MATH 701 - FALL 2019
 HOMEWORK 2
 DUE MONDAY, SEPTEMBER 16 BY THE BEGINNING OF CLASS. SOLUTIONS

3. Let n be a fixed positive integer, and let \mathbb{C}^{*} be the group $\mathbb{C} \backslash\{0\}$ under multiplication. How many subgroups of \mathbb{C}^{*} have n elements? What are they? Justify your answer.
There is one subgroup of \mathbb{C}^{*} with n elements and it is $\left\{e^{2 \pi i k / n} \mid 0 \leq k \leq n-1\right\}$.
Proof. Let H be a subgroup of \mathbb{C}^{*} with n elements. Observe first that every element of H has modulus 1 . Indeed, if z does not have modulus 1 , then z^{m} does not have modulus 1 for any positive integer m and so any subgroup of $\mathbb{C} \backslash\{0\}$ which contains z is necessarily infinite. Let $\theta>0$ be the smallest positive real number with $e^{i \theta} \in H$. I first claim that if α is a real number with $e^{i \alpha} \in H$, then $\alpha=k \theta$ for some integer k. Indeed, write $\alpha=k \theta+r$ for some integer k and some real number r with $0 \leq r<\theta$. Observe that $e^{i r}=e^{i \alpha}\left(e^{i \theta}\right)^{-k}$ is in H. Our choice of θ ensures that $r=0$. The first claim is established. At this point we have shown that $H=\left\{e^{i k \theta} \mid k \in \mathbb{Z}\right\}$. I next claim that $2 \pi=m \theta$ for some integer m. This follows from the first claim because $1=e^{2 \pi i} \in H$. At this point we know that $H=\left\{e^{2 \pi i k / m} \mid k \in \mathbb{Z}\right\}$. The left side has n elements The right side has m elements. It follows that $n=m$ and the argument is complete.
4. Let C_{2} be the subgroup $\{1,-1\}$ of \mathbb{C}^{*}. Consider the group $G=C_{2} \times C_{2} \times C_{2} \times C_{2}$, which is the direct product of four copies of C_{2}. How many four element subgroups does G have? Justify your answer.

There are 35 four-element subgroups of G.
Proof. The group G is Abelian. Each element of G squares to the identity element. Each choice of two distinct elements g_{1}, g_{2} from $G \backslash\{(1,1,1,1)\}$ gives rise to the four element subgroup

$$
\begin{equation*}
\left\{g_{1}, g_{2}, g_{1} g_{2},(1,1,1,1)\right\} \tag{0.0.1}
\end{equation*}
$$

of G. Of course, each subgroup of G has been counted three times in (0.0.1). The group G has 16 elements. The set $G \backslash\{(1,1,1,1)\}$ has 15 elements. There are $\binom{15}{2}$ ways to select a two element subset from a fifteen element set. We have counted each 4-element subgroup of G three times. Thus the number of four element subgroups of G is

$$
\frac{1}{3}\binom{15}{2}=\frac{15 \cdot 14}{3 \cdot 2}=5 \cdot 7=35 .
$$

5. Prove that every element of $\mathrm{SO}_{n}(\mathbb{R})$ is diagonalizable over \mathbb{C}. (It might make sense to prove a more general statement. An element M of $\mathrm{GL}_{n}(\mathbb{C})$ is called unitary if $\bar{M}^{\mathrm{T}} M$ is the identity
matrix. Prove that every unitary matrix from $\mathrm{GL}_{n}(\mathbb{C})$ is diagonalizable. In this problem ${ }^{-}$ means complex conjugate. Recall that $\mathrm{SO}_{n}(\mathbb{R})$ is the subgroup of $\mathrm{GL}_{n}(\mathbb{R})$ which consists of all matrices M with $M^{\mathrm{T}} M$ equal to the identity matrix.)

Theorem. Every unitary matrix from $\mathrm{GL}_{n}(\mathbb{C})$ is diagonalizable.
The proof is a consequence of the following Claim; just take V to be all of \mathbb{C}^{n}.
Claim. Let M be a unitary $n \times n$ matrix with complex entries and let V be a subspace of \mathbb{C}^{n} with the property that $M V \subseteq V$. Then the restriction of M to V is diagonalizable.

Proof. Write $\left.M\right|_{V}$ for the "restriction of M to V ".
We prove the claim by induction on the dimension of V. If $\operatorname{dim} V=1$, and v is a non-zero element of V, then v is a basis for V. The hypothesis that $M V \subseteq V$ guarantees that v is an eigenvalue of M and hence $\left.M\right|_{V}$ is diagonalizable.

Now suppose that $1<\operatorname{dim} V$. Recall that $\left.M\right|_{V}$ has a non-zero eigenvector. ${ }^{1}$
Let v_{0} be a non-zero eigenvector of $\left.M\right|_{V}$ which belongs to the eigenvalue λ_{0}. (The matrix M is non-singular, so $\lambda_{0} \neq 0$.) Let

$$
W=\left\{w \in V \mid \bar{w}^{\mathrm{T}} v_{0}=0\right\}
$$

It is clear that W is a vector space. Observe that

- $V=\mathbb{C} v_{0} \oplus W$, and
- $M W \subseteq W$.

Once we are confident with these assertions then the proof of the claim is complete by induction because $\operatorname{dim} W<\operatorname{dim} V$. We establish the two assertions.

We first show that $M W \subseteq W$. If $w \in W$, then $\bar{w}^{\mathrm{T}} v_{0}=0$ and

$$
(\overline{M w})^{\mathrm{T}} v_{0}=\frac{1}{\lambda_{0}}(\overline{M w})^{\mathrm{T}} M v_{0}=\frac{1}{\lambda_{0}} \bar{w}^{\mathrm{T}} \bar{M}^{\mathrm{T}} M v_{0}=\frac{1}{\lambda_{0}} \bar{w}^{\mathrm{T}} \mathrm{id} v_{0}=\bar{w}^{\mathrm{T}} v_{0}=0 ;
$$

hence, $M w$ is in W, as claimed.
Now we show that V is contained in the sum of W and $\mathbb{C} v_{0}$. If v is an arbitrary element of V, then

$$
v=\left(v-\frac{\bar{v}^{\mathrm{T}} v_{0}}{\bar{v}_{0}^{\mathrm{T}} v_{0}} \cdot v_{0}\right)+\frac{\bar{v}^{\mathrm{T}} v_{0}}{\bar{v}_{0}^{\mathrm{T}} v_{0}} \cdot v_{0}
$$

with $\left(v-\frac{\bar{v}^{\mathrm{T}} v_{0}}{\bar{v}_{0}^{\mathrm{T}} v_{0}} \cdot v_{0}\right) \in W$ and $\frac{\bar{v}^{\mathrm{T}} v_{0}}{\bar{v}_{0}^{\mathrm{T}} v_{0}} \cdot v_{0} \in \mathbb{C} v_{0}$
Finally, the intersection of W and $\mathbb{C} v_{0}$ is zero because $\bar{v}_{0}^{\mathrm{T}} v_{0}$ is not zero.
The Claim has been established. Thus, as was noted above the claim, the Theorem is also established.

[^0]6. Let ℓ be the line in 3 -space through the origin and parallel to the vector $\overrightarrow{\boldsymbol{i}}+2 \overrightarrow{\boldsymbol{j}}+3 \overrightarrow{\boldsymbol{k}}$. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be rotation by $\pi / 4$ radians where ℓ is the axis of revolution. Find a matrix M so that
\[

f\left(\left[$$
\begin{array}{l}
x \\
y \\
z
\end{array}
$$\right]\right)=M\left[$$
\begin{array}{l}
x \\
y \\
z
\end{array}
$$\right]
\]

There are two correct answers.

Apply the algorithm given in class. Take v_{3} to be the unit vector $v_{3}=\frac{1}{\sqrt{14}}\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$, which is parallel to ℓ. Pick v_{1} and v_{2} so that v_{1}, v_{2}, v_{3} form an orthonormal set. I take

$$
v_{1}=\frac{1}{\sqrt{5}}\left[\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right] \quad \text { and } \quad v_{2}=\frac{1}{\sqrt{70}}\left[\begin{array}{c}
-3 \\
-6 \\
5
\end{array}\right] .
$$

Let Q be the matrix that carries e_{1} to $v_{1} ; e_{2}$ to v_{2}; and e_{3} to v_{3}, where

$$
e_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad e_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad \text { and } \quad e_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

is the "standard basis" of \mathbb{R}^{3}. We see that

$$
Q=\frac{1}{\sqrt{70}}\left[\begin{array}{ccc}
2 \sqrt{14} & -3 & \sqrt{5} \\
-\sqrt{14} & -6 & 2 \sqrt{5} \\
0 & 5 & 3 \sqrt{5}
\end{array}\right]
$$

The matrix Q^{-1}, which is the same as Q^{T}, carries v_{i} to e_{i}, for all i. (Be sure to check that $Q^{\mathrm{T}} Q$ really is the identity matrix.) There are two matrices which fix the z-axis and rotate the $x y$-plane by $\pi / 4$; namely,

$$
A=\frac{1}{2}\left[\begin{array}{ccc}
\sqrt{2} & -\sqrt{2} & 0 \\
\sqrt{2} & \sqrt{2} & 0 \\
0 & 0 & 2
\end{array}\right] \quad \text { and } \quad B=\frac{1}{2}\left[\begin{array}{ccc}
\sqrt{2} & \sqrt{2} & 0 \\
-\sqrt{2} & \sqrt{2} & 0 \\
0 & 0 & 2
\end{array}\right] .
$$

We now compute

$$
\begin{gathered}
M=Q A Q^{\mathrm{T}} \\
=\frac{1}{140}\left[\begin{array}{ccc}
2 \sqrt{14} & -3 & \sqrt{5} \\
-\sqrt{14} & -6 & 2 \sqrt{5} \\
0 & 5 & 3 \sqrt{5}
\end{array}\right]\left[\begin{array}{ccc}
\sqrt{2} & -\sqrt{2} & 0 \\
\sqrt{2} & \sqrt{2} & 0 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{ccc}
2 \sqrt{14} & -\sqrt{14} & 0 \\
-3 & -6 & 5 \\
\sqrt{5} & 2 \sqrt{5} & 3 \sqrt{5}
\end{array}\right] \\
=\frac{1}{28}\left[\begin{array}{ccc}
2+13 \sqrt{2} & 4-2 \sqrt{2}+6 \sqrt{7} & 6-3 \sqrt{2}-4 \sqrt{7} \\
4-2 \sqrt{2}-6 \sqrt{7} & 8+10 \sqrt{2} & 12-6 \sqrt{2}+2 \sqrt{7} \\
6-3 \sqrt{2}+4 \sqrt{7} & 12-6 \sqrt{2}-2 \sqrt{7} & 18+5 \sqrt{2}
\end{array}\right] .
\end{gathered}
$$

In a similar manner we compute

$$
Q B Q^{\mathrm{T}}=\frac{1}{28}\left[\begin{array}{ccc}
2+13 \sqrt{2} & 4-2 \sqrt{2}-6 \sqrt{7} & 6-3 \sqrt{2}+4 \sqrt{7} \\
4-2 \sqrt{2}+6 \sqrt{7} & 8+10 \sqrt{2} & 12-6 \sqrt{2}-2 \sqrt{7} \\
6-3 \sqrt{2}-4 \sqrt{7} & 12-6 \sqrt{2}+2 \sqrt{7} & 18+5 \sqrt{2}
\end{array}\right]
$$

It is easy to check that $M v_{3}=v_{3}$, as expected, for either choice of M.

[^0]: ${ }^{1}$ Indeed, the characteristic polynomial of $\left.M\right|_{V}$ is a polynomial in one variable with complex coefficients. Such a polynomial has a root, say λ_{1} in \mathbb{C} (by the "Fundamental Theorem of Algebra"). Thus $\left.M\right|_{V}-\lambda_{1}$ id is a singular matrix. Any non-zero vector in the null space of $\left.M\right|_{V}-\lambda_{1}$ id is an eigenvector of $\left.M\right|_{V}$.

