
MATH 701 – FALL 2023
HOMEWORK 7

DUE MONDAY, NOVEMBER 13 BY THE BEGINNING OF CLASS.

17. Prove that A4 does not have a subgroup of order 6.

Assume G is a subgroup of A4 of order 6. We expect to reach a contradiction.
Cauchy’s Theorem ensures thatG contains an element of order 2. The elements ofA4 of order

two are

(1) (12)(34), (13)(24), (14)(23).

Thus, G contains at least one of the elements of (1). On the other hand, G has index 2 in A4.
Thus, G must be a normal subgroup of A4. The elements of (1) are conjugate to one another in
A4 because

(132)(12)(34)(123) = (13)(24) and (142)(12)(34)(124) = (14)(23).

Thus, the entire group

{(1), (12)(34), (13)(24), (14)(23)}

is contained in G. This of course is impossible, because Lagrange’s Theorem guarantees that
the order of a subgroup divides the order of the group and 4 does not divide 6.

18. Let � ∶ ℤ∕4ℤ → Aut(ℤ∕3ℤ) be the homomorphism with

�(b̄)|c̄ = (−1)bc̄

for all b̄ ∈ ℤ∕4ℤ and c̄ ∈ ℤ∕3ℤ. (We say this a little more slowly: � is a homomorphism
from ℤ∕4ℤ to Aut(ℤ∕3ℤ). If b̄ is in ℤ∕4ℤ, then �(b̄) is an automorphism of ℤ∕3ℤ. If b̄ is
in ℤ∕4ℤ and c̄ ∈ ℤ∕3ℤ, then �(b̄) sends c̄ to (−1)bc̄.)1 Let T be the group ℤ∕3ℤ⋊� ℤ∕4ℤ.
(a) What is the order of each element of T ?

Observe that

(1̄, 2̄)2 = (2̄, 0̄)
(1̄, 2̄)3 = (0̄, 2̄)
(1̄, 2̄)4 = (1̄, 0̄)
(1̄, 2̄)5 = (2̄, 2̄)
(1̄, 2̄)6 = (0̄, 0̄).

1If n and a are integers, we write ā for the class of a in ℤ∕nℤ.
1
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Deduce

element order
(1̄, 2̄) 6
(2̄, 0̄) 3
(0̄, 2̄) 2
(1̄, 0̄) 3
(2̄, 2̄) 6.

Observe that

(2̄, 1̄)2 = (0̄, 2̄)
(2̄, 1̄)3 = (2̄, 3̄)
(2̄, 1̄)4 = (0̄, 0̄).

Deduce

element order
(2̄, 1̄) 4
(0̄, 2̄) 2
(2̄, 3̄) 4.

Observe that

(1̄, 3̄)2 = (0̄, 2̄)
(1̄, 3̄)3 = (1̄, 1̄)
(1̄, 3̄)4 = (0̄, 0̄).

Deduce

element order
(1̄, 3̄) 4
(0̄, 2̄) 2
(1̄, 1̄) 4.

Observe that

(0̄, 1̄)2 = (0̄, 2̄)
(0̄, 1̄)3 = (0̄, 3̄)
(0̄, 1̄)4 = (0̄, 0̄).
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Deduce

element order
(0̄, 1̄) 4
(0̄, 2̄) 2
(0̄, 3̄) 4.

Altogether, we conclude that

element order
(0̄, 0̄) 1
(0̄, 1̄) 4
(0̄, 2̄) 2
(0̄, 3̄) 4
(1̄, 0̄) 3
(1̄, 1̄) 4
(1̄, 2̄) 6
(1̄, 3̄) 4
(2̄, 0̄) 3
(2̄, 1̄) 4
(2̄, 2̄) 6
(2̄, 3̄) 4.

(b) Identify elements x and y in T with T = ⟨x, y⟩ x6 = id, y2 = x3, and yxy−1 = x5.

Let x = (1̄, 2̄) and y = (0̄, 1̄). We already calculated that x6 = (0̄, 0̄) and that x3 = (0̄, 2̄) = y2.
We calculate now that

yxy−1 =
(

(0̄, 1̄)(1̄, 2̄)
)

(0̄, 3̄) = (−1̄, 3̄)(0, 3̄) = (−1̄, 2̄) = (2̄, 2̄) = x−1.

Observe also that ⟨x, y⟩ is a subgroup of T of size more than 6. The group T has size 12;
the only divisor of 12 which is larger than 6 is 12. It follows from Lagrange’s Theorem that
⟨x, y⟩ = T .

(c) Let F be the free group on the two letters X and Y ; and let N be the smallest normal
subgroup of F which contains X6, Y 2X3, Y XY −1X. Prove that F∕N is isomorphic to
T .

There is a homomorphism � ∶ F → T , given by �(X) = x and �(Y ) = y. We showed in
part (b) that X6, Y 2X3, and Y XY −1X are contained in ker �. Of course ker � is a normal
subgroup of F . It follows that N , the smallest normal subgroup of F which contains X6,
Y 2X3, and Y XY −1X, is contained in ker �. Apply the first isomorphism theorem to obtain



4 ALGEBRA I

a homomorphism

�̄ ∶ F
N

→ T

with �̄(X̄) = x and �̄(Ȳ ) = y. We showed in part (b) that ⟨x, y⟩ = T ; thus, �̄ is surjective.
In particular, F

N
has at least 12 elements. On the other hand, the defining elements forN can

be used to show that every element of F
N

can be written in the form X̄iȲ j with 0 ≤ i ≤ 5
and 0 ≤ j ≤ 1. Thus, F

N
has at most 12 elements. It follows that F

N
has exactly 12 elements

and �̄ is an isomorphism.
19. Let � ∶ ℤ4 → ℤ3 be the group homomorphism with �(v) =Mv for all v ∈ ℤ4, where

M =
⎡

⎢

⎢

⎣

3 5 5 6
2 7 10 7
3 8 11 9

⎤

⎥

⎥

⎦

andMv is matrix multiplication. Let G be the Abelian group ℤ3∕ im(�). Every element in
G has the form w̄, where w ∈ ℤ3.
(a) Identify elements w1,… , wr in ℤ3, for some r, with G = ℤw̄1 ⊕ ℤw̄2 ⊕⋯⊕ ℤw̄r.
(b) What is the order of the cyclic group ℤw̄i for each i?

One of the two possible answers: The group G is isomorphic to ℤ
6ℤ
. The group G is equal

to the cyclic group

ℤ
⎡

⎢

⎢

⎣

0
0
1

⎤

⎥

⎥

⎦

,

and this cyclic group has order 6. Of course, every element of the coset

⎡

⎢

⎢

⎣

0
0
1

⎤

⎥

⎥

⎦

+ im�

is the cyclic generator of G. If your generator does not look exactly like mine, but differs
from mine by an element of im�, then you have the same answer.

The other possible answer: The group G is isomorphic to ℤ
2ℤ
⊕ ℤ

3ℤ
; and

G = ℤ
⎡

⎢

⎢

⎣

0
1
0

⎤

⎥

⎥

⎦

⊕ ℤ
⎡

⎢

⎢

⎣

0
1
1

⎤

⎥

⎥

⎦

;

furthermore, the cyclic subgroups

ℤ
⎡

⎢

⎢

⎣

0
1
0

⎤

⎥

⎥

⎦

and ℤ
⎡

⎢

⎢

⎣

0
1
1

⎤

⎥

⎥

⎦

have order 2 and 3 respectively.
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In order to find the answer I applied COLUMN operations onM in order to find a better
generating set for imM . When one applies column operations toM , one changes the gener-
ating set for imM , but one does not change imM at all. (Notice thatM is a homomorphism
ℤ4 → ℤ3. When one applies column operations toM one changes the basis for ℤ4. We do
not care about the basis for ℤ4. On the other hand, if we were to apply row operations toM ,
then we would be changing the basis for ℤ3. We are required to report the answer in terms
of the original basis for ℤ3. If we change to basis for ℤ3 we must undo these changes later.)
After applying only column operations toM , one obtains

M ′ =
⎡

⎢

⎢

⎣

1 0 0 0
−3 2 3 0
−2 0 3 0

⎤

⎥

⎥

⎦

.

I will show show you the intermediate steps later. At any rateM ′ =MP for some invertible
matrixP . Notice that imM ′ = imM . This assertion is obvious; but it is so crucial we record
a proof:

M ′ =MP ⟹ imM ′ ⊆ imM and
M =M ′P −1 ⟹ imM ⊆ imM ′.

Observe first that imM +ℤ
⎡

⎢

⎢

⎣

0
0
1

⎤

⎥

⎥

⎦

= ℤ3. The inclusion ⊆ is clear. We show ⊇. It is clear that

⎡

⎢

⎢

⎣

0
0
1

⎤

⎥

⎥

⎦

∈ LHS.

Observe that

⎡

⎢

⎢

⎣

0
3
3

⎤

⎥

⎥

⎦

− 3
⎡

⎢

⎢

⎣

0
0
1

⎤

⎥

⎥

⎦

−
⎡

⎢

⎢

⎣

0
2
0

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

0
1
0

⎤

⎥

⎥

⎦

is in LHS. Now it is clear that

⎡

⎢

⎢

⎣

1
−3
−2

⎤

⎥

⎥

⎦

+ 3
⎡

⎢

⎢

⎣

0
1
0

⎤

⎥

⎥

⎦

+ 2
⎡

⎢

⎢

⎣

0
0
1

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

1
0
0

⎤

⎥

⎥

⎦

is in LHS.
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Now we prove that im� ∶ℤ
⎡

⎢

⎢

⎣

0
0
1

⎤

⎥

⎥

⎦

= 6ℤ. It is clear 2 that

⎡

⎢

⎢

⎣

0
0
6

⎤

⎥

⎥

⎦

= 2
⎡

⎢

⎢

⎣

0
3
3

⎤

⎥

⎥

⎦

− 3
⎡

⎢

⎢

⎣

0
2
0

⎤

⎥

⎥

⎦

∈ im�.

Suppose

n
⎡

⎢

⎢

⎣

0
0
1

⎤

⎥

⎥

⎦

= a
⎡

⎢

⎢

⎣

1
−3
2

⎤

⎥

⎥

⎦

+ b
⎡

⎢

⎢

⎣

0
2
0

⎤

⎥

⎥

⎦

+ c
⎡

⎢

⎢

⎣

0
3
3

⎤

⎥

⎥

⎦

.

Then a = 0, n = 3c, and 0 = 2b + 3c. It follows that 3|n and 2|n. In other words, 6|n.

Now we examine the other legitimate answer. It is obvious that

imM + ℤ
⎡

⎢

⎢

⎣

0
1
1

⎤

⎥

⎥

⎦

+ ℤ
⎡

⎢

⎢

⎣

0
1
0

⎤

⎥

⎥

⎦

= ℤ3.

It is clear that

3
⎡

⎢

⎢

⎣

0
1
1

⎤

⎥

⎥

⎦

and 2
⎡

⎢

⎢

⎣

0
1
0

⎤

⎥

⎥

⎦

are in im�. We now prove that if

n
⎡

⎢

⎢

⎣

0
1
1

⎤

⎥

⎥

⎦

+ m
⎡

⎢

⎢

⎣

0
1
0

⎤

⎥

⎥

⎦

∈ imM,

then n ∈ 3ℤ and m ∈ 2ℤ. Indeed, if

n
⎡

⎢

⎢

⎣

0
1
1

⎤

⎥

⎥

⎦

+ m
⎡

⎢

⎢

⎣

0
1
0

⎤

⎥

⎥

⎦

= a
⎡

⎢

⎢

⎣

1
−3
2

⎤

⎥

⎥

⎦

+ b
⎡

⎢

⎢

⎣

0
2
0

⎤

⎥

⎥

⎦

+ c
⎡

⎢

⎢

⎣

0
3
3

⎤

⎥

⎥

⎦

,

then
a = 0, n = 3c, n + m = 2b + 3c.

It follows that n ∈ 3ℤ and m ∈ 2ℤ, as claimed.

One might ask how the second answer gives to the first answer. That is easy. Recall that
the homomorphism

ℤ
6ℤ

→
ℤ
3Z

⊕ ℤ
2ℤ

,

which is given by
1̄ ↦ (1̄, 1̄)

2Recall that im� ∶ℤ
⎡

⎢

⎢

⎣

0
0
1

⎤

⎥

⎥

⎦

=

⎧

⎪

⎨

⎪

⎩

n ∈ ℤ|n
⎡

⎢

⎢

⎣

0
0
1

⎤

⎥

⎥

⎦

∈ im�

⎫

⎪

⎬

⎪

⎭

.
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is an isomorphism. If

G = ℤ
⎡

⎢

⎢

⎣

0
1
1

⎤

⎥

⎥

⎦

⊕ ℤ
⎡

⎢

⎢

⎣

0
1
0

⎤

⎥

⎥

⎦

,

⎡

⎢

⎢

⎣

0
1
1

⎤

⎥

⎥

⎦

has order 3 and
⎡

⎢

⎢

⎣

0
1
0

⎤

⎥

⎥

⎦

has order 2, then

⎡

⎢

⎢

⎣

0
1
0

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

0
1
1

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

0
2
1

⎤

⎥

⎥

⎦

generates G and has order 6. On the other hand,
⎡

⎢

⎢

⎣

0
2
0

⎤

⎥

⎥

⎦

∈ im�; consequently,

⎡

⎢

⎢

⎣

0
2
1

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

0
0
1

⎤

⎥

⎥

⎦

.

Here are the column operations that show that the columns ofM and the columns of
M ′ generate the same subgroup of ℤ3.
Replace column 4 by column 4 minus column 3. The matrixM has been transformed into:

⎡

⎢

⎢

⎣

3 5 5 1
2 7 10 −3
3 8 11 −2

⎤

⎥

⎥

⎦

Replace column 1 by column 1 minus 3 times column 4.
Replace column 2 by column 2 minus 5 times column 4.
Replace column 3 by column 3minus 5 times column 4. ThematrixM has been transformed
into

⎡

⎢

⎢

⎣

0 0 0 1
11 22 25 −3
9 18 21 −2

⎤

⎥

⎥

⎦

Replace column 2 by column 2 minus 2 times column 1.
Replace column 3 by column 3minus 2 times column 1. ThematrixM has been transformed
into

⎡

⎢

⎢

⎣

0 0 0 1
11 0 3 −3
9 0 3 −2

⎤

⎥

⎥

⎦
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Replace column 1 by column 1minus 3 times column 3. ThematrixM has been transformed
into

⎡

⎢

⎢

⎣

0 0 0 1
2 0 3 −3
0 0 3 −2

⎤

⎥

⎥

⎦

.

Rearrange the columns to obtain

M ′ =
⎡

⎢

⎢

⎣

1 0 0 0
−3 2 3 0
−2 0 3 0

⎤

⎥

⎥

⎦

.

In particular,
M ′ =ME1E2E3E4E5E6

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
P

,

where

E1 =

⎡

⎢

⎢

⎢

⎣

1 0 0 0
0 1 0 0
0 0 1 −1
0 0 0 1

⎤

⎥

⎥

⎥

⎦

, E2 =

⎡

⎢

⎢

⎢

⎣

1 0 0 0
0 1 0 0
0 0 1 0
−3 −5 −5 1

⎤

⎥

⎥

⎥

⎦

, E3 =

⎡

⎢

⎢

⎢

⎣

1 0 0 0
0 1 −1 0
0 0 1 0
0 0 0 1

⎤

⎥

⎥

⎥

⎦

,

E4 =

⎡

⎢

⎢

⎢

⎣

1 −2 −2 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥

⎥

⎥

⎦

, E5 =

⎡

⎢

⎢

⎢

⎣

1 0 0 0
0 1 0 0
−3 0 1 0
0 0 0 1

⎤

⎥

⎥

⎥

⎦

, and E6 =

⎡

⎢

⎢

⎢

⎣

0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

⎤

⎥

⎥

⎥

⎦

.

Suppose you haveM ′ and it is not immediately obvious how cokerM ′ decomposes as a
direct sum of cyclic groups. What should you do? This is also easy. Do the row operations
to transformM ′ into a matrix with non-zero entries only on the main diagoinal.
Replace row 2 by row 2 plus 3 times row 1.
Replace row 3 by row 3 plus 2 times row 1. The matrixM has been transformed into

⎡

⎢

⎢

⎣

1 0 0 0
0 2 3 0
0 0 3 0

⎤

⎥

⎥

⎦

.

Replace row 2 by row 2 minus row 3. The matrixM has been transformed into

M ′′ =
⎡

⎢

⎢

⎣

1 0 0 0
0 2 0 0
0 0 3 0

⎤

⎥

⎥

⎦

.

Of course,
M ′′ = NMP,

where

N =
⎡

⎢

⎢

⎣

1 0 0
0 1 −1
0 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

1 0 0
3 1 0
2 0 1

⎤

⎥

⎥

⎦

.
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Furthermore, the cokernel ofM ′′ is isomorphic to
ℤ
1ℤ

⊕ ℤ
2ℤ

⊕ ℤ
3ℤ

= ℤ
2ℤ

⊕ ℤ
3ℤ

,

ℤ3

imM ′′ = ℤ
⎡

⎢

⎢

⎣

0
1
0

⎤

⎥

⎥

⎦

⊕ ℤ
⎡

⎢

⎢

⎣

0
0
1

⎤

⎥

⎥

⎦

,

⎡

⎢

⎢

⎣

0
1
0

⎤

⎥

⎥

⎦

has order 2, and
⎡

⎢

⎢

⎣

0
0
1

⎤

⎥

⎥

⎦

has order 3. Apply the first isomorphism theorem to the composition

ℤ3 N
←←←←←←←←→ ℤ3 natural quotient map

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
ℤ

im(NMP )
to obtain an isomorphism

ℤ
im(MP )

N
←←←←←←←←→

ℤ
im(NMP )

.

We already saw that imMP = imM . We conclude that
ℤ

imM
N
←←←←←←←←→

ℤ
im(NMP )

is an isomorphism. Observe that

N−1
⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

0
1
0

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

=
⎡

⎢

⎢

⎣

1 0 0
−3 1 0
−2 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

1 0 0
0 1 1
0 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

0
1
0

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

0
1
0

⎤

⎥

⎥

⎦

and

N−1
⎡

⎢

⎢

⎣

0
0
1

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

0
1
1

⎤

⎥

⎥

⎦

.

This calculation yields the second of our two answers.
20. Classify the non-Abelian groups of order eight. (This instruction means state and prove a

result which says, “If G is a non-Abelian group of order 8, then G is isomorphic to exactly
one of the following groups: … .”)

Theorem 0.1. If G is a non-Abelian group of order 8, then G is isomorphic to exactly one of the
groups D4 or Q8.

Proof. Observe that first that some element of G has order 4. (Indeed, if every element of G
squares to the identity element, then G is Abelian.) Let a be an element of G of order 4. The
index of ⟨a⟩ in G is 2; so, ⟨a⟩ is a normal subgroup of G. Let b be any element of G ⧵ ⟨a⟩.
Observe that bab−1 ∈ ⟨a⟩ and b2 ∈ ⟨a⟩ because ⟨a⟩ is a normal subgroup of G. The order of
bab−1 is the same as the order of a; consequently, bab−1 can not equal id or a2. Furthermore, if
bab−1 were equal to a, then G would be Abelian. Thus, bab−1 must equal a3. If b2 were equal
to either a or a3, then ⟨a⟩ would be a proper subgroup of ⟨b⟩; and therefore, ⟨b⟩ would have to
equal G (by Lagrange’s Theorem) and this has been ruled out because ⟨b⟩ is Abelian. There are
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two possibilities left. If b2 = id, then G ≅ D4 (see Theorem 2.61.1) if b2 = a2, then G ≅ Q8
(see Exercise 2.62.1). �


