MATH 701 – FALL 2023 HOMEWORK 3 DUE MONDAY, OCTOBER 2 BY THE BEGINNING OF CLASS.

7. Use the ideas in the proof of Cayley's Theorem to find permutations $a, b \in S_8$ which satisfy: $a^4 = 1, b^2 = a^2, ba = a^3b$, and the permutations $a^i b^j$, with $0 \le i \le 3$ and $0 \le j \le 1$, are distinct.

We hope to produce a group G whose elements are $1, \alpha, \alpha^2, \alpha^3, \beta, \alpha\beta, \alpha^2\beta, \alpha^3\beta$ and which satisfy the relations $\alpha^4 = 1, \beta^2 = \alpha^2, \beta\alpha = \alpha^3\beta$. We number these elements as element number 1 up to element number 8, in the listed order. We will act like this group exists. We will apply the idea of Cayley's to find a subgroup of S_8 which is isomorphic to the desired group G; hence we will have a concrete version of G in our hands and we will be able to see that our concrete version has 8 distinct elements. Anyhow left multiplication by α sends

$$1 \to \alpha \to \alpha^2 \to \alpha^3 \to 1$$
 and $\beta \to \alpha\beta \to \alpha^2\beta \to \alpha^3\beta \to \beta$.

So, left multiplication by α corresponds to the permuation a = (1, 2, 3, 4)(5, 6, 7, 8) in S_8 . Also, left multiplication by β sends

$$1 \to \beta \to \alpha^2 \to \alpha^2 \beta \to 1$$
 and $\alpha \to \alpha^3 \beta \to \alpha^3 \to \alpha \beta \to \alpha$.

So, left multiplication by β corresponds to the permutaion b = (1, 5, 3, 7)(2, 8, 4, 6) in S_8 . It is now easy to see that

(1)

$$a = (1, 2, 3, 4)(5, 6, 7, 8)$$

 $a^2 = (1, 3)(2, 4)(5, 7)(6, 8)$
 $a^3 = (1, 4, 3, 2)(5, 8, 7, 6)$
 $b = (1, 5, 3, 7)(2, 8, 4, 6)$
 $ab = (1, 6, 3, 8)(2, 5, 4, 7)$
 $a^2b = (1, 7, 3, 5)(2, 6, 4, 8)$
 $a^3b = (1, 8, 3, 6)(2, 7, 4, 5)$

are distinct and satisfy $a^4 = 1$, $b^2 = a^2$, $ba = a^3b$.