I changed my mind. I decided that it is not reasonable to make you turn in these problems before the exam.

MATH 701 - FALL 2023
 HOMEWORK 5
 DUE MONDAY, OCTOBER 30 BY THE BEGINNING OF CLASS.

9. (True or False) If true, prove it. If false, give a counterexample. Let G be a group. If x and y are elements of G of finite order, then $x y$ has finite order.

The assertion is False. I offer three examples.
Example 1. Let \mathscr{G} be the group of rigid motions of the plane with operation composition. Let σ be reflection across the x-axis and ρ be rotation fixing the origin by 1 -radian. Notice that σ has order two and ρ has infinite order. Notice also that $\sigma \rho$ is a reflection; so $\sigma \rho$ has order two. Thus, σ and $\sigma \rho$ each have order two, but $\sigma(\sigma \rho)=\rho$ has infinite order.

Example 2. Let \mathscr{G} be the group of rigid motions of the plane with operation composition; let ℓ_{1} and ℓ_{2} be parallel lines in the plane; and let σ_{i} be reflection across ℓ_{i}. Observe that σ_{1} and σ_{2} have order two; but $\sigma_{1} \sigma_{2}$ is translation which has infinite order. (An undergraduate student gave me this solution a number of years ago.)

Example 3. Let G be the $\operatorname{group} \operatorname{GL}(2, \mathbb{R}), A=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ and $B=\left[\begin{array}{cc}-1 & -1 \\ 0 & 1\end{array}\right]$. Calculate A has order 2; B has order 4 , but $A B=\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$ has infinite order. Indeed, $(A B)^{n}=\left[\begin{array}{cc}f_{n-1} & f_{n} \\ f_{n} & f_{n+1}\end{array}\right]$, where the f 's are the Fibonacci numbers: $f_{0}=0, f_{1}=1, f_{n+2}=f_{n}+f_{n+1}$ for $0 \leq n$. (Many undergraduate students gave me this solution in the last year or so. I assume the solution is on the Internet somewhere.)
10. (True or False) If true, prove it. If false, give a counterexample. Let G be a group. If x and y are elements of G of finite order and $x y=y x$, then the order of $x y$ is equal to the least common multiple of the order of x and the order of y.

The assertion is false. Let x be an n-cycle and $y=x^{-1}$. So, y is also an n-cycle. It follows that x and y each have order n, but $x y$ has order 1 . Of course, 1 is not equal to the least common multiple of n and n, unless n happens to be 1 .
11. Let I be an index set. Suppose that for each $i \in I, G_{i}$ is a group. Consider the direct product $\prod_{i \in I} G_{i}$. For each $i_{0} \in I$, let $\operatorname{proj}_{i_{0}}: \prod_{i \in I} G_{i} \rightarrow G_{i_{0}}$ be the natural projection map. Let G be a group and, for each i, let $\phi_{i}: G \rightarrow G_{i}$ be a group homomorphism. Prove that there exists a unique group homomorphism $\Phi: G \rightarrow \prod_{i \in I} G_{i}$ so that the diagram

commutes for all $i_{0} \in I$.

We first address the uniqueness issue. Suppose $\Phi: G \rightarrow \prod_{i \in I} G_{i}$ is a homomorphism which causes (0.0.1) to commute. Let $g \in G$. Then $\Phi(g)$ is an element in $\prod_{i \in I} G_{i}$; thus, $\Phi(g)$ is equal to $\left(h_{i}\right)_{i \in I}$, for some $h_{i} \in G_{i}$, for all $i \in I$. The hypothesis that the commutative diagram (0.0.1) commutes ensures that

$$
\phi_{i_{0}}(g)=\operatorname{proj}_{i_{0}}(\Phi(g))=\operatorname{proj}_{i_{0}}\left(\left(h_{i}\right)_{i \in I}\right)=h_{i_{0}},
$$

for each $i_{0} \in H$. In other words, if Φ exists and (0.0.1) commutes, then $\Phi(g)$ must equal $\left(\phi_{i}(g)\right)_{i \in I}$ for all $g \in G$.

Now we prove the existence of a homomorphism $\Phi: G \rightarrow \prod_{i \in I} G_{i}$ which satisfies (0.0.1). If $g \in G$, then $\left(\phi_{i}(g)\right)_{i \in I}$ is a legitimate element of $\prod_{i \in I} G_{i}$. We define

$$
\Phi(g)=\left(\phi_{i}(g)\right)_{i \in I} .
$$

We show that Φ is a group homomorphism. Take g, h in G. Observe that

$$
\Phi(g h)=\left(\phi_{i}(g h)\right)_{i \in I}=\left(\phi_{i}(g) \phi_{i}(h)\right)_{i \in I}=\left(\phi_{i}(g)\right)_{i \in I} \cdot\left(\phi_{i}(h)\right)_{i \in I}=\Phi(g) \cdot \Phi(h) .
$$

We show that Φ causes (0.0.1) to commute. Take $g \in G$. We see that

$$
\left(\operatorname{proj}_{i_{0}} \circ \Phi\right)(g)=\operatorname{proj}_{i_{0}}\left(\left(\phi_{i}(g)\right)_{i \in I}\right)=\phi_{i_{0}}(g),
$$

as desired.
12. Let I be an index set. Suppose that for each $i \in I, G_{i}$ is a group. Consider the direct sum $\bigoplus_{i \in I} G_{i}$. For each $i_{0} \in I$, let $\operatorname{incl}_{i_{0}}: G_{i_{0}} \rightarrow \bigoplus_{i \in I} G_{i}$ be the natural inclusion map. Let G be an Abelian group and, for each i, let $\phi_{i}: G_{i} \rightarrow G$ be a group homomorphism. Prove that there exists a unique group homomorphism $\Phi: \bigoplus_{i \in I} G_{i} \rightarrow G$ so that the diagram

commutes for all $i_{0} \in I$.
The group G is Abelian. Let the operation of G be called + and the identity element of G be called 0 . If L is a finite list of elements of G, then $\sum_{\ell \text { in the list } L} \ell$ is a legitimate element of G. We write the operation of G_{i} as $*_{i}$ and the operation of $\bigoplus_{i \in I} G_{i}$ as \times. In particular,

$$
\left(g_{i}\right)_{i \in I} \times\left(h_{i}\right)_{i \in I}=\left(g_{i} *_{G_{i}} h_{i}\right)_{i \in I},
$$

for $\left(g_{i}\right)_{i \in I}$ and $\left(h_{i}\right)_{i \in I}$ in $\bigoplus_{i \in I} G_{i}$.
The proof has two parts.
(A) We prove that if $\Phi: \bigoplus_{i \in I} G_{i} \rightarrow G$ is a group homomorphism for which (0.0.2) commutes and $\left(g_{i}\right)_{i \in I}$ is in $\bigoplus_{i \in I} G_{i}$, then

$$
\begin{equation*}
\Phi\left(\left(g_{i}\right)_{i \in I}\right)=\sum_{\left\{i \in I \mid \xi_{i} \neq \mathrm{id}\right\}} \phi_{i}\left(g_{i}\right) . \tag{0.0.3}
\end{equation*}
$$

(B) We prove that the formula of (0.0.3) describes a well-defined function $\Phi: \bigoplus_{i \in I} G_{i} \rightarrow G$; furthermore, this function is a group homomorphism and (0.0.2) commutes.
(12A) Let $\theta=\left(g_{i}\right)_{i \in I}$ be an arbitrary element of $\bigoplus_{i \in I} G_{i}$. Let $I^{\prime}=\left\{i \in I \mid g_{i} \neq \mathrm{id}\right\}$. The definition of direct sum ensures that I^{\prime} is finite. Observe that $\theta=\prod_{i \in I^{\prime}} \operatorname{incl}_{i}\left(g_{i}\right)$. The hypothesis that Φ is a group homomorphism for which (0.0.2) commutes ensures that

$$
\Phi(\theta)=\Phi\left(\prod_{i \in I^{\prime}} \operatorname{incl}_{i}\left(g_{i}\right)\right)=\sum_{i \in I^{\prime}} \Phi\left(\operatorname{incl}_{i}\left(g_{i}\right)\right)=\sum_{i \in I^{\prime}} \phi_{i}\left(g_{i}\right)
$$

Thus, there is at most one homomorphism $\Phi: \bigoplus_{i \in I} G_{i} \rightarrow G$ for which (0.0.2) commutes and that homomorphism (if it exists) must satisfy (0.0.3).
(12B) We observed above that if $\left(g_{i}\right)_{i \in I}$ is an arbitrary element of $\bigoplus_{i \in I} G_{i}$, then $\sum_{\left\{i \in I \mid g_{i} \neq \mathrm{id}\right\}} \phi_{i}\left(g_{i}\right)$ is a well-defined element of \boldsymbol{G}. It follows that (0.0.3) describes a well-defined function

$$
\Phi: \bigoplus_{i \in I} G_{i} \rightarrow G
$$

We prove that Φ is a homomorphism. Let $\left(g_{i}\right)_{i \in I}$ and $\left(h_{i}\right)_{i \in I}$ be elements of $\bigoplus_{i \in I} G_{i}$. Observe that

$$
\begin{aligned}
\Phi\left(\left(g_{i}\right)_{i \in I} \times\left(h_{i}\right)_{i \in I}\right) & =\Phi\left(\left(g_{i} *_{G_{i}} h_{i}\right)_{i \in I}\right) \\
& =\sum_{\left\{i \in I \mid g_{i} * G_{i}, h_{i} \neq \mathrm{id}\right\}} \phi_{i}\left(g_{i} *_{G_{i}} h_{i}\right) \\
& =\sum_{\left\{i \in I \mid g_{i} * G_{i} h_{i} \neq \mathrm{id}\right\}}\left(\phi_{i}\left(g_{i}\right)+\phi_{i}\left(h_{i}\right)\right) \\
& =\sum_{\left\{i \in I \mid g_{i} \neq \mathrm{d}\right\}} \phi_{i}\left(g_{i}\right)+\sum_{\left\{i \in I \mid h_{i} \neq \mathrm{id}\right\}} \phi_{i}\left(h_{i}\right) \quad \text { One must think about this step. } \\
& =\Phi\left(\left(g_{i}\right)_{i \in I}\right)+\Phi\left(\left(h_{i}\right)_{i \in I}\right)
\end{aligned}
$$

We prove that (0.0.2) commutes. Fix i_{0} and let $g_{i_{0}}$ be an element of $G_{i_{0}}$. Observe that

$$
\begin{array}{rlr}
\left(\Phi \circ \text { incl }_{i_{0}}\right)\left(g_{i_{0}}\right) & =\Phi\left(\left(h_{i}\right)_{i \in I}\right), \\
& =\sum_{\left\{i \in I \mid h_{i} \neq \mathrm{id}\right\}} \phi_{i}\left(h_{i}\right)=\phi_{i_{0}}\left(g_{i_{0}}\right)
\end{array} \quad \text { where } h_{i}= \begin{cases}\mathrm{id}_{G_{i}} & \text { if } i \neq i_{0} \\
g_{i_{0}} & \text { if } i=i_{0}\end{cases}
$$

as desired.

