MATH 701 - FALL 2023
 HOMEWORK 1 DUE MONDAY, SEPTEMBER 11 BY THE BEGINNING OF CLASS.

1. (a) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the function which fixes the origin and rotates the $x y$-plane by the angle θ radians in the counterclockwise direction. What matrix satisfies

$$
f\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=M\left[\begin{array}{l}
x \\
y
\end{array}\right] ?
$$

(b) Let ℓ be the line through the origin making an angle ϕ with the positive x-axis. (Measure ϕ in radians. Measure angles in the counterclockwise direction starting at the positive x-axis.) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the function which reflects the $x y$-plane across ℓ. What matrix satisfies

$$
f\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=M\left[\begin{array}{l}
x \\
y
\end{array}\right] \text { ? }
$$

(c) Fill in the blanks (and justify your answers):

- (reflection across the line with angle ϕ_{1}) (reflection across the line with angle ϕ_{2}) is \qquad
- (reflection across the line with angle ϕ) $\circ($ rotation by θ) is \qquad
- (rotation by $\theta) \circ($ reflection across the line with angle $\phi)$ is \qquad
Note.
(i) View the left side of the statements in (c) as statements about functions. Recall that the function $f \circ g$ acts on x by $(f \circ g)(x)=f(g(x))$.
(ii) The right side of the statements in (c) will read either "rotation by _" or "reflection across the line with angle _". Of course, you will fill in the _.
(iii) Once you complete problem (1) you will have shown that
$\left\{f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \mid f\right.$ is either a rotation fixing the origin or a reflection across the line through the origin $\}$
is a group. We call this group \mathscr{G}.

2. Let S be the square in the $x y$-plane with vertices: $v_{1}=(1,0), v_{2}=(0,1), v_{3}=(-1,0)$, and $v_{4}=(0,-1)$. Let D_{4} be the subgroup of \mathscr{G} (from problem 1) which carries S onto itself. Let σ be reflection across the x-axis, so $\sigma=(2,4)$; and let ρ be rotation by $\pi / 2$ radians counterclockwise, so $\rho=(1,2,3,4)$.
(a) Write reflection across the lines $y=x$, the y-axis, and $y=-x$ as permutations of the vertices and in the form

$$
\begin{equation*}
\sigma^{i} \rho^{j} \quad \text { for } 0 \leq i \leq 1 \text { and } 0 \leq j \leq 3 \tag{0.0.1}
\end{equation*}
$$

(b) Complete the following multiplication table for D_{4}. All entries should be of the form (0.0.1).

	1	ρ	ρ^{2}	ρ^{3}	σ	$\sigma \rho$	$\sigma \rho^{2}$	$\sigma \rho^{3}$
1								
ρ								
ρ^{2}								
ρ^{3}								
σ								
$\sigma \rho$								
$\sigma \rho^{2}$								
$\sigma \rho^{3}$								

