MATH 701 – FALL 2023 HOMEWORK 1 DUE MONDAY, SEPTEMBER 11 BY THE BEGINNING OF CLASS.

1. (a) Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ be the function which fixes the origin and rotates the *xy*-plane by the angle θ radians in the counterclockwise direction. What matrix satisfies

$$f\left(\begin{bmatrix}x\\y\end{bmatrix}\right) = M\begin{bmatrix}x\\y\end{bmatrix}?$$

(b) Let ℓ be the line through the origin making an angle φ with the positive x-axis. (Measure φ in radians. Measure angles in the counterclockwise direction starting at the positive x-axis.) Let f : ℝ² → ℝ² be the function which reflects the xy-plane across ℓ. What matrix satisfies

$$f\left(\begin{bmatrix} x\\ y\end{bmatrix}\right) = M\begin{bmatrix} x\\ y\end{bmatrix}?$$

- (c) Fill in the blanks (and justify your answers):
 - (reflection across the line with angle ϕ_1) \circ (reflection across the line with angle ϕ_2) is _____
 - (reflection across the line with angle ϕ) \circ (rotation by θ) is _____
 - (rotation by θ) \circ (reflection across the line with angle ϕ) is _____

Note.

- (i) View the left side of the statements in (c) as statements about functions. Recall that the function $f \circ g$ acts on x by $(f \circ g)(x) = f(g(x))$.
- (ii) The right side of the statements in (c) will read either "rotation by _" or "re-flection across the line with angle _". Of course, you will fill in the _.
- (iii) Once you complete problem (1) you will have shown that

 $\{f : \mathbb{R}^2 \to \mathbb{R}^2 \mid f \text{ is either a rotation fixing the origin or a reflection across the line through the origin}\}$

is a group. We call this group \mathcal{G} .

- 2. Let *S* be the square in the *xy*-plane with vertices: $v_1 = (1,0)$, $v_2 = (0,1)$, $v_3 = (-1,0)$, and $v_4 = (0,-1)$. Let D_4 be the subgroup of \mathscr{G} (from problem 1) which carries *S* onto itself. Let σ be reflection across the *x*-axis, so $\sigma = (2,4)$; and let ρ be rotation by $\pi/2$ radians counterclockwise, so $\rho = (1,2,3,4)$.
 - (a) Write reflection across the lines y = x, the *y*-axis, and y = -x as permutations of the vertices and in the form

(0.0.1)
$$\sigma^i \rho^j \quad \text{for } 0 \le i \le 1 \text{ and } 0 \le j \le 3.$$

ALGEBRA I

(b) Complete the following multiplication table for D_4 . All entries should be of the form (0.0.1).

	1	ρ	ρ^2	ρ^3	σ	$\sigma \rho$	$\sigma \rho^2$	$\sigma \rho^3$
1								
ρ								
ρ^2								
ρ^3								
σ								
$\sigma \rho$								
$\begin{array}{c c} \sigma\rho \\ \hline \sigma\rho^2 \\ \hline \sigma\rho^3 \end{array}$								
$\sigma \rho^3$								