## HOMEWORK 3

## DUE MONDAY, OCTOBER 2 BY THE BEGINNING OF CLASS.

7. Use the ideas in the proof of Cayley's Theorem to find permutations $a, b \in S_{8}$ which satisfy: $a^{4}=1, b^{2}=a^{2}, b a=a^{3} b$, and the permutations $a^{i} b^{j}$, with $0 \leq i \leq 3$ and $0 \leq j \leq 1$, are distinct.

We hope to produce a group $G$ whose elements are $1, \alpha, \alpha^{2}, \alpha^{3}, \beta, \alpha \beta, \alpha^{2} \beta, \alpha^{3} \beta$ and which satisfy the relations $\alpha^{4}=1, \beta^{2}=\alpha^{2}, \beta \alpha=\alpha^{3} \beta$. We number these elements as element number 1 up to element number 8 , in the listed order. We will act like this group exists. We will apply the idea of Cayley's to find a subgroup of $S_{8}$ which is isomorphic to the desired group $G$; hence we will have a concrete version of $G$ in our hands and we will be able to see that our concrete version has 8 distinct elements. Anyhow left multiplication by $\alpha$ sends

$$
1 \rightarrow \alpha \rightarrow \alpha^{2} \rightarrow \alpha^{3} \rightarrow 1 \quad \text { and } \quad \beta \rightarrow \alpha \beta \rightarrow \alpha^{2} \beta \rightarrow \alpha^{3} \beta \rightarrow \beta
$$

So, left multiplication by $\alpha$ corresponds to the permuation $a=(1,2,3,4)(5,6,7,8)$ in $S_{8}$. Also, left multiplication by $\beta$ sends

$$
1 \rightarrow \beta \rightarrow \alpha^{2} \rightarrow \alpha^{2} \beta \rightarrow 1 \quad \text { and } \quad \alpha \rightarrow \alpha^{3} \beta \rightarrow \alpha^{3} \rightarrow \alpha \beta \rightarrow \alpha
$$

So, left multiplication by $\beta$ corresponds to the permuation $b=(1,5,3,7)(2,8,4,6)$ in $S_{8}$. It is now easy to see that

$$
\begin{align*}
a & =(1,2,3,4)(5,6,7,8)  \tag{1}\\
a^{2} & =(1,3)(2,4)(5,7)(6,8) \\
a^{3} & =(1,4,3,2)(5,8,7,6) \\
b & =(1,5,3,7)(2,8,4,6) \\
a b & =(1,6,3,8)(2,5,4,7) \\
a^{2} b & =(1,7,3,5)(2,6,4,8) \\
a^{3} b & =(1,8,3,6)(2,7,4,5)
\end{align*}
$$

are distinct and satisfy $a^{4}=1, b^{2}=a^{2}, b a=a^{3} b$.

