MATH 701 – FALL 2023 HOMEWORK 7 DUE MONDAY, NOVEMBER 13 BY THE BEGINNING OF CLASS.

17. Prove that A_4 does not have a subgroup of order 6.

Assume G is a subgroup of A_4 of order 6. We expect to reach a contradiction.

Cauchy's Theorem ensures that G contains an element of order 2. The elements of A_4 of order two are

$$(1) (12)(34), (13)(24), (14)(23).$$

Thus, G contains at least one of the elements of (1). On the other hand, G has index 2 in A_4 . Thus, G must be a normal subgroup of A_4 . The elements of (1) are conjugate to one another in A_4 because

(132)(12)(34)(123) = (13)(24) and (142)(12)(34)(124) = (14)(23).

Thus, the entire group

$$\{(1), (12)(34), (13)(24), (14)(23)\}$$

is contained in G. This of course is impossible, because Lagrange's Theorem guarantees that the order of a subgroup divides the order of the group and 4 does not divide 6.

18. Let $\phi : \mathbb{Z}/4\mathbb{Z} \to \operatorname{Aut}(\mathbb{Z}/3\mathbb{Z})$ be the homomorphism with

 $\phi(\bar{b})|_{\bar{c}} = (-1)^b \bar{c}$

for all $\bar{b} \in \mathbb{Z}/4\mathbb{Z}$ and $\bar{c} \in \mathbb{Z}/3\mathbb{Z}$. (We say this a little more slowly: ϕ is a homomorphism from $\mathbb{Z}/4\mathbb{Z}$ to $\operatorname{Aut}(\mathbb{Z}/3\mathbb{Z})$). If \bar{b} is in $\mathbb{Z}/4\mathbb{Z}$, then $\phi(\bar{b})$ is an automorphism of $\mathbb{Z}/3\mathbb{Z}$. If \bar{b} is in $\mathbb{Z}/4\mathbb{Z}$ and $\bar{c} \in \mathbb{Z}/3\mathbb{Z}$, then $\phi(\bar{b})$ sends \bar{c} to $(-1)^b \bar{c}$.)¹ Let T be the group $\mathbb{Z}/3\mathbb{Z} \rtimes_{\phi} \mathbb{Z}/4\mathbb{Z}$. (a) What is the order of each element of T?

Observe that

$$(\bar{1}, \bar{2})^2 = (\bar{2}, \bar{0})$$
$$(\bar{1}, \bar{2})^3 = (\bar{0}, \bar{2})$$
$$(\bar{1}, \bar{2})^4 = (\bar{1}, \bar{0})$$
$$(\bar{1}, \bar{2})^5 = (\bar{2}, \bar{2})$$
$$(\bar{1}, \bar{2})^6 = (\bar{0}, \bar{0}).$$

¹If *n* and *a* are integers, we write \bar{a} for the class of *a* in $\mathbb{Z}/n\mathbb{Z}$.

Deduce

element	order
$(\bar{1},\bar{2})$	6
$(\bar{2},\bar{0})$	3
$(\bar{0},\bar{2})$	2
$(\bar{1},\bar{0})$	3
$(\bar{2},\bar{2})$	6.

Observe that

$(\bar{2},\bar{1})^2 = (\bar{0},\bar{2})$
$(\bar{2},\bar{1})^3 = (\bar{2},\bar{3})$
$(\bar{2},\bar{1})^4 = (\bar{0},\bar{0}).$

Deduce

element	order
$(\bar{2}, \bar{1})$	4
$(\bar{0},\bar{2})$	2
$(\bar{2}, \bar{3})$	4.

Observe that

$(\bar{1},\bar{3})^2 = (\bar{0},\bar{2})$
$(\bar{1},\bar{3})^3 = (\bar{1},\bar{1})$
$(\bar{1},\bar{3})^4 = (\bar{0},\bar{0}).$

Deduce

element	order
$(\bar{1}, \bar{3})$	4
$(\bar{0},\bar{2})$	2
$(\overline{1},\overline{1})$	4.

Observe that

$(\bar{0},\bar{1})^2$	=	$(\bar{0},\bar{2})$
$(\bar{0},\bar{1})^3$	=	$(\bar{0},\bar{3})$
$(\bar{0},\bar{1})^4$	=	$(\bar{0},\bar{0}).$

Deduce

order	element
4	$(\bar{0},\bar{1})$
2	$(\bar{0}, \bar{2})$
4.	$(\bar{0}, \bar{3})$

Altogether, we conclude that

element	order
$(\bar{0},\bar{0})$	1
$(\bar{0}, \bar{1})$	4
$(\bar{0},\bar{2})$	2
$(\bar{0}, \bar{3})$	4
$(\bar{1}, \bar{0})$	3
$(\bar{1}, \bar{1})$	4
$(\bar{1}, \bar{2})$	6
$(\bar{1}, \bar{3})$	4
$(\bar{2}, \bar{0})$	3
$(\bar{2}, \bar{1})$	4
$(\overline{2},\overline{2})$	6
$(\bar{2}, \bar{3})$	4.

(b) Identify elements x and y in T with $T = \langle x, y \rangle x^6 = id$, $y^2 = x^3$, and $yxy^{-1} = x^5$.

Let $x = (\bar{1}, \bar{2})$ and $y = (\bar{0}, \bar{1})$. We already calculated that $x^6 = (\bar{0}, \bar{0})$ and that $x^3 = (\bar{0}, \bar{2}) = y^2$. We calculate now that

$$yxy^{-1} = ((\bar{0},\bar{1})(\bar{1},\bar{2}))(\bar{0},\bar{3}) = (-\bar{1},\bar{3})(0,\bar{3}) = (-\bar{1},\bar{2}) = (\bar{2},\bar{2}) = x^{-1}.$$

Observe also that $\langle x, y \rangle$ is a subgroup of *T* of size more than 6. The group *T* has size 12; the only divisor of 12 which is larger than 6 is 12. It follows from Lagrange's Theorem that $\langle x, y \rangle = T$.

(c) Let F be the free group on the two letters X and Y; and let N be the smallest normal subgroup of F which contains X^6 , Y^2X^3 , $YXY^{-1}X$. Prove that F/N is isomorphic to T.

There is a homomorphism $\phi : F \to T$, given by $\phi(X) = x$ and $\phi(Y) = y$. We showed in part (b) that X^6 , Y^2X^3 , and $YXY^{-1}X$ are contained in ker ϕ . Of course ker ϕ is a normal subgroup of *F*. It follows that *N*, the smallest normal subgroup of *F* which contains X^6 , Y^2X^3 , and $YXY^{-1}X$, is contained in ker ϕ . Apply the first isomorphism theorem to obtain

a homomorphism

$$\bar{\phi}:\frac{F}{N}\to T$$

with $\bar{\phi}(\bar{X}) = x$ and $\bar{\phi}(\bar{Y}) = y$. We showed in part (b) that $\langle x, y \rangle = T$; thus, $\bar{\phi}$ is surjective. In particular, $\frac{F}{N}$ has at least 12 elements. On the other hand, the defining elements for N can be used to show that every element of $\frac{F}{N}$ can be written in the form $\bar{X}^i \bar{Y}^j$ with $0 \le i \le 5$ and $0 \le j \le 1$. Thus, $\frac{F}{N}$ has at most 12 elements. It follows that $\frac{F}{N}$ has exactly 12 elements and $\bar{\phi}$ is an isomorphism.

19. Let $\phi : \mathbb{Z}^4 \to \mathbb{Z}^3$ be the group homomorphism with $\phi(v) = Mv$ for all $v \in \mathbb{Z}^4$, where

$$M = \begin{bmatrix} 3 & 5 & 5 & 6 \\ 2 & 7 & 10 & 7 \\ 3 & 8 & 11 & 9 \end{bmatrix}$$

and Mv is matrix multiplication. Let G be the Abelian group $\mathbb{Z}^3/\operatorname{im}(\phi)$. Every element in G has the form \overline{w} , where $w \in \mathbb{Z}^3$.

- (a) Identify elements w_1, \ldots, w_r in \mathbb{Z}^3 , for some r, with $G = \mathbb{Z}\bar{w}_1 \oplus \mathbb{Z}\bar{w}_2 \oplus \cdots \oplus \mathbb{Z}\bar{w}_r$.
- (b) What is the order of the cyclic group $\mathbb{Z}\bar{w}_i$ for each *i*?

One of the two possible answers: The group G is isomorphic to $\frac{\mathbb{Z}}{6\mathbb{Z}}$. The group G is equal to the cyclic group

$$\mathbb{Z}\begin{bmatrix}0\\0\\1\end{bmatrix},$$

= =

and this cyclic group has order 6. Of course, every element of the coset

$$\begin{bmatrix} 0\\0\\1 \end{bmatrix} + \operatorname{im} \phi$$

is the cyclic generator of G. If your generator does not look exactly like mine, but differs from mine by an element of im ϕ , then you have the same answer.

The other possible answer: The group G is isomorphic to $\frac{\mathbb{Z}}{2\mathbb{Z}} \oplus \frac{\mathbb{Z}}{3\mathbb{Z}}$; and

$$G = \mathbb{Z}\begin{bmatrix} 0\\1\\0 \end{bmatrix} \oplus \mathbb{Z}\begin{bmatrix} 0\\1\\1 \end{bmatrix};$$

furthermore, the cyclic subgroups

$$\mathbb{Z}\begin{bmatrix} 0\\1\\0 \end{bmatrix} \text{ and } \mathbb{Z}\begin{bmatrix} 0\\1\\1 \end{bmatrix}$$

have order 2 and 3 respectively.

ALGEBRA I

In order to find the answer I applied COLUMN operations on M in order to find a better generating set for im M. When one applies column operations to M, one changes the generating set for im M, but one does not change im M at all. (Notice that M is a homomorphism $\mathbb{Z}^4 \to \mathbb{Z}^3$. When one applies column operations to M one changes the basis for \mathbb{Z}^4 . We do not care about the basis for \mathbb{Z}^4 . On the other hand, if we were to apply row operations to M, then we would be changing the basis for \mathbb{Z}^3 . We are required to report the answer in terms of the original basis for \mathbb{Z}^3 . If we change to basis for \mathbb{Z}^3 we must undo these changes later.) After applying only column operations to M, one obtains

$$M' = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -3 & 2 & 3 & 0 \\ -2 & 0 & 3 & 0 \end{bmatrix}.$$

I will show show you the intermediate steps later. At any rate M' = MP for some invertible matrix P. Notice that im M' = im M. This assertion is obvious; but it is so crucial we record a proof:

$$M' = MP \implies \operatorname{im} M' \subseteq \operatorname{im} M$$
 and
 $M = M'P^{-1} \implies \operatorname{im} M \subseteq \operatorname{im} M'.$

Observe first that im $M + \mathbb{Z} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \mathbb{Z}^3$. The inclusion \subseteq is clear. We show \supseteq . It is clear that

$$\begin{bmatrix} 0\\0\\1\end{bmatrix} \in LHS.$$

Observe that

$$\begin{bmatrix} 0\\3\\3 \end{bmatrix} - 3\begin{bmatrix} 0\\0\\1 \end{bmatrix} - \begin{bmatrix} 0\\2\\0 \end{bmatrix} = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$$

is in LHS. Now it is clear that

$$\begin{bmatrix} 1\\ -3\\ -2 \end{bmatrix} + 3 \begin{bmatrix} 0\\ 1\\ 0 \end{bmatrix} + 2 \begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix} = \begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$$

is in LHS.

Now we prove that $\operatorname{im} \phi :_{\mathbb{Z}} \begin{bmatrix} 0\\0\\1 \end{bmatrix} = 6\mathbb{Z}$. It is clear ² that $\begin{bmatrix} 0\\0\\6 \end{bmatrix} = 2\begin{bmatrix} 0\\3\\3 \end{bmatrix} - 3\begin{bmatrix} 0\\2\\0 \end{bmatrix} \in \operatorname{im} \phi.$

Suppose

$$n\begin{bmatrix}0\\0\\1\end{bmatrix} = a\begin{bmatrix}1\\-3\\2\end{bmatrix} + b\begin{bmatrix}0\\2\\0\end{bmatrix} + c\begin{bmatrix}0\\3\\3\end{bmatrix}$$

Then a = 0, n = 3c, and 0 = 2b + 3c. It follows that 3|n and 2|n. In other words, 6|n.

Now we examine the other legitimate answer. It is obvious that

im
$$M + \mathbb{Z}\begin{bmatrix} 0\\1\\1 \end{bmatrix} + \mathbb{Z}\begin{bmatrix} 0\\1\\0 \end{bmatrix} = \mathbb{Z}^3.$$

It is clear that

$$3\begin{bmatrix} 0\\1\\1 \end{bmatrix} \text{ and } 2\begin{bmatrix} 0\\1\\0 \end{bmatrix}$$

are in im ϕ . We now prove that if

$$n \begin{bmatrix} 0\\1\\1 \end{bmatrix} + m \begin{bmatrix} 0\\1\\0 \end{bmatrix} \in \operatorname{im} M,$$

then $n \in 3\mathbb{Z}$ and $m \in 2\mathbb{Z}$. Indeed, if

$$n\begin{bmatrix}0\\1\\1\end{bmatrix}+m\begin{bmatrix}0\\1\\0\end{bmatrix}=a\begin{bmatrix}1\\-3\\2\end{bmatrix}+b\begin{bmatrix}0\\2\\0\end{bmatrix}+c\begin{bmatrix}0\\3\\3\end{bmatrix},$$

then

$$a = 0, \quad n = 3c, \quad n + m = 2b + 3c.$$

It follows that $n \in 3\mathbb{Z}$ and $m \in 2\mathbb{Z}$, as claimed.

One might ask how the second answer gives to the first answer. That is easy. Recall that the homomorphism

which is given by

 $\overline{1} \mapsto (\overline{1}, \overline{1})$

 $\frac{\mathbb{Z}}{6\mathbb{Z}} \to \frac{\mathbb{Z}}{3\mathbb{Z}} \oplus \frac{\mathbb{Z}}{2\mathbb{Z}},$

²Recall that im ϕ :_{\mathbb{Z}} $\begin{bmatrix} 0\\0\\1 \end{bmatrix} = \left\{ n \in \mathbb{Z} | n \begin{bmatrix} 0\\0\\1 \end{bmatrix} \in \operatorname{im} \phi \right\}.$

is an isomorphism. If

$$G = \mathbb{Z}\begin{bmatrix} 0\\1\\1\\1 \end{bmatrix} \oplus \mathbb{Z}\begin{bmatrix} 0\\1\\0 \end{bmatrix},$$

$$\begin{bmatrix} 0\\1\\1\\0 \end{bmatrix} \text{ has order 3 and } \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix} \text{ has order 2, then}$$

$$\begin{bmatrix} 0\\1\\0\\1\\1 \end{bmatrix} = \begin{bmatrix} 0\\2\\1\\0 \end{bmatrix} \in \text{ im } \phi \text{; consequently,}$$

$$\begin{bmatrix} 0\\2\\1\\1 \end{bmatrix} = \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}.$$

Here are the column operations that show that the columns of M and the columns of M' generate the same subgroup of \mathbb{Z}^3 .

Replace column 4 by column 4 minus column 3. The matrix M has been transformed into:

$$\begin{bmatrix} 3 & 5 & 5 & 1 \\ 2 & 7 & 10 & -3 \\ 3 & 8 & 11 & -2 \end{bmatrix}$$

Replace column 1 by column 1 minus 3 times column 4.

Replace column 2 by column 2 minus 5 times column 4.

Replace column 3 by column 3 minus 5 times column 4. The matrix M has been transformed into

$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 11 & 22 & 25 & -3 \\ 9 & 18 & 21 & -2 \end{bmatrix}$$

Replace column 2 by column 2 minus 2 times column 1.

Replace column 3 by column 3 minus 2 times column 1. The matrix M has been transformed into

$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 11 & 0 & 3 & -3 \\ 9 & 0 & 3 & -2 \end{bmatrix}$$

Replace column 1 by column 1 minus 3 times column 3. The matrix M has been transformed into

$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 2 & 0 & 3 & -3 \\ 0 & 0 & 3 & -2 \end{bmatrix}.$$

Rearrange the columns to obtain

$$M' = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -3 & 2 & 3 & 0 \\ -2 & 0 & 3 & 0 \end{bmatrix}.$$

In particular,

$$M' = M \underbrace{E_1 E_2 E_3 E_4 E_5 E_6}_P$$

where

$$E_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad E_{2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -3 & -5 & -5 & 1 \end{bmatrix}, \quad E_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$
$$E_{4} = \begin{bmatrix} 1 & -2 & -2 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad E_{5} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -3 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \text{and} \quad E_{6} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

Suppose you have M' and it is not immediately obvious how coker M' decomposes as a direct sum of cyclic groups. What should you do? This is also easy. Do the row operations to transform M' into a matrix with non-zero entries only on the main diagonal. Replace row 2 by row 2 plus 3 times row 1.

Replace row 3 by row 3 plus 2 times row 1. The matrix M has been transformed into

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 3 & 0 \\ 0 & 0 & 3 & 0 \end{bmatrix}.$$

Replace row 2 by row 2 minus row 3. The matrix M has been transformed into

$$M'' = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \end{bmatrix}.$$

Of course,

$$M'' = NMP,$$

where

$$N = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}.$$

Furthermore, the cokernel of M'' is isomorphic to

$$\frac{\mathbb{Z}}{1\mathbb{Z}} \oplus \frac{\mathbb{Z}}{2\mathbb{Z}} \oplus \frac{\mathbb{Z}}{3\mathbb{Z}} = \frac{\mathbb{Z}}{2\mathbb{Z}} \oplus \frac{\mathbb{Z}}{3\mathbb{Z}},$$
$$\frac{\mathbb{Z}^{3}}{\operatorname{im} M''} = \mathbb{Z} \begin{bmatrix} 0\\1\\0 \end{bmatrix} \oplus \mathbb{Z} \begin{bmatrix} 0\\0\\1 \end{bmatrix},$$

 $\begin{bmatrix} 0\\1\\0 \end{bmatrix}$ has order 2, and $\begin{bmatrix} 0\\0\\1 \end{bmatrix}$ has order 3. Apply the first isomorphism theorem to the composition

$$\mathbb{Z}^3 \xrightarrow{N} \mathbb{Z}^3 \xrightarrow{\text{natural quotient map}} \frac{\mathbb{Z}}{\text{im}(NMP)}$$

to obtain an isomorphism

$$\frac{\mathbb{Z}}{\operatorname{im}(MP)} \xrightarrow{N} \frac{\mathbb{Z}}{\operatorname{im}(NMP)}$$

We already saw that im $MP = \operatorname{im} M$. We conclude that

$$\frac{\mathbb{Z}}{\operatorname{im} M} \xrightarrow{N} \frac{\mathbb{Z}}{\operatorname{im}(NMP)}$$

is an isomorphism. Observe that

$$N^{-1} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
$$N^{-1} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}.$$

and

$$N^{-1} \begin{bmatrix} 0\\0\\1 \end{bmatrix} = \begin{bmatrix} 0\\1\\1 \end{bmatrix}.$$

This calculation yields the second of our two answers.

20. Classify the non-Abelian groups of order eight. (This instruction means state and prove a result which says, "If G is a non-Abelian group of order 8, then G is isomorphic to exactly one of the following groups:")

Theorem 0.1. If G is a non-Abelian group of order 8, then G is isomorphic to exactly one of the groups D_4 or Q_8 .

Proof. Observe that first that some element of G has order 4. (Indeed, if every element of Gsquares to the identity element, then G is Abelian.) Let a be an element of G of order 4. The index of $\langle a \rangle$ in G is 2; so, $\langle a \rangle$ is a normal subgroup of G. Let b be any element of $G \setminus \langle a \rangle$. Observe that $bab^{-1} \in \langle a \rangle$ and $b^2 \in \langle a \rangle$ because $\langle a \rangle$ is a normal subgroup of G. The order of bab^{-1} is the same as the order of a; consequently, bab^{-1} can not equal id or a^2 . Furthermore, if bab^{-1} were equal to a, then G would be Abelian. Thus, bab^{-1} must equal a^3 . If b^2 were equal to either a or a^3 , then $\langle a \rangle$ would be a proper subgroup of $\langle b \rangle$; and therefore, $\langle b \rangle$ would have to equal G (by Lagrange's Theorem) and this has been ruled out because $\langle b \rangle$ is Abelian. There are

two possibilities left. If $b^2 = id$, then $G \cong D_4$ (see Theorem 2.61.1) if $b^2 = a^2$, then $G \cong Q_8$ (see Exercise 2.62.1).