MATH 701 - FALL 2023
 HOMEWORK 7
 DUE MONDAY, NOVEMBER 13 BY THE BEGINNING OF CLASS.

17. Prove that A_{4} does not have a subgroup of order 6 .

Assume G is a subgroup of A_{4} of order 6. We expect to reach a contradiction.
Cauchy's Theorem ensures that G contains an element of order 2. The elements of A_{4} of order two are
(12)(34), (13)(24), (14)(23).

Thus, G contains at least one of the elements of (1). On the other hand, G has index 2 in A_{4}. Thus, G must be a normal subgroup of A_{4}. The elements of (1) are conjugate to one another in A_{4} because

$$
(132)(12)(34)(123)=(13)(24) \quad \text { and } \quad(142)(12)(34)(124)=(14)(23) .
$$

Thus, the entire group

$$
\{(1),(12)(34),(13)(24),(14)(23)\}
$$

is contained in G. This of course is impossible, because Lagrange's Theorem guarantees that the order of a subgroup divides the order of the group and 4 does not divide 6 .
18. Let $\phi: \mathbb{Z} / 4 \mathbb{Z} \rightarrow \operatorname{Aut}(\mathbb{Z} / 3 \mathbb{Z})$ be the homomorphism with

$$
\left.\phi(\bar{b})\right|_{\bar{c}}=(-1)^{b} \bar{c}
$$

for all $\bar{b} \in \mathbb{Z} / 4 \mathbb{Z}$ and $\bar{c} \in \mathbb{Z} / 3 \mathbb{Z}$. (We say this a little more slowly: ϕ is a homomorphism from $\mathbb{Z} / 4 \mathbb{Z}$ to $\operatorname{Aut}(\mathbb{Z} / 3 \mathbb{Z})$. If \bar{b} is in $\mathbb{Z} / 4 \mathbb{Z}$, then $\phi(\bar{b})$ is an automorphism of $\mathbb{Z} / 3 \mathbb{Z}$. If \bar{b} is in $\mathbb{Z} / 4 \mathbb{Z}$ and $\bar{c} \in \mathbb{Z} / 3 \mathbb{Z}$, then $\phi(\bar{b})$ sends \bar{c} to $(-1)^{b} \bar{c}$. ${ }^{1}$ Let T be the group $\mathbb{Z} / 3 \mathbb{Z} \rtimes_{\phi} \mathbb{Z} / 4 \mathbb{Z}$.
(a) What is the order of each element of T ?

Observe that

$$
\begin{aligned}
& (\overline{1}, \overline{2})^{2}=(\overline{2}, \overline{0}) \\
& (\overline{1}, \overline{2})^{3}=(\overline{0}, \overline{2}) \\
& (\overline{1}, \overline{2})^{4}=(\overline{1}, \overline{0}) \\
& (\overline{1}, \overline{2})^{5}=(\overline{2}, \overline{2}) \\
& (\overline{1}, \overline{2})^{6}=(\overline{0}, \overline{0}) .
\end{aligned}
$$

[^0]Deduce

element	order
$(\overline{1}, \overline{2})$	6
$(\overline{2}, \overline{0})$	3
$(\overline{0}, \overline{2})$	2
$(\overline{1}, \overline{0})$	3
$(\overline{2}, \overline{2})$	6.

Observe that

$$
\begin{aligned}
& (\overline{2}, \overline{1})^{2}=(\overline{0}, \overline{2}) \\
& (\overline{2}, \overline{1})^{3}=(\overline{2}, \overline{3}) \\
& (\overline{2}, \overline{1})^{4}=(\overline{0}, \overline{0}) .
\end{aligned}
$$

Deduce
element
$(\overline{2}, \overline{1})$
$(\overline{0}, \overline{2})$
$(\overline{2}, \overline{3})$
order
4
2
4.

Observe that

$$
\begin{aligned}
& (\overline{1}, \overline{3})^{2}=(\overline{0}, \overline{2}) \\
& (\overline{1}, \overline{3})^{3}=(\overline{1}, \overline{1}) \\
& (\overline{1}, \overline{3})^{4}=(\overline{0}, \overline{0}) .
\end{aligned}
$$

Deduce
element
$(\overline{1}, \overline{3})$
$(\overline{0}, \overline{2})$
$(\overline{1}, \overline{1})$
order
4
2
4.

Observe that
$(\overline{0}, \overline{1})^{2}=(\overline{0}, \overline{2})$
$(\overline{0}, \overline{1})^{3}=(\overline{0}, \overline{3})$
$(\overline{0}, \overline{1})^{4}=(\overline{0}, \overline{0})$.

Deduce

element	order
$(\overline{0}, \overline{1})$	4
$(\overline{0}, \overline{2})$	2
$(\overline{0}, \overline{3})$	4.

Altogether, we conclude that

element	order
$(\overline{0}, \overline{0})$	1
$(\overline{0}, \overline{1})$	4
$(\overline{0}, \overline{2})$	2
$(\overline{0}, \overline{3})$	4
$(\overline{1}, \overline{0})$	3
$(\overline{1}, \overline{1})$	4
$(\overline{1}, \overline{2})$	6
$(\overline{1}, \overline{3})$	4
$(\overline{2}, \overline{0})$	3
$(\overline{2}, \overline{1})$	4
$(\overline{2}, \overline{2})$	6
$(\overline{2}, \overline{3})$	4.

(b) Identify elements x and y in T with $T=\langle x, y\rangle x^{6}=\operatorname{id}, y^{2}=x^{3}$, and $y x y^{-1}=x^{5}$.

Let $x=(\overline{1}, \overline{2})$ and $y=(\overline{0}, \overline{1})$. We already calculated that $x^{6}=(\overline{0}, \overline{0})$ and that $x^{3}=(\overline{0}, \overline{2})=y^{2}$. We calculate now that

$$
y x y^{-1}=((\overline{0}, \overline{1})(\overline{1}, \overline{2}))(\overline{0}, \overline{3})=(-\overline{1}, \overline{3})(0, \overline{3})=(-\overline{1}, \overline{2})=(\overline{2}, \overline{2})=x^{-1} .
$$

Observe also that $\langle x, y\rangle$ is a subgroup of T of size more than 6 . The group T has size 12; the only divisor of 12 which is larger than 6 is 12 . It follows from Lagrange's Theorem that $\langle x, y\rangle=T$.
(c) Let F be the free group on the two letters X and Y; and let N be the smallest normal subgroup of F which contains $X^{6}, Y^{2} X^{3}, Y X Y^{-1} X$. Prove that F / N is isomorphic to T.

There is a homomorphism $\phi: F \rightarrow T$, given by $\phi(X)=x$ and $\phi(Y)=y$. We showed in part (b) that $X^{6}, Y^{2} X^{3}$, and $Y X Y^{-1} X$ are contained in $\operatorname{ker} \phi$. Of course ker ϕ is a normal subgroup of F. It follows that N, the smallest normal subgroup of F which contains X^{6}, $Y^{2} X^{3}$, and $Y X Y^{-1} X$, is contained in ker ϕ. Apply the first isomorphism theorem to obtain
a homomorphism

$$
\bar{\phi}: \frac{F}{N} \rightarrow T
$$

with $\bar{\phi}(\bar{X})=x$ and $\bar{\phi}(\bar{Y})=y$. We showed in part (b) that $\langle x, y\rangle=T$; thus, $\bar{\phi}$ is surjective. In particular, $\frac{F}{N}$ has at least 12 elements. On the other hand, the defining elements for N can be used to show that every element of $\frac{F}{N}$ can be written in the form $\bar{X}^{i} \bar{Y}^{j}$ with $0 \leq i \leq 5$ and $0 \leq j \leq 1$. Thus, $\frac{F}{N}$ has at most 12 elements. It follows that $\frac{F}{N}$ has exactly 12 elements and $\bar{\phi}$ is an isomorphism.
19. Let $\phi: \mathbb{Z}^{4} \rightarrow \mathbb{Z}^{3}$ be the group homomorphism with $\phi(v)=M v$ for all $v \in \mathbb{Z}^{4}$, where

$$
M=\left[\begin{array}{cccc}
3 & 5 & 5 & 6 \\
2 & 7 & 10 & 7 \\
3 & 8 & 11 & 9
\end{array}\right]
$$

and $M v$ is matrix multiplication. Let G be the Abelian group $\mathbb{Z}^{3} / \operatorname{im}(\phi)$. Every element in G has the form \bar{w}, where $w \in \mathbb{Z}^{3}$.
(a) Identify elements w_{1}, \ldots, w_{r} in \mathbb{Z}^{3}, for some r, with $G=\mathbb{Z} \bar{w}_{1} \oplus \mathbb{Z} \bar{w}_{2} \oplus \cdots \oplus \mathbb{Z} \bar{w}_{r}$.
(b) What is the order of the cyclic group $\mathbb{Z} \bar{w}_{i}$ for each i ?

One of the two possible answers: The group G is isomorphic to $\frac{\mathbb{Z}}{6 \mathbb{Z}}$. The group G is equal to the cyclic group

$$
\mathbb{Z}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

and this cyclic group has order 6 . Of course, every element of the coset

$$
\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]+\operatorname{im} \phi
$$

is the cyclic generator of G. If your generator does not look exactly like mine, but differs from mine by an element of $\operatorname{im} \phi$, then you have the same answer.

The other possible answer: The group G is isomorphic to $\frac{\mathbb{Z}}{2 \mathbb{Z}} \oplus \frac{\mathbb{Z}}{3 \mathbb{Z}}$; and

$$
G=\mathbb{Z}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \oplus \mathbb{Z} \overline{\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]}
$$

furthermore, the cyclic subgroups

$$
\left.\overline{\mathbb{Z}} \overline{0} \begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \quad \text { and } \quad \mathbb{Z}\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

have order 2 and 3 respectively.

In order to find the answer I applied COLUMN operations on M in order to find a better generating set for im M. When one applies column operations to M, one changes the generating set for $\operatorname{im} M$, but one does not change im M at all. (Notice that M is a homomorphism $\mathbb{Z}^{4} \rightarrow \mathbb{Z}^{3}$. When one applies column operations to M one changes the basis for \mathbb{Z}^{4}. We do not care about the basis for \mathbb{Z}^{4}. On the other hand, if we were to apply row operations to M, then we would be changing the basis for \mathbb{Z}^{3}. We are required to report the answer in terms of the original basis for \mathbb{Z}^{3}. If we change to basis for \mathbb{Z}^{3} we must undo these changes later.) After applying only column operations to M, one obtains

$$
M^{\prime}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-3 & 2 & 3 & 0 \\
-2 & 0 & 3 & 0
\end{array}\right] .
$$

I will show show you the intermediate steps later. At any rate $M^{\prime}=M P$ for some invertible matrix P. Notice that im $M^{\prime}=\mathrm{im} M$. This assertion is obvious; but it is so crucial we record a proof:

$$
\begin{aligned}
M^{\prime}=M P & \Longrightarrow \operatorname{im} M^{\prime} \subseteq \operatorname{im} M \text { and } \\
M=M^{\prime} P^{-1} & \Longrightarrow \operatorname{im} M \subseteq \operatorname{im} M^{\prime} .
\end{aligned}
$$

Observe first that $\operatorname{im} M+\mathbb{Z}\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]=\mathbb{Z}^{3}$. The inclusion \subseteq is clear. We show \supseteq. It is clear that

$$
\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \in \text { LHS. }
$$

Observe that

$$
\left[\begin{array}{l}
0 \\
3 \\
3
\end{array}\right]-3\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]-\left[\begin{array}{l}
0 \\
2 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

is in LHS. Now it is clear that

$$
\left[\begin{array}{c}
1 \\
-3 \\
-2
\end{array}\right]+3\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+2\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

is in LHS.

Now we prove that $\operatorname{im} \phi: \mathbb{Z}\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]=6 \mathbb{Z}$. It is clear ${ }^{2}$ that

$$
\left[\begin{array}{l}
0 \\
0 \\
6
\end{array}\right]=2\left[\begin{array}{l}
0 \\
3 \\
3
\end{array}\right]-3\left[\begin{array}{l}
0 \\
2 \\
0
\end{array}\right] \in \operatorname{im} \phi
$$

Suppose

$$
n\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=a\left[\begin{array}{c}
1 \\
-3 \\
2
\end{array}\right]+b\left[\begin{array}{l}
0 \\
2 \\
0
\end{array}\right]+c\left[\begin{array}{l}
0 \\
3 \\
3
\end{array}\right] .
$$

Then $a=0, n=3 c$, and $0=2 b+3 c$. It follows that $3 \mid n$ and $2 \mid n$. In other words, $6 \mid n$.
Now we examine the other legitimate answer. It is obvious that

$$
\operatorname{im} M+\mathbb{Z}\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]+\mathbb{Z}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\mathbb{Z}^{3}
$$

It is clear that

$$
3\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] \text { and } 2\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

are in $\operatorname{im} \phi$. We now prove that if

$$
n\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]+m\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \in \operatorname{im} M
$$

then $n \in 3 \mathbb{Z}$ and $m \in 2 \mathbb{Z}$. Indeed, if

$$
n\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]+m\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=a\left[\begin{array}{c}
1 \\
-3 \\
2
\end{array}\right]+b\left[\begin{array}{l}
0 \\
2 \\
0
\end{array}\right]+c\left[\begin{array}{l}
0 \\
3 \\
3
\end{array}\right],
$$

then

$$
a=0, \quad n=3 c, \quad n+m=2 b+3 c .
$$

It follows that $n \in 3 \mathbb{Z}$ and $m \in 2 \mathbb{Z}$, as claimed.
One might ask how the second answer gives to the first answer. That is easy. Recall that the homomorphism

$$
\frac{\mathbb{Z}}{6 \mathbb{Z}} \rightarrow \frac{\mathbb{Z}}{3 Z} \oplus \frac{\mathbb{Z}}{2 \mathbb{Z}},
$$

which is given by

$$
\overline{1} \mapsto(\overline{1}, \overline{1})
$$

${ }^{2}$ Recall that $\operatorname{im} \phi: \mathbb{Z}\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]=\left\{n \in \mathbb{Z} \left\lvert\, n\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right] \in \operatorname{im} \phi\right.\right\}$.
is an isomorphism. If

$$
G=\mathbb{Z}\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] \oplus \mathbb{Z} \overline{\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]}
$$

$$
\overline{\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]}+\overline{\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]}=\overline{\left[\begin{array}{l}
0 \\
2 \\
1
\end{array}\right]}
$$

generates G and has order 6 . On the other hand, $\left[\begin{array}{l}0 \\ 2 \\ 0\end{array}\right] \in \operatorname{im} \phi$; consequently,

$$
\overline{\left[\begin{array}{l}
0 \\
2 \\
1
\end{array}\right]}=\overline{\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] .}
$$

Here are the column operations that show that the columns of M and the columns of M^{\prime} generate the same subgroup of \mathbb{Z}^{3}.
Replace column 4 by column 4 minus column 3 . The matrix M has been transformed into:

$$
\left[\begin{array}{cccc}
3 & 5 & 5 & 1 \\
2 & 7 & 10 & -3 \\
3 & 8 & 11 & -2
\end{array}\right]
$$

Replace column 1 by column 1 minus 3 times column 4.
Replace column 2 by column 2 minus 5 times column 4.
Replace column 3 by column 3 minus 5 times column 4. The matrix M has been transformed into

$$
\left[\begin{array}{cccc}
0 & 0 & 0 & 1 \\
11 & 22 & 25 & -3 \\
9 & 18 & 21 & -2
\end{array}\right]
$$

Replace column 2 by column 2 minus 2 times column 1.
Replace column 3 by column 3 minus 2 times column 1 . The matrix M has been transformed into

$$
\left[\begin{array}{cccc}
0 & 0 & 0 & 1 \\
11 & 0 & 3 & -3 \\
9 & 0 & 3 & -2
\end{array}\right]
$$

Replace column 1 by column 1 minus 3 times column 3. The matrix M has been transformed into

$$
\left[\begin{array}{cccc}
0 & 0 & 0 & 1 \\
2 & 0 & 3 & -3 \\
0 & 0 & 3 & -2
\end{array}\right]
$$

Rearrange the columns to obtain

$$
M^{\prime}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-3 & 2 & 3 & 0 \\
-2 & 0 & 3 & 0
\end{array}\right] .
$$

In particular,

$$
M^{\prime}=M \underbrace{E_{1} E_{2} E_{3} E_{4} E_{5} E_{6}}_{P},
$$

where

$$
\begin{array}{ll}
E_{1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right], \quad E_{2}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-3 & -5 & -5 & 1
\end{array}\right], \quad E_{3}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \\
E_{4}=\left[\begin{array}{cccc}
1 & -2 & -2 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad E_{5}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-3 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad \text { and } E_{6}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] .
\end{array}
$$

Suppose you have M^{\prime} and it is not immediately obvious how coker M^{\prime} decomposes as a direct sum of cyclic groups. What should you do? This is also easy. Do the row operations to transform M^{\prime} into a matrix with non-zero entries only on the main diagoinal.
Replace row 2 by row 2 plus 3 times row 1 .
Replace row 3 by row 3 plus 2 times row 1 . The matrix M has been transformed into

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 2 & 3 & 0 \\
0 & 0 & 3 & 0
\end{array}\right] .
$$

Replace row 2 by row 2 minus row 3 . The matrix M has been transformed into

$$
M^{\prime \prime}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 3 & 0
\end{array}\right]
$$

Of course,

$$
M^{\prime \prime}=N M P
$$

where

$$
N=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
3 & 1 & 0 \\
2 & 0 & 1
\end{array}\right] .
$$

Furthermore, the cokernel of $M^{\prime \prime}$ is isomorphic to

$$
\begin{gathered}
\frac{\mathbb{Z}}{1 \mathbb{Z}} \oplus \frac{\mathbb{Z}}{2 \mathbb{Z}} \oplus \frac{\mathbb{Z}}{3 \mathbb{Z}}=\frac{\mathbb{Z}}{2 \mathbb{Z}} \oplus \frac{\mathbb{Z}}{3 \mathbb{Z}}, \\
\frac{\mathbb{Z}^{3}}{\operatorname{im} M^{\prime \prime}}=\mathbb{Z}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \oplus \mathbb{Z}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right],
\end{gathered}
$$

$$
\mathbb{Z}^{3} \xrightarrow{N} \mathbb{Z}^{3} \xrightarrow{\text { natural quotient map }} \frac{\mathbb{Z}}{\operatorname{im}(N M P)}
$$

to obtain an isomorphism

$$
\frac{\mathbb{Z}}{\operatorname{im}(M P)} \stackrel{N}{\longrightarrow} \frac{\mathbb{Z}}{\operatorname{im}(N M P)}
$$

We already saw that $\operatorname{im} M P=\operatorname{im} M$. We conclude that

$$
\frac{\mathbb{Z}}{\operatorname{im} M} \stackrel{N}{\longrightarrow} \frac{\mathbb{Z}}{\operatorname{im}(N M P)}
$$

is an isomorphism. Observe that

$$
N^{-1}\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-3 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

and

$$
N^{-1}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] .
$$

This calculation yields the second of our two answers.
20. Classify the non-Abelian groups of order eight. (This instruction means state and prove a result which says, "If G is a non-Abelian group of order 8 , then G is isomorphic to exactly one of the following groups:")

Theorem 0.1. If G is a non-Abelian group of order 8 , then G is isomorphic to exactly one of the groups D_{4} or Q_{8}.

Proof. Observe that first that some element of G has order 4. (Indeed, if every element of G squares to the identity element, then G is Abelian.) Let a be an element of G of order 4. The index of $\langle a\rangle$ in G is 2 ; so, $\langle a\rangle$ is a normal subgroup of G. Let b be any element of $G \backslash\langle a\rangle$. Observe that $b a b^{-1} \in\langle a\rangle$ and $b^{2} \in\langle a\rangle$ because $\langle a\rangle$ is a normal subgroup of G. The order of $b a b^{-1}$ is the same as the order of a; consequently, $b a b^{-1}$ can not equal id or a^{2}. Furthermore, if $b a b^{-1}$ were equal to a, then G would be Abelian. Thus, $b a b^{-1}$ must equal a^{3}. If b^{2} were equal to either a or a^{3}, then $\langle a\rangle$ would be a proper subgroup of $\langle b\rangle$; and therefore, $\langle b\rangle$ would have to equal G (by Lagrange's Theorem) and this has been ruled out because $\langle b\rangle$ is Abelian. There are
two possibilities left. If $b^{2}=\mathrm{id}$, then $G \cong D_{4}$ (see Theorem 2.61.1) if $b^{2}=a^{2}$, then $G \cong Q_{8}$ (see Exercise 2.62.1).

[^0]: ${ }^{1}$ If n and a are integers, we write \bar{a} for the class of a in $\mathbb{Z} / n \mathbb{Z}$.

