MATH 701 - FALL 2023
 HOMEWORK 2 DUE MONDAY, SEPTEMBER 18 BY THE BEGINNING OF CLASS.

3. Let n be a fixed positive integer, and let \mathbb{C}^{*} be the group $\mathbb{C} \backslash\{0\}$ under multiplication. How many subgroups of \mathbb{C}^{*} have n elements? What are they? Justify your answer.
4. Let C_{2} be the subgroup $\{1,-1\}$ of \mathbb{C}^{*}. Consider the group $G=C_{2} \times C_{2} \times C_{2} \times C_{2}$, which is the direct product of four copies of C_{2}. How many four element subgroups does G have? Justify your answer.
5. Prove that every element of $\mathrm{SO}_{n}(\mathbb{R})$ is diagonalizable over \mathbb{C}. (It might make sense to prove a more general statement. An element M of $\mathrm{GL}_{n}(\mathbb{C})$ is called unitary if $\bar{M}^{\mathrm{T}} M$ is the identity matrix. Prove that every unitary matrix from $\mathrm{GL}_{n}(\mathbb{C})$ is diagonalizable. In this problem ${ }^{-}$means complex conjugate. Recall that $\mathrm{SO}_{n}(\mathbb{R})$ is the subgroup of $\mathrm{GL}_{n}(\mathbb{R})$ which consists of all matrices M with $M^{\mathrm{T}} M$ equal to the identity matrix.)
6. Let ℓ be the line in 3 -space through the origin and parallel to the vector $\overrightarrow{\boldsymbol{i}}+2 \overrightarrow{\boldsymbol{j}}+3 \overrightarrow{\boldsymbol{k}}$. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be rotation by $\pi / 4$ radians where ℓ is the axis of revolution. Find a matrix M so that

$$
f\left(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\right)=M\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] .
$$

There are two correct answers.

