MATH 701 – FALL 2023 HOMEWORK 7 DUE MONDAY, NOVEMBER 13 BY THE BEGINNING OF CLASS.

- 17. Prove that A_4 does not have a subgroup of order 6.
- 18. Let $\phi : \mathbb{Z}/4\mathbb{Z} \to \operatorname{Aut}(\mathbb{Z}/3\mathbb{Z})$ be the homomorphism with

$$\left. \phi(\bar{b}) \right|_{\bar{c}} = (-1)^b \bar{c}$$

for all $\bar{b} \in \mathbb{Z}/4\mathbb{Z}$ and $\bar{c} \in \mathbb{Z}/3\mathbb{Z}$. (We say this a little more slowly: ϕ is a homomorphism from $\mathbb{Z}/4\mathbb{Z}$ to Aut($\mathbb{Z}/3\mathbb{Z}$). If \bar{b} is in $\mathbb{Z}/4\mathbb{Z}$, then $\phi(\bar{b})$ is an automorphism of $\mathbb{Z}/3\mathbb{Z}$. If \bar{b} is in $\mathbb{Z}/4\mathbb{Z}$ and $\bar{c} \in \mathbb{Z}/3\mathbb{Z}$, then $\phi(\bar{b})$ sends \bar{c} to $(-1)^b \bar{c}$.)¹ Let T be the group $\mathbb{Z}/3\mathbb{Z} \rtimes_{\phi} \mathbb{Z}/4\mathbb{Z}$.

- (a) What is the order of each element of T?
- (b) Identify elements x and y in T with $T = \langle x, y \rangle x^6 = id$, $y^2 = x^3$, and $yxy^{-1} = x^5$.
- (c) Let *F* be the free group on the two letters *X* and *Y*; and let *N* be the smallest normal subgroup of *F* which contains X^6 , Y^2X^3 , $YXY^{-1}X$. Prove that F/N is isomorphic to *T*.
- 19. Let $\phi : \mathbb{Z}^4 \to \mathbb{Z}^3$ be the group homomorphism with $\phi(v) = Mv$ for all $v \in \mathbb{Z}^4$, where

$$M = \begin{bmatrix} 3 & 5 & 5 & 6 \\ 2 & 7 & 10 & 7 \\ 3 & 8 & 11 & 9 \end{bmatrix}$$

and Mv is matrix multiplication. Let G be the Abelian group $\mathbb{Z}^3/\operatorname{im}(\phi)$. Every element in G has the form \overline{w} , where $w \in \mathbb{Z}^3$.

- (a) Identify elements w_1, \ldots, w_r in \mathbb{Z}^3 , for some *r*, with $G = \mathbb{Z}\bar{w}_1 \oplus \mathbb{Z}\bar{w}_2 \oplus \cdots \oplus \mathbb{Z}\bar{w}_r$.
- (b) What is the order of the cyclic group $\mathbb{Z}\bar{w}_i$ for each *i*?
- 20. Classify the non-Abelian groups of order eight. (This instruction means state and prove a result which says, "If G is a non-Abelian group of order 8, then G is isomorphic to exactly one of the following groups:")

¹If *n* and *a* are integers, we write \bar{a} for the class of *a* in $\mathbb{Z}/n\mathbb{Z}$.