MATH 701 - FALL 2023
 HOMEWORK 6
 DUE MONDAY, NOVEMBER 6 BY THE BEGINNING OF CLASS.

13. Let G be a group of order p^{n} for some prime p and let H be a normal subgroup of G, with $H \neq\{\mathrm{id}\}$. Prove that $Z(G) \cap H \neq\{\mathrm{id}\}$, where $Z(G)$ is the center of G.

Let G act on H by conjugation. It follows that

$$
|H|=\mid\left\{h \in H \mid g h g^{-1}=h \text { for all } g \in G\right\} \mid+\sum_{x}[G: \operatorname{stab}(x)],
$$

where the sum is taken over all orbits of size more than 1 and we take one element x from each orbit. Observe that

$$
\left\{h \in H \mid g h g^{-1}=h \text { for all } g \in G\right\}=Z(G) \cap H
$$

We see that p divides the order of H and p divides each summand $[G: \operatorname{stab}(x)]$. So p divides $|Z(G) \cap H|$. Of course, the identity element is in $Z(G) \cap H$; so this subgroup must have order at least p.
14. How many elements of order 7 are there in a simple group of order 168 ?

Let G be a simple group with $168=2^{3} \cdot 3 \cdot 7$ elements. The Sylow Theorems tell us that the number of 7 -element subgroups of G is congruent to $1 \bmod 7$ and divides 168 . This number must be greater than 1 because G has no normal subgroups. Thus, there are exactly 8 seven-element subgroups of G. Each non-identity element of such a group generates the entire subgroup; thus, any pair of such subgroups intersect to only \{id\}. Each such subgroup has 6 elements of order 7. Thus, G has exactly 48 elements of order 7.
15. Classify all groups of order $2 p$ where p is an odd prime integer. (This instruction means state and prove a result which says, "If G is a group of order $2 p$, where p is an odd prime integer, then G is isomorphic to exactly one of the following groups:")

Theorem. If G is a group of order $2 p$, where p is an odd prime integer, then G is a cyclic group or a dihedral group.

Proof. Let G be a group of order $2 p$. The Sylow Theorems guarantee that G has an element b of order p and an element a of order 2. The subgroup $\langle b\rangle$ has index 2 in G; hence, $\langle b\rangle$ is a normal subgroup of G. We also know that $G=\langle a, b\rangle$.

We first suppose that the subgroup $\langle a\rangle$ of G is also normal in G. It follows that gag^{-1} is an element of order 2 in $\langle a\rangle$ for all $g \in G$; and therefore, $g a g^{-1}=a$ for all $g \in G$, and G is abelian. There is no difficulty in showing that G is generated by $a b$.

Henceforth, we assume that $\langle a\rangle$ is not a normal subgroup of G. The Sylow Theorems guarantee that G has more than one sugroup of order 2 and the number of subgroups of order 2 is odd and divides $2 p$. Thus, G must have p subgroups of order 2 . In other words, every element of G
that is not in $\langle b\rangle$ has order 2. It follows that $a b$ has order two. Thus, G is a group of order $2 p$ with G generated by a and b with $a^{2}=(a b)^{2}=b^{p}=\mathrm{id}$. It follows that G is a dihedral group.
16. Let G be a group of order 30 . Prove that G has a subgroup of order 15.

Apply the Sylow Theorems. There is a subgroup H or order 3 and a subgroup K of order 5. If either H or K is a normal subgroup of G, then $H K$ is a subgroup of G of order 15 .

Let n_{3} be the number of Sylow 3-subgroups of G and n_{5} be the number of Sylow 5-subgroups of G. As observed above, it suffices to prove that $n_{3}=1$ or $n_{5}=1$. Assume $n_{3} \neq 1$ and $n_{5} \neq 1$. We hope to reach a contradiction. Apply the Sylow Theorems again. The number n_{3} is congruent to $1 \bmod 3$ and n_{3} divides 10 . The only remaining option is $n_{3}=10$. The number n_{5} is congruent to one $\bmod 5$ and n_{5} divides 6 . The only option left is $n_{5}=6$. Every element of order three is in exactly one Sylow 3-subgroup. Thus there are $2 \times 10=20$ elements of order 3. Every element of order 5 is in exactly one Sylow 5-subgroup. Thus, there are $4 \times 6=24$ elements of order 5 . We have already reached a contradiction because $30<20+24$.

