \mathbb{Z} / 4 \mathbb{Z} \rightarrow \operatorname{Aut}(\mathbb{Z} / 3 \mathbb{Z})$ be the homomorphism with

$$
\left.\phi(\bar{b})\right|_{\bar{c}}=(-1)^{b} \bar{c}
$$

for all $\bar{b} \in \mathbb{Z} / 4 \mathbb{Z}$ and $\bar{c} \in \mathbb{Z} / 3 \mathbb{Z}$. (We say this a little more slowly: ϕ is a homomorphism from $\mathbb{Z} / 4 \mathbb{Z}$ to $\operatorname{Aut}(\mathbb{Z} / 3 \mathbb{Z})$. If \bar{b} is in $\mathbb{Z} / 4 \mathbb{Z}$, then $\phi(\bar{b})$ is an automorphism of $\mathbb{Z} / 3 \mathbb{Z}$. If \bar{b} is in $\mathbb{Z} / 4 \mathbb{Z}$ and $\bar{c} \in \mathbb{Z} / 3 \mathbb{Z}$, then $\phi(\bar{b})$ sends \bar{c} to $\left.(-1)^{b} \bar{c}.\right)^{1}$ Let T be the group $\mathbb{Z} / 3 \mathbb{Z} \rtimes_{\phi} \mathbb{Z} / 4 \mathbb{Z}$.
(a) What is the order of each element of T ?
(b) Identify elements x and y in T with $T=\langle x, y\rangle x^{6}=\mathrm{id}, y^{2}=x^{3}$, and $y x y^{-1}=x^{5}$.
(c) Let F be the free group on the two letters X and Y; and let N be the smallest normal subgroup of F which contains $X^{6}, Y^{2} X^{3}, Y X Y^{-1} X$. Prove that F / N is isomorphic to T.
19. Let $\phi: \mathbb{Z}^{4} \rightarrow \mathbb{Z}^{3}$ be the group homomorphism with $\phi(v)=M v$ for all $v \in \mathbb{Z}^{4}$, where

$$
M=\left[\begin{array}{cccc}
3 & 5 & 5 & 6 \\
2 & 7 & 10 & 7 \\
3 & 8 & 11 & 9
\end{array}\right]
$$

and $M v$ is matrix multiplication. Let G be the Abelian group $\mathbb{Z}^{3} / \operatorname{im}(\phi)$. Every element in G has the form \bar{w}, where $w \in \mathbb{Z}^{3}$.
(a) Identify elements w_{1}, \ldots, w_{r} in \mathbb{Z}^{3}, for some r, with $G=\mathbb{Z} \bar{w}_{1} \oplus \mathbb{Z} \bar{w}_{2} \oplus \cdots \oplus \mathbb{Z} \bar{w}_{r}$.
(b) What is the order of the cyclic group $\mathbb{Z} \bar{w}_{i}$ for each i ?
20. Classify the non-Abelian groups of order eight. (This instruction means state and prove a result which says, "If G is a non-Abelian group of order 8 , then G is isomorphic to exactly one of the following groups:")

[^0]
[^0]: ${ }^{1}$ If n and a are integers, we write \bar{a} for the class of a in $\mathbb{Z} / n \mathbb{Z}$.

