
MATH 701 – FALL 2019
HOMEWORK 2

DUE MONDAY, SEPTEMBER 16 BY THE BEGINNING OF CLASS.
SOLUTIONS

3. Let n be a fixed positive integer, and let ℂ∗ be the group ℂ⧵ {0} under multiplication. How
many subgroups of ℂ∗ have n elements? What are they? Justify your answer.

There is one subgroup of ℂ∗ with n elements and it is {e2�ⅈk∕n ∣ 0 ≤ k ≤ n − 1}.

Proof. Let H be a subgroup of ℂ∗ with n elements. Observe first that every element of H
has modulus 1. Indeed, if z does not have modulus 1, then zm does not have modulus 1 for
any positive integer m and so any subgroup of ℂ ⧵ {0} which contains z is necessarily infinite.
Let � > 0 be the smallest positive real number with eⅈ� ∈ H . I first claim that if � is a real
number with eⅈ� ∈ H , then � = k� for some integer k. Indeed, write � = k� + r for some
integer k and some real number r with 0 ≤ r < �. Observe that eⅈr = eⅈ�

(

eⅈ�
)−k is in H . Our

choice of � ensures that r = 0. The first claim is established. At this point we have shown that
H = {eⅈk� ∣ k ∈ ℤ}. I next claim that 2� = m� for some integer m. This follows from the
first claim because 1 = e2�ⅈ ∈ H . At this point we know that H = {e2�ⅈk∕m ∣ k ∈ ℤ}. The left
side has n elements The right side has m elements. It follows that n = m and the argument is
complete. �

4. Let C2 be the subgroup {1,−1} of ℂ∗. Consider the group G = C2 × C2 × C2 × C2, which is
the direct product of four copies of C2. How many four element subgroups does G have?
Justify your answer.

There are 35 four-element subgroups of G.

Proof. The group G is Abelian. Each element of G squares to the identity element. Each choice
of two distinct elements g1, g2 from G ⧵ {(1, 1, 1, 1)} gives rise to the four element subgroup

(0.0.1) {g1, g2, g1g2, (1, 1, 1, 1)}

of G. Of course, each subgroup of G has been counted three times in (0.0.1). The group G
has 16 elements. The set G ⧵ {(1, 1, 1, 1)} has 15 elements. There are

(15
2

)

ways to select a two
element subset from a fifteen element set. We have counted each 4-element subgroup ofG three
times. Thus the number of four element subgroups of G is

1
3

(

15
2

)

= 15 ⋅ 14
3 ⋅ 2

= 5 ⋅ 7 = 35.

�

5. Prove that every element of SOn(ℝ) is diagonalizable over ℂ. (It might make sense to prove
amore general statement. An elementM ofGLn(ℂ) is called unitary ifM

T
M is the identity
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matrix. Prove that every unitary matrix from GLn(ℂ) is diagonalizable. In this problem
means complex conjugate. Recall that SOn(ℝ) is the subgroup of GLn(ℝ) which consists of
all matricesM withMTM equal to the identity matrix.)

Theorem. Every unitary matrix from GLn(ℂ) is diagonalizable.

The proof is a consequence of the following Claim; just take V to be all of ℂn.

Claim. Let M be a unitary n × n matrix with complex entries and let V be a subspace of ℂn

with the property that MV ⊆ V . Then the restriction of M to V is diagonalizable.

Proof. WriteM|V for the “restriction ofM to V ”.
We prove the claim by induction on the dimension of V . If dimV = 1, and v is a non-zero

element of V , then v is a basis for V . The hypothesis that MV ⊆ V guarantees that v is an
eigenvalue ofM and henceM|V is diagonalizable.

Now suppose that 1 < dimV . Recall thatM|V has a non-zero eigenvector. 1

Let v0 be a non-zero eigenvector ofM|V which belongs to the eigenvalue �0. (The matrixM
is non-singular, so �0 ≠ 0.) Let

W = {w ∈ V ∣ w̄Tv0 = 0}.

It is clear thatW is a vector space. Observe that
∙ V = ℂv0 ⊕W , and
∙ MW ⊆ W .

Once we are confident with these assertions then the proof of the claim is complete by induction
because dimW < dimV . We establish the two assertions.

We first show thatMW ⊆ W . If w ∈ W , then w̄Tv0 = 0 and

(Mw)Tv0 =
1
�0

(Mw)TMv0 =
1
�0
w̄TM

T
Mv0 =

1
�0
w̄T id v0 = w̄Tv0 = 0;

hence,Mw is inW , as claimed.
Now we show that V is contained in the sum of W and ℂv0. If v is an arbitrary element of

V , then

v = (v −
v̄Tv0
v̄T0v0

⋅ v0) +
v̄Tv0
v̄T0v0

⋅ v0

with (v − v̄Tv0
v̄T0v0

⋅ v0) ∈ W and v̄Tv0
v̄T0v0

⋅ v0 ∈ ℂv0
Finally, the intersection ofW and ℂv0 is zero because v̄T0v0 is not zero. �

The Claim has been established. Thus, as was noted above the claim, the Theorem is also
established.

1Indeed, the characteristic polynomial of M|V is a polynomial in one variable with complex coefficients. Such a
polynomial has a root, say �1 inℂ (by the “Fundamental Theorem of Algebra”). ThusM|V −�1 id is a singular matrix.
Any non-zero vector in the null space ofM|V − �1 id is an eigenvector ofM|V .
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6. Let l be the line in 3-space through the origin and parallel to the vector i⃗ii + 2⃖⃗jjj + 3 ⃖⃗kkk. Let
f ∶ ℝ3 → ℝ3 be rotation by �∕4 radians where l is the axis of revolution. Find a matrix
M so that

f
⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

x
y
z

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

=M
⎡

⎢

⎢

⎣

x
y
z

⎤

⎥

⎥

⎦

.

There are two correct answers.

Apply the algorithm given in class. Take v3 to be the unit vector v3 =
1

√

14

⎡

⎢

⎢

⎣

1
2
3

⎤

⎥

⎥

⎦

, which is parallel

to l. Pick v1 and v2 so that v1, v2, v3 form an orthonormal set. I take

v1 =
1
√

5

⎡

⎢

⎢

⎣

2
−1
0

⎤

⎥

⎥

⎦

and v2 =
1

√

70

⎡

⎢

⎢

⎣

−3
−6
5

⎤

⎥

⎥

⎦

.

Let Q be the matrix that carries e1 to v1; e2 to v2; and e3 to v3, where

e1 =
⎡

⎢

⎢

⎣

1
0
0

⎤

⎥

⎥

⎦

, e2 =
⎡

⎢

⎢

⎣

0
1
0

⎤

⎥

⎥

⎦

, and e3 =
⎡

⎢

⎢

⎣

0
0
1

⎤

⎥

⎥

⎦

is the “standard basis” of ℝ3. We see that

Q = 1
√

70

⎡

⎢

⎢

⎢

⎣

2
√

14 −3
√

5
−
√

14 −6 2
√

5
0 5 3

√

5

⎤

⎥

⎥

⎥

⎦

.

The matrix Q−1, which is the same as QT, carries vi to ei, for all i. (Be sure to check that QTQ
really is the identity matrix.) There are two matrices which fix the z-axis and rotate the xy-plane
by �∕4; namely,

A = 1
2

⎡

⎢

⎢

⎣

√

2 −
√

2 0
√

2
√

2 0
0 0 2

⎤

⎥

⎥

⎦

and B = 1
2

⎡

⎢

⎢

⎣

√

2
√

2 0
−
√

2
√

2 0
0 0 2

⎤

⎥

⎥

⎦

.

We now compute
M = QAQT

= 1
140

⎡

⎢

⎢

⎢

⎣

2
√

14 −3
√

5
−
√

14 −6 2
√

5
0 5 3

√

5

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

√

2 −
√

2 0
√

2
√

2 0
0 0 2

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

2
√

14 −
√

14 0
−3 −6 5
√

5 2
√

5 3
√

5

⎤

⎥

⎥

⎦

= 1
28

⎡

⎢

⎢

⎢

⎣

2 + 13
√

2 4 − 2
√

2 + 6
√

7 6 − 3
√

2 − 4
√

7
4 − 2

√

2 − 6
√

7 8 + 10
√

2 12 − 6
√

2 + 2
√

7
6 − 3

√

2 + 4
√

7 12 − 6
√

2 − 2
√

7 18 + 5
√

2

⎤

⎥

⎥

⎥

⎦

.
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In a similar manner we compute

QBQT = 1
28

⎡

⎢

⎢

⎢

⎣

2 + 13
√

2 4 − 2
√

2 − 6
√

7 6 − 3
√

2 + 4
√

7
4 − 2

√

2 + 6
√

7 8 + 10
√

2 12 − 6
√

2 − 2
√

7
6 − 3

√

2 − 4
√

7 12 − 6
√

2 + 2
√

7 18 + 5
√

2

⎤

⎥

⎥

⎥

⎦

.

It is easy to check thatMv3 = v3, as expected, for either choice ofM .


