
I changed my mind. I decided that it is not reasonable to make you turn in these problems before
the exam.

MATH 701 – FALL 2023
HOMEWORK 5

DUE MONDAY, OCTOBER 30 BY THE BEGINNING OF CLASS.

9. (True or False) If true, prove it. If false, give a counterexample. Let G be a group. If x and
y are elements of G of finite order, then xy has finite order.

The assertion is False. I offer three examples.
Example 1. Let G be the group of rigid motions of the plane with operation composition. Let

� be reflection across the x-axis and � be rotation fixing the origin by 1-radian. Notice that �
has order two and � has infinite order. Notice also that �� is a reflection; so �� has order two.
Thus, � and �� each have order two, but �(��) = � has infinite order.

Example 2. Let G be the group of rigid motions of the plane with operation composition; let
l1 and l2 be parallel lines in the plane; and let �i be reflection across li. Observe that �1 and �2
have order two; but �1�2 is translation which has infinite order. (An undergraduate student gave
me this solution a number of years ago.)

Example 3. Let G be the group GL(2,ℝ), A =
[

0 1
−1 0

]

and B =
[

−1 −1
0 1

]

. Calculate A

has order 2; B has order 4, but AB =
[

0 1
1 1

]

has infinite order. Indeed, (AB)n =
[

fn−1 fn
fn fn+1

]

,

where the f ’s are the Fibonacci numbers: f0 = 0, f1 = 1, fn+2 = fn + fn+1 for 0 ≤ n. (Many
undergraduate students gave me this solution in the last year or so. I assume the solution is on
the Internet somewhere.)

10. (True or False) If true, prove it. If false, give a counterexample. Let G be a group. If x and
y are elements of G of finite order and xy = yx, then the order of xy is equal to the least
common multiple of the order of x and the order of y.

The assertion is false. Let x be an n-cycle and y = x−1. So, y is also an n-cycle. It follows that
x and y each have order n, but xy has order 1. Of course, 1 is not equal to the least common
multiple of n and n, unless n happens to be 1.

11. Let I be an index set. Suppose that for each i ∈ I , Gi is a group. Consider the direct
product

∏

i∈I Gi. For each i0 ∈ I , let proji0 ∶
∏

i∈I Gi → Gi0 be the natural projection map.
Let G be a group and, for each i, let �i ∶ G → Gi be a group homomorphism. Prove that
there exists a unique group homomorphism Φ ∶ G →

∏

i∈I Gi so that the diagram

(0.0.1) G ∃!Φ //___

�i0 ""E
EE

EE
EE

EE
E

∏

i∈I Gi

proji0
��
Gi0

commutes for all i0 ∈ I .
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We first address the uniqueness issue. SupposeΦ ∶ G →
∏

i∈I Gi is a homomorphism which
causes (0.0.1) to commute. Let g ∈ G. Then Φ(g) is an element in

∏

i∈I Gi; thus, Φ(g) is equal
to (ℎi)i∈I , for some ℎi ∈ Gi, for all i ∈ I . The hypothesis that the commutative diagram (0.0.1)
commutes ensures that

�i0(g) = proji0(Φ(g)) = proji0
(

(ℎi)i∈I
)

= ℎi0 ,

for each i0 ∈ H . In other words, if Φ exists and (0.0.1) commutes, then Φ(g) must equal
(�i(g))i∈I for all g ∈ G.

Now we prove the existence of a homomorphism Φ ∶ G →
∏

i∈I Gi which satisfies (0.0.1).
If g ∈ G, then (�i(g))i∈I is a legitimate element of

∏

i∈I Gi. We define

Φ(g) = (�i(g))i∈I .

We show that Φ is a group homomorphism. Take g, ℎ in G. Observe that

Φ(gℎ) = (�i(gℎ))i∈I = (�i(g)�i(ℎ))i∈I = (�i(g))i∈I ⋅ (�i(ℎ))i∈I = Φ(g) ⋅Φ(ℎ).

We show that Φ causes (0.0.1) to commute. Take g ∈ G. We see that

(proji0 ◦Φ)(g) = proji0((�i(g))i∈I ) = �i0(g),

as desired.
12. Let I be an index set. Suppose that for each i ∈ I , Gi is a group. Consider the direct sum

⨁

i∈I Gi. For each i0 ∈ I , let incli0 ∶ Gi0 →
⨁

i∈I Gi be the natural inclusion map. Let G be
an Abelian group and, for each i, let �i ∶ Gi → G be a group homomorphism. Prove that
there exists a unique group homomorphism Φ ∶

⨁

i∈I Gi → G so that the diagram

(0.0.2) G
⨁

i∈I Gi
∃!Φoo_ _ _

Gi0

incli0

OO

�i0

bbFFFFFFFFFF

commutes for all i0 ∈ I .
The group G is Abelian. Let the operation of G be called + and the identity element of G be

called 0. If L is a finite list of elements of G, then
∑

l in the list L l is a legitimate element of G.
We write the operation of Gi as ∗i and the operation of

⨁

i∈I Gi as ×. In particular,

(gi)i∈I × (ℎi)i∈I = (gi ∗Gi ℎi)i∈I ,

for (gi)i∈I and (ℎi)i∈I in
⨁

i∈I Gi.
The proof has two parts.

(A) We prove that if Φ ∶
⨁

i∈I Gi → G is a group homomorphism for which (0.0.2) commutes
and (gi)i∈I is in

⨁

i∈I Gi, then

(0.0.3) Φ((gi)i∈I ) =
∑

{i∈I ∣gi≠id}
�i(gi).

(B) We prove that the formula of (0.0.3) describes a well-defined function Φ ∶
⨁

i∈I Gi → G;
furthermore, this function is a group homomorphism and (0.0.2) commutes.
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(12A) Let � = (gi)i∈I be an arbitrary element of
⨁

i∈I Gi. Let I ′ = {i ∈ I ∣ gi ≠ id}. The
definition of direct sum ensures that I ′ is finite. Observe that � =

∏

i∈I ′ incli(gi). The hypothesis
that Φ is a group homomorphism for which (0.0.2) commutes ensures that

Φ(�) = Φ

(

∏

i∈I ′
incli(gi)

)

=
∑

i∈I ′
Φ
(

incli(gi)
)

=
∑

i∈I ′
�i(gi).

Thus, there is at most one homomorphism Φ ∶
⨁

i∈I Gi → G for which (0.0.2) commutes and
that homomorphism (if it exists) must satisfy (0.0.3).

(12B) We observed above that if (gi)i∈I is an arbitrary element of
⨁

i∈I Gi, then
∑

{i∈I ∣gi≠id}
�i(gi)

is a well-defined element of G. It follows that (0.0.3) describes a well-defined function

Φ ∶
⨁

i∈I
Gi → G.

We prove thatΦ is a homomorphism. Let (gi)i∈I and (ℎi)i∈I be elements of
⨁

i∈I Gi. Observe
that

Φ
(

(gi)i∈I × (ℎi)i∈I
)

= Φ
(

(gi ∗Gi ℎi)i∈I
)

=
∑

{i∈I ∣gi∗Giℎi≠id}
�i(gi ∗Gi ℎi)

=
∑

{i∈I ∣gi∗Giℎi≠id}

(

�i(gi) + �i(ℎi)
)

=
∑

{i∈I ∣gi≠id}
�i(gi) +

∑

{i∈I ∣ℎi≠id}
�i(ℎi) One must think about this step.

= Φ
(

(gi)i∈I
)

+ Φ
(

(ℎi)i∈I
)

We prove that (0.0.2) commutes. Fix i0 and let gi0 be an element of Gi0 . Observe that

(Φ◦ incli0)(gi0) = Φ
(

(ℎi)i∈I
)

, where ℎi =

{

idGi if i ≠ i0
gi0 if i = i0

=
∑

{i∈I ∣ℎi≠id}
�i(ℎi) = �i0(gi0),

as desired.


