MATH 701 – FALL 2023 HOMEWORK 1 DUE MONDAY, SEPTEMBER 11 BY THE BEGINNING OF CLASS.

1. (a) Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ be the function which fixes the origin and rotates the *xy*-plane by the angle θ radians in the counterclockwise direction. What matrix satisfies

$$f\left(\begin{bmatrix}x\\y\end{bmatrix}\right) = M\begin{bmatrix}x\\y\end{bmatrix}?$$

Think of the vector $\begin{bmatrix} x \\ y \end{bmatrix}$ in polar coordinates. There are real numbers r and ϕ with $x = r \cos \phi$ and $y = r \sin \phi$. It is clear that

$$f\left(\begin{bmatrix}x\\y\end{bmatrix}\right) = \begin{bmatrix}r\cos(\theta + \phi)\\r\sin(\theta + \phi)\end{bmatrix} = \begin{bmatrix}r(\cos\theta\cos\phi - \sin\theta\sin\phi)\\r(\cos\theta\sin\phi + \sin\theta\cos\phi)\end{bmatrix} = \begin{bmatrix}\cos\theta x - \sin\theta y\\\cos\theta y + \sin\theta x\end{bmatrix}$$
$$= \begin{bmatrix}\cos\theta & -\sin\theta\\\sin\theta & \cos\theta\end{bmatrix} \begin{bmatrix}x\\y\end{bmatrix}.$$
Thus,
$$f\left(\begin{bmatrix}x\\y\end{bmatrix}\right) = M\begin{bmatrix}x\\y\end{bmatrix}$$

for

$$M = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.$$

(b) Let ℓ be the line through the origin making an angle ϕ with the positive *x*-axis. (Measure ϕ in radians. Measure angles in the counterclockwise direction starting at the positive *x*-axis.) Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ be the function which reflects the *xy*-plane across ℓ . What matrix satisfies

$$f\left(\begin{bmatrix}x\\y\end{bmatrix}\right) = M\begin{bmatrix}x\\y\end{bmatrix}?$$

If $\phi = 0$, then it is clear that $M = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$. I propose that we think of the given function *f* as the composition of three functions that we already understand:

f =(rotation by ϕ) \circ (reflection across the *x*-axis) \circ (rotation by $-\phi$).

The matrix for f is the product of the matrices for each of the three pieces. That is,

$$f\begin{bmatrix}x\\y\end{bmatrix} = M\begin{bmatrix}x\\y\end{bmatrix},$$

where

$$M = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{bmatrix}$$

ALGEBRA I

$$= \begin{bmatrix} \cos^2 \phi - \sin^2 \phi & 2\sin \phi \cos \phi \\ 2\sin \phi \cos \phi & -\cos^2 \phi + \sin^2 \phi \end{bmatrix} = \begin{bmatrix} \cos 2\phi & \sin 2\phi \\ \sin 2\phi & -\cos 2\phi \end{bmatrix}$$

(c) Fill in the blanks (and justify your answers):

Proof. We see that

(reflection across the line with angle ϕ_1) \circ (reflection across the line with angle ϕ_2)

is given by multiplication by the matrix

$$\begin{bmatrix} \cos 2\phi_1 & \sin 2\phi_1 \\ \sin 2\phi_1 & -\cos 2\phi_1 \end{bmatrix} \begin{bmatrix} \cos 2\phi_2 & \sin 2\phi_2 \\ \sin 2\phi_2 & -\cos 2\phi_2 \end{bmatrix}$$
$$= \begin{bmatrix} \cos 2(\phi_1 - \phi_2) & -\sin 2(\phi_1 - \phi_2) \\ \sin 2(\phi_1 - \phi_2) & \cos 2(\phi_1 - \phi_2) \end{bmatrix}. \square$$

• (reflection across the line with angle ϕ) \circ (rotation by θ) is _____

reflection across the line with angle $\phi - \frac{\theta}{2}$.

Proof. We see that

(reflection across the line with angle ϕ) \circ (rotation by θ)

is given by multiplication by the matrix

 $\begin{bmatrix} \cos 2\phi & \sin 2\phi \\ \sin 2\phi & -\cos 2\phi \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} = \begin{bmatrix} \cos(2\phi - \theta) & \sin(2\phi - \theta) \\ \sin(2\phi - \theta) & -\cos(2\phi - \theta) \end{bmatrix}. \square$

• (rotation by θ) \circ (reflection across the line with angle ϕ) is _____

reflection across the line with angle $\phi + \frac{\theta}{2}$.

Proof. We see that

(rotation by θ) \circ (reflection across the line with angle ϕ)

is given by multiplication by the matrix

$$\begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} \cos 2\phi & \sin 2\phi\\ \sin 2\phi & -\cos 2\phi \end{bmatrix} = \begin{bmatrix} \cos(2\phi+\theta) & \sin(2\phi+\theta)\\ \sin(2\phi+\theta) & -\cos(2\phi+\theta) \end{bmatrix}. \square$$

Note.

(i) View the left side of the statements in (c) as statements about functions. Recall that the function $f \circ g$ acts on x by $(f \circ g)(x) = f(g(x))$.

2

^{• (}reflection across the line with angle ϕ_1) \circ (reflection across the line with angle ϕ_2) is ____ [rotation by the angle $2(\phi_1 - \phi_2)$.]

- (ii) The right side of the statements in (c) will read either "rotation by _" or "reflection across the line with angle _". Of course, you will fill in the _.
- (iii) Once you complete problem (1) you will have shown that
- $\{f : \mathbb{R}^2 \to \mathbb{R}^2 \mid f \text{ is either a rotation fixing the origin or a reflection across the line through the origin}\}$

is a group. We call this group ${\mathscr G}.$

- 2. Let S be the square in the xy-plane with vertices: $v_1 = (1,0)$, $v_2 = (0,1)$, $v_3 = (-1,0)$, and $v_4 = (0,-1)$. Let D_4 be the subgroup of \mathscr{G} (from problem 1) which carries S onto itself. Let σ be reflection across the x-axis, so $\sigma = (2,4)$; and let ρ be rotation by $\pi/2$ radians counterclockwise, so $\rho = (1,2,3,4)$.
 - (a) Write reflection across the lines y = x, the *y*-axis, and y = -x as permutations of the vertices and in the form

(0.0.1)
$$\sigma^i \rho^j \quad \text{for } 0 \le i \le 1 \text{ and } 0 \le j \le 3.$$

One straightforward calculation is:

 $\sigma \rho = (2, 4)(1, 2, 3, 4) = (1, 4)(2, 3)$, which is reflection across y = -x $\sigma \rho^2 = (2, 4)(1, 3)(2, 4) = (1, 3)$, which is reflection across the *y*-axis $\sigma \rho^3 = (2, 4)(1, 4, 3, 2) = (1, 2)(3, 4)$, which is reflection across y = x

(b) Complete the following multiplication table for *D*₄. All entries should be of the form (0.0.1).

	1	ρ	ρ^2	ρ^3	σ	$\sigma \rho$	$\sigma \rho^2$	$\sigma \rho^3$
1								
ρ								
ρ^2								
ρ^3								
σ								
$\sigma \rho$								
$\begin{array}{c c} \sigma\rho \\ \hline \sigma\rho^2 \\ \hline \sigma\rho^3 \end{array}$								
$\sigma \rho^3$								

One may fill in the chart using only the facts that