MATH 701 – FALL 2023 HOMEWORK 2 DUE MONDAY, SEPTEMBER 18 BY THE BEGINNING OF CLASS.

- 3. Let *n* be a fixed positive integer, and let \mathbb{C}^* be the group $\mathbb{C} \setminus \{0\}$ under multiplication. How many subgroups of \mathbb{C}^* have *n* elements? What are they? Justify your answer.
- 4. Let C_2 be the subgroup $\{1, -1\}$ of \mathbb{C}^* . Consider the group $G = C_2 \times C_2 \times C_2 \times C_2$, which is the direct product of four copies of C_2 . How many four element subgroups does *G* have? Justify your answer.
- 5. Prove that every element of $SO_n(\mathbb{R})$ is diagonalizable over \mathbb{C} . (It might make sense to prove a more general statement. An element M of $GL_n(\mathbb{C})$ is called unitary if $\overline{M}^T M$ is the identity matrix. Prove that every unitary matrix from $GL_n(\mathbb{C})$ is diagonalizable. In this problem $\overline{}$ means complex conjugate. Recall that $SO_n(\mathbb{R})$ is the subgroup of $GL_n(\mathbb{R})$ which consists of all matrices M with $M^T M$ equal to the identity matrix.)
- 6. Let ℓ be the line in 3-space through the origin and parallel to the vector $\vec{i} + 2\vec{j} + 3\vec{k}$. Let $f : \mathbb{R}^3 \to \mathbb{R}^3$ be rotation by $\pi/4$ radians where ℓ is the axis of revolution. Find a matrix M so that

$$f\left(\begin{bmatrix} x\\ y\\ z\end{bmatrix}\right) = M\begin{bmatrix} x\\ y\\ z\end{bmatrix}.$$

There are two correct answers.