DUE MONDAY, SEPTEMBER 11 BY THE BEGINNING OF CLASS.

1. (a) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the function which fixes the origin and rotates the $x y$-plane by the angle θ radians in the counterclockwise direction. What matrix satisfies

$$
f\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=M\left[\begin{array}{l}
x \\
y
\end{array}\right] ?
$$

Think of the vector $\left[\begin{array}{l}x \\ y\end{array}\right]$ in polar coordinates. There are real numbers r and ϕ with $x=r \cos \phi$ and $y=r \sin \phi$. It is clear that

$$
\begin{aligned}
f\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{l}
r \cos (\theta+\phi) \\
r \sin (\theta+\phi)
\end{array}\right] & =\left[\begin{array}{l}
r(\cos \theta \cos \phi-\sin \theta \sin \phi) \\
r(\cos \theta \sin \phi+\sin \theta \cos \phi)
\end{array}\right]=\left[\begin{array}{l}
\cos \theta x-\sin \theta y \\
\cos \theta y+\sin \theta x
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] .
\end{aligned}
$$

Thus,

$$
f\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=M\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

for

$$
M=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] .
$$

(b) Let ℓ be the line through the origin making an angle ϕ with the positive x axis. (Measure ϕ in radians. Measure angles in the counterclockwise direction starting at the positive x-axis.) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the function which reflects the $x y$-plane across ℓ. What matrix satisfies

$$
f\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=M\left[\begin{array}{l}
x \\
y
\end{array}\right] ?
$$

If $\phi=0$, then it is clear that $M=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$. I propose that we think of the given function f as the composition of three functions that we already understand:

$$
f=(\text { rotation by } \phi) \circ(\text { reflection across the } x \text {-axis }) \circ(\text { rotation by }-\phi) .
$$

The matrix for f is the product of the matrices for each of the three pieces. That is,

$$
f\left[\begin{array}{l}
x \\
y
\end{array}\right]=M\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

where

$$
M=\left[\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
\cos \phi & \sin \phi \\
-\sin \phi & \cos \phi
\end{array}\right]
$$

$$
=\left[\begin{array}{cc}
\cos ^{2} \phi-\sin ^{2} \phi & 2 \sin \phi \cos \phi \\
2 \sin \phi \cos \phi & -\cos ^{2} \phi+\sin ^{2} \phi
\end{array}\right]=\left[\begin{array}{cc}
\cos 2 \phi & \sin 2 \phi \\
\sin 2 \phi & -\cos 2 \phi
\end{array}\right]
$$

(c) Fill in the blanks (and justify your answers):

- (reflection across the line with angle ϕ_{1}) (reflection across the line with angle ϕ_{2})
is ___ rotation by the angle $2\left(\phi_{1}-\phi_{2}\right)$.
Proof. We see that
(reflection across the line with angle ϕ_{1}) \circ (reflection across the line with angle ϕ_{2})
is given by multiplication by the matrix

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\cos 2 \phi_{1} & \sin 2 \phi_{1} \\
\sin 2 \phi_{1} & -\cos 2 \phi_{1}
\end{array}\right]\left[\begin{array}{cc}
\cos 2 \phi_{2} & \sin 2 \phi_{2} \\
\sin 2 \phi_{2} & -\cos 2 \phi_{2}
\end{array}\right]} \\
& =\left[\begin{array}{cc}
\cos 2\left(\phi_{1}-\phi_{2}\right) & -\sin 2\left(\phi_{1}-\phi_{2}\right) \\
\sin 2\left(\phi_{1}-\phi_{2}\right) & \cos 2\left(\phi_{1}-\phi_{2}\right)
\end{array}\right] .
\end{aligned}
$$

- (reflection across the line with angle $\phi) \circ($ rotation by $\theta)$ is \qquad reflection across the line with angle $\phi-\frac{\theta}{2}$.

Proof. We see that
(reflection across the line with angle ϕ) $\circ($ rotation by $\theta)$
is given by multiplication by the matrix

$$
\left[\begin{array}{cc}
\cos 2 \phi & \sin 2 \phi \\
\sin 2 \phi & -\cos 2 \phi
\end{array}\right]\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]=\left[\begin{array}{cc}
\cos (2 \phi-\theta) & \sin (2 \phi-\theta) \\
\sin (2 \phi-\theta) & -\cos (2 \phi-\theta)
\end{array}\right] .
$$

- (rotation by $\theta) \circ$ (reflection across the line with angle ϕ) is \qquad reflection across the line with angle $\phi+\frac{\theta}{2}$.
Proof. We see that
(rotation by $\theta) \circ($ reflection across the line with angle ϕ)
is given by multiplication by the matrix

$$
\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{cc}
\cos 2 \phi & \sin 2 \phi \\
\sin 2 \phi & -\cos 2 \phi
\end{array}\right]=\left[\begin{array}{cc}
\cos (2 \phi+\theta) & \sin (2 \phi+\theta) \\
\sin (2 \phi+\theta) & -\cos (2 \phi+\theta)
\end{array}\right] .
$$

Note.
(i) View the left side of the statements in (c) as statements about functions. Recall that the function $f \circ g$ acts on x by $(f \circ g)(x)=f(g(x))$.
(ii) The right side of the statements in (c) will read either "rotation by _" or "reflection across the line with angle _". Of course, you will fill in the ..
(iii) Once you complete problem (1) you will have shown that
$\left\{f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \mid f\right.$ is either a rotation fixing the origin or a reflection across the line through the origin $\}$ is a group. We call this group \mathscr{G}.
2. Let S be the square in the $x y$-plane with vertices: $v_{1}=(1,0), v_{2}=(0,1), v_{3}=(-1,0)$, and $v_{4}=(0,-1)$. Let D_{4} be the subgroup of \mathscr{G} (from problem 1) which carries S onto itself. Let σ be reflection across the x-axis, so $\sigma=(2,4)$; and let ρ be rotation by $\pi / 2$ radians counterclockwise, so $\rho=(1,2,3,4)$.
(a) Write reflection across the lines $y=x$, the y-axis, and $y=-x$ as permutations of the vertices and in the form

$$
\begin{equation*}
\sigma^{i} \rho^{j} \quad \text { for } 0 \leq i \leq 1 \text { and } 0 \leq j \leq 3 \tag{0.0.1}
\end{equation*}
$$

One straightforward calculation is:

$$
\begin{gathered}
\sigma \rho=(2,4)(1,2,3,4)=(1,4)(2,3), \text { which is reflection across } y=-x \\
\sigma \rho^{2}=(2,4)(1,3)(2,4)=(1,3), \text { which is reflection across the } y \text {-axis } \\
\sigma \rho^{3}=(2,4)(1,4,3,2)=(1,2)(3,4) \text {, which is reflection across } y=x
\end{gathered}
$$

(b) Complete the following multiplication table for D_{4}. All entries should be of the form (0.0.1).

	1	ρ	ρ^{2}	ρ^{3}	σ	$\sigma \rho$	$\sigma \rho^{2}$	$\sigma \rho^{3}$
1								
ρ								
ρ^{2}								
ρ^{3}								
σ								
$\sigma \rho$								
$\sigma \rho^{2}$								
$\sigma \rho^{3}$								

One may fill in the chart using only the facts that

$$
\sigma^{2}=1, \quad \rho^{4}=1, \quad \rho \sigma=\sigma \rho^{3}:
$$

	1	ρ	ρ^{2}	ρ^{3}	σ	$\sigma \rho$	$\sigma \rho^{2}$	$\sigma \rho^{3}$
1	1	ρ	ρ^{2}	ρ^{3}	σ	$\sigma \rho$	$\sigma \rho^{2}$	$\sigma \rho^{3}$
ρ	ρ	ρ^{2}	ρ^{3}	1	$\sigma \rho^{3}$	σ	$\sigma \rho$	$\sigma \rho^{2}$
ρ^{2}	ρ^{2}	ρ^{3}	1	ρ	$\sigma \rho^{2}$	$\sigma \rho^{3}$	σ	$\sigma \rho$
ρ^{3}	ρ^{3}	1	ρ	ρ^{2}	$\sigma \rho$	$\sigma \rho^{2}$	$\sigma \rho^{3}$	σ
σ	σ	$\sigma \rho$	$\sigma \rho^{2}$	$\sigma \rho^{3}$	1	ρ	ρ^{2}	ρ^{3}
$\sigma \rho$	$\sigma \rho$	$\sigma \rho^{2}$	$\sigma \rho^{3}$	σ	ρ^{3}	1	ρ	ρ^{2}
$\sigma \rho^{2}$	$\sigma \rho^{2}$	$\sigma \rho^{3}$	σ	$\sigma \rho$	ρ^{2}	ρ^{3}	1	ρ
$\sigma \rho^{3}$	$\sigma \rho^{3}$	σ	$\sigma \rho$	$\sigma \rho^{2}$	ρ	ρ^{2}	ρ^{3}	1

