MATH 701 – FALL 2023 HOMEWORK 6 DUE MONDAY, NOVEMBER 6 BY THE BEGINNING OF CLASS.

13. Let G be a group of order p^n for some prime p and let H be a normal subgroup of G, with $H \neq \{id\}$. Prove that $Z(G) \cap H \neq \{id\}$, where Z(G) is the center of G.

Let G act on H by conjugation. It follows that

$$|H| = |\{h \in H \mid ghg^{-1} = h \text{ for all } g \in G\}| + \sum_{x} [G : \operatorname{stab}(x)],$$

where the sum is taken over all orbits of size more than 1 and we take one element x from each orbit. Observe that

 ${h \in H \mid ghg^{-1} = h \text{ for all } g \in G} = Z(G) \cap H.$

We see that p divides the order of H and p divides each summand $[G : \operatorname{stab}(x)]$. So p divides $|Z(G) \cap H|$. Of course, the identity element is in $Z(G) \cap H$; so this subgroup must have order at least p.

14. How many elements of order 7 are there in a simple group of order 168?

Let *G* be a simple group with $168 = 2^3 \cdot 3 \cdot 7$ elements. The Sylow Theorems tell us that the number of 7-element subgroups of *G* is congruent to 1 mod 7 and divides 168. This number must be greater than 1 because *G* has no normal subgroups. Thus, there are exactly 8 seven-element subgroups of *G*. Each non-identity element of such a group generates the entire subgroup; thus, any pair of such subgroups intersect to only {id}. Each such subgroup has 6 elements of order 7. Thus, *G* has exactly 48 elements of order 7.

15. Classify all groups of order 2p where p is an odd prime integer. (This instruction means state and prove a result which says, "If G is a group of order 2p, where p is an odd prime integer, then G is isomorphic to exactly one of the following groups:")

Theorem. If G is a group of order 2p, where p is an odd prime integer, then G is a cyclic group or a dihedral group.

Proof. Let *G* be a group of order 2*p*. The Sylow Theorems guarantee that *G* has an element *b* of order *p* and an element *a* of order 2. The subgroup $\langle b \rangle$ has index 2 in *G*; hence, $\langle b \rangle$ is a normal subgroup of *G*. We also know that $G = \langle a, b \rangle$.

We first suppose that the subgroup $\langle a \rangle$ of *G* is also normal in *G*. It follows that gag^{-1} is an element of order 2 in $\langle a \rangle$ for all $g \in G$; and therefore, $gag^{-1} = a$ for all $g \in G$, and *G* is abelian. There is no difficulty in showing that *G* is generated by *ab*.

Henceforth, we assume that $\langle a \rangle$ is not a normal subgroup of *G*. The Sylow Theorems guarantee that *G* has more than one sugroup of order 2 and the number of subgroups of order 2 is odd and divides 2*p*. Thus, *G* must have *p* subgroups of order 2. In other words, every element of *G*

that is not in $\langle b \rangle$ has order 2. It follows that *ab* has order two. Thus, *G* is a group of order 2*p* with *G* generated by *a* and *b* with $a^2 = (ab)^2 = b^p = id$. It follows that *G* is a dihedral group.

16. Let G be a group of order 30. Prove that G has a subgroup of order 15.

Apply the Sylow Theorems. There is a subgroup H or order 3 and a subgroup K of order 5. If either H or K is a normal subgroup of G, then HK is a subgroup of G of order 15.

Let n_3 be the number of Sylow 3-subgroups of G and n_5 be the number of Sylow 5-subgroups of G. As observed above, it suffices to prove that $n_3 = 1$ or $n_5 = 1$. Assume $n_3 \neq 1$ and $n_5 \neq 1$. We hope to reach a contradiction. Apply the Sylow Theorems again. The number n_3 is congruent to 1 mod 3 and n_3 divides 10. The only remaining option is $n_3 = 10$. The number n_5 is congruent to one mod 5 and n_5 divides 6. The only option left is $n_5 = 6$. Every element of order three is in exactly one Sylow 3-subgroup. Thus there are $2 \times 10 = 20$ elements of order 3. Every element of order 5 is in exactly one Sylow 5-subgroup. Thus, there are $4 \times 6 = 24$ elements of order 5. We have already reached a contradiction because 30 < 20 + 24.