MATH 701 – FALL 2019 HOMEWORK 2 DUE MONDAY, SEPTEMBER 16 BY THE BEGINNING OF CLASS. SOLUTIONS

3. Let *n* be a fixed positive integer, and let \mathbb{C}^* be the group $\mathbb{C} \setminus \{0\}$ under multiplication. How many subgroups of \mathbb{C}^* have *n* elements? What are they? Justify your answer.

There is one subgroup of \mathbb{C}^* with *n* elements and it is $\{e^{2\pi i k/n} \mid 0 \le k \le n-1\}$.

Proof. Let H be a subgroup of \mathbb{C}^* with n elements. Observe first that every element of H has modulus 1. Indeed, if z does not have modulus 1, then z^m does not have modulus 1 for any positive integer m and so any subgroup of $\mathbb{C} \setminus \{0\}$ which contains z is necessarily infinite. Let $\theta > 0$ be the smallest positive real number with $e^{i\theta} \in H$. I first claim that if α is a real number with $e^{i\alpha} \in H$, then $\alpha = k\theta$ for some integer k. Indeed, write $\alpha = k\theta + r$ for some integer k and some real number r with $0 \le r < \theta$. Observe that $e^{ir} = e^{i\alpha} (e^{i\theta})^{-k}$ is in H. Our choice of θ ensures that r = 0. The first claim is established. At this point we have shown that $H = \{e^{ik\theta} \mid k \in \mathbb{Z}\}$. I next claim that $2\pi = m\theta$ for some integer m. This follows from the first claim because $1 = e^{2\pi i} \in H$. At this point we know that $H = \{e^{2\pi i k/m} \mid k \in \mathbb{Z}\}$. The left side has n elements. The right side has m elements. It follows that n = m and the argument is complete.

4. Let C_2 be the subgroup $\{1, -1\}$ of \mathbb{C}^* . Consider the group $G = C_2 \times C_2 \times C_2 \times C_2$, which is the direct product of four copies of C_2 . How many four element subgroups does *G* have? Justify your answer.

There are 35 four-element subgroups of G.

Proof. The group *G* is Abelian. Each element of *G* squares to the identity element. Each choice of two distinct elements g_1, g_2 from $G \setminus \{(1, 1, 1, 1)\}$ gives rise to the four element subgroup

$$\{g_1, g_2, g_1g_2, (1, 1, 1, 1)\}$$

of *G*. Of course, each subgroup of *G* has been counted three times in (0.0.1). The group *G* has 16 elements. The set $G \setminus \{(1, 1, 1, 1)\}$ has 15 elements. There are $\binom{15}{2}$ ways to select a two element subset from a fifteen element set. We have counted each 4-element subgroup of *G* three times. Thus the number of four element subgroups of *G* is

$$\frac{1}{3}\binom{15}{2} = \frac{15 \cdot 14}{3 \cdot 2} = 5 \cdot 7 = 35.$$

5. Prove that every element of $SO_n(\mathbb{R})$ is diagonalizable over \mathbb{C} . (It might make sense to prove a more general statement. An element M of $GL_n(\mathbb{C})$ is called unitary if $\overline{M}^T M$ is the identity matrix. Prove that every unitary matrix from $GL_n(\mathbb{C})$ is diagonalizable. In this problem \neg means complex conjugate. Recall that $SO_n(\mathbb{R})$ is the subgroup of $GL_n(\mathbb{R})$ which consists of all matrices M with $M^T M$ equal to the identity matrix.)

Theorem. Every unitary matrix from $GL_n(\mathbb{C})$ is diagonalizable.

The proof is a consequence of the following Claim; just take V to be all of \mathbb{C}^n .

Claim. Let *M* be a unitary $n \times n$ matrix with complex entries and let *V* be a subspace of \mathbb{C}^n with the property that $MV \subseteq V$. Then the restriction of *M* to *V* is diagonalizable.

Proof. Write $M|_V$ for the "restriction of M to V".

We prove the claim by induction on the dimension of V. If dim V = 1, and v is a non-zero element of V, then v is a basis for V. The hypothesis that $MV \subseteq V$ guarantees that v is an eigenvalue of M and hence $M|_V$ is diagonalizable.

Now suppose that $1 < \dim V$. Recall that $M|_V$ has a non-zero eigenvector.¹

Let v_0 be a non-zero eigenvector of $M|_V$ which belongs to the eigenvalue λ_0 . (The matrix M is non-singular, so $\lambda_0 \neq 0$.) Let

$$W = \{ w \in V \mid \bar{w}^{\mathrm{T}} v_0 = 0 \}.$$

It is clear that W is a vector space. Observe that

- $V = \mathbb{C}v_0 \oplus W$, and
- $MW \subseteq W$.

Once we are confident with these assertions then the proof of the claim is complete by induction because dim $W < \dim V$. We establish the two assertions.

We first show that $MW \subseteq W$. If $w \in W$, then $\bar{w}^T v_0 = 0$ and

$$(\overline{Mw})^{\mathrm{T}}v_{0} = \frac{1}{\lambda_{0}}(\overline{Mw})^{\mathrm{T}}Mv_{0} = \frac{1}{\lambda_{0}}\overline{w}^{\mathrm{T}}\overline{M}^{\mathrm{T}}Mv_{0} = \frac{1}{\lambda_{0}}\overline{w}^{\mathrm{T}} \operatorname{id} v_{0} = \overline{w}^{\mathrm{T}}v_{0} = 0;$$

hence, Mw is in W, as claimed.

Now we show that V is contained in the sum of W and $\mathbb{C}v_0$. If v is an arbitrary element of V, then

$$v = (v - \frac{\overline{v}^{\mathrm{T}} v_0}{\overline{v}_0^{\mathrm{T}} v_0} \cdot v_0) + \frac{\overline{v}^{\mathrm{T}} v_0}{\overline{v}_0^{\mathrm{T}} v_0} \cdot v_0$$

with $(v - \frac{\bar{v}^{\mathrm{T}}v_0}{\bar{v}_0^{\mathrm{T}}v_0} \cdot v_0) \in W$ and $\frac{\bar{v}^{\mathrm{T}}v_0}{\bar{v}_0^{\mathrm{T}}v_0} \cdot v_0 \in \mathbb{C}v_0$

Finally, the intersection of W and $\mathbb{C}v_0$ is zero because $\bar{v}_0^{\mathrm{T}}v_0$ is not zero.

The Claim has been established. Thus, as was noted above the claim, the Theorem is also established.

¹Indeed, the characteristic polynomial of $M|_V$ is a polynomial in one variable with complex coefficients. Such a polynomial has a root, say λ_1 in \mathbb{C} (by the "Fundamental Theorem of Algebra"). Thus $M|_V - \lambda_1$ id is a singular matrix. Any non-zero vector in the null space of $M|_V - \lambda_1$ id is an eigenvector of $M|_V$.

6. Let ℓ be the line in 3-space through the origin and parallel to the vector $\vec{i} + 2\vec{j} + 3\vec{k}$. Let $f : \mathbb{R}^3 \to \mathbb{R}^3$ be rotation by $\pi/4$ radians where ℓ is the axis of revolution. Find a matrix M so that /**Г Л**)

$$f\left(\begin{bmatrix} x\\ y\\ z \end{bmatrix}\right) = M\begin{bmatrix} x\\ y\\ z \end{bmatrix}$$

There are two correct answers.

Apply the algorithm given in class. Take v_3 to be the unit vector $v_3 = \frac{1}{\sqrt{14}} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, which is parallel

to ℓ . Pick v_1 and v_2 so that v_1, v_2, v_3 form an orthonormal set. I take

$$v_1 = \frac{1}{\sqrt{5}} \begin{bmatrix} 2\\ -1\\ 0 \end{bmatrix}$$
 and $v_2 = \frac{1}{\sqrt{70}} \begin{bmatrix} -3\\ -6\\ 5 \end{bmatrix}$.

Let Q be the matrix that carries e_1 to v_1 ; e_2 to v_2 ; and e_3 to v_3 , where

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad \text{and} \quad e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

is the "standard basis" of \mathbb{R}^3 . We see that

$$Q = \frac{1}{\sqrt{70}} \begin{bmatrix} 2\sqrt{14} & -3 & \sqrt{5} \\ -\sqrt{14} & -6 & 2\sqrt{5} \\ 0 & 5 & 3\sqrt{5} \end{bmatrix}.$$

The matrix Q^{-1} , which is the same as Q^{T} , carries v_i to e_i , for all *i*. (Be sure to check that $Q^{T}Q$ really is the identity matrix.) There are two matrices which fix the z-axis and rotate the xy-plane by $\pi/4$; namely,

$$A = \frac{1}{2} \begin{bmatrix} \sqrt{2} & -\sqrt{2} & 0\\ \sqrt{2} & \sqrt{2} & 0\\ 0 & 0 & 2 \end{bmatrix} \text{ and } B = \frac{1}{2} \begin{bmatrix} \sqrt{2} & \sqrt{2} & 0\\ -\sqrt{2} & \sqrt{2} & 0\\ 0 & 0 & 2 \end{bmatrix}.$$

We now compute

$$M = QAQ^{\mathrm{T}}$$

$$= \frac{1}{140} \begin{bmatrix} 2\sqrt{14} & -3 & \sqrt{5} \\ -\sqrt{14} & -6 & 2\sqrt{5} \\ 0 & 5 & 3\sqrt{5} \end{bmatrix} \begin{bmatrix} \sqrt{2} & -\sqrt{2} & 0 \\ \sqrt{2} & \sqrt{2} & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 2\sqrt{14} & -\sqrt{14} & 0 \\ -3 & -6 & 5 \\ \sqrt{5} & 2\sqrt{5} & 3\sqrt{5} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{28} \begin{bmatrix} 2+13\sqrt{2} & 4-2\sqrt{2}+6\sqrt{7} & 6-3\sqrt{2}-4\sqrt{7} \\ 4-2\sqrt{2}-6\sqrt{7} & 8+10\sqrt{2} & 12-6\sqrt{2}+2\sqrt{7} \\ 6-3\sqrt{2}+4\sqrt{7} & 12-6\sqrt{2}-2\sqrt{7} & 18+5\sqrt{2} \end{bmatrix}.$$

In a similar manner we compute

$$QBQ^{\mathrm{T}} = \begin{vmatrix} \frac{1}{28} \begin{bmatrix} 2+13\sqrt{2} & 4-2\sqrt{2}-6\sqrt{7} & 6-3\sqrt{2}+4\sqrt{7} \\ 4-2\sqrt{2}+6\sqrt{7} & 8+10\sqrt{2} & 12-6\sqrt{2}-2\sqrt{7} \\ 6-3\sqrt{2}-4\sqrt{7} & 12-6\sqrt{2}+2\sqrt{7} & 18+5\sqrt{2} \end{vmatrix} \right].$$

It is easy to check that $Mv_3 = v_3$, as expected, for either choice of M.