
ALGEBRA I FALL 2023, A. KUSTIN, CLASS NOTES

1. THE RULES AND THE COURSE OUTLINE.

1.A. Homework. I will assign and grade homework. Please take it seriously. Please turn the
homework in on-time.

Please type your solutions and e-mail me a .pdf version.
Each student should write up a solution to each problem (even if some problems were solved by a

group of students.) Write in a professional manner. Make clear claims (not vague claims.) Write in
complete sentences; use proper English; define all new terms carefully and completely; and define
all notation carefully and completely.

It is a good idea to do some problems on your own. It is also valuable (and much fun) to work
with other people. It is legal to look things up as you are doing homework; indeed, if you look
hard enough, you can probably find the solution to anything I am likely to ask some place on the
Internet.

Arrive at your solution however you like: by yourself, using the Internet, working with other
people. Write the answer up by yourself in your own words. Make your answer as clear, under-
standable, and complete as possible. Give all details in your answer. Explain all notation and new
concepts that you use. Acknowledge all of your sources.

1.B. Exams. There will be three in-class exams (Wednesday, September 20 Wednesday, October
18, and Monday, November 20) and one final exam (Friday, December 15, 4:00–6:30 PM). I’ll ask
some questions. You will do the best you can with them.

1.C. Class Attendance. I expect my students to attend class.

1.D. Office Hours. My office hours are 5:15–6:30 Monday and Wednesday.
I do respond to e-mail.

1.E. References. I will post my lecture notes on the web. These notes will serve as the text book
for the course. I will re-write the notes as the course progresses. One of the main sources will be
the notes I used in the past when I taught the course. These older notes were mainly taken from
Jacobson [6]. (Dover has reprinted an inexpensive version of this book.) Jacobson was an excellent
mathematician and he writes well. (He includes some topics that I don’t like; I just skip them.) Also
I taught the course from Artin [2] a few times. Artin is a very excellent mathematician. (Artin’s
book might be pegged at a slightly lower level than the course you are taking. The charming thing
about it is that it covers topics that are not usually covered in the first year Algebra course.) In
the 1990’s every one took Algebra from Hungerford’s book [5]; but I am not particularly fond
of it. I took many courses from Rotman when I was a graduate student and a copy of an early
edition of [8] sits on my desk. I know that other books by Rotman have lots of motivation and are
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well-organized. There is a decent chance that some of your course will come from [8]. Professors
Ballard and Duncan taught 701 from Aluffi [1] in 2015–2016 and 2016–2017, respectively. It is
a much different treatment of the material than the course I will teach. I do not have access to a
copy. Professors Thorne and Vraciu taught from Dummit and Foote in 2017–2018 and 2018–2019,
respectively. Dummit and Foote is the book “everybody learns Algebra from” now-a-days. I do
have e-access to it. I may open it during your course; I may not.

The main thing is, make sure you know the name of the topic we are studying at any given time.
Once you know the name the topic, then the Internet will lead you to all sorts of treatments of the
topic. Find one treatment (from class, or from the Internet, or from some textbook) that resonates
with you and then learn the topic very thoroughly.

If I happen to be following some source fairly closely, I will let you know (and if I forget, feel
free to ask).

1.F. What we study. 1

We study groups, rings, and fields. I think it is important to keep in mind that these notions are
not handed down from on high; they grew organically.

A group is a set of invertible functions from a set to itself; this set is closed under composition.
The set of all permutations of a finite set is the prototype of a group. Lagrange (1770) was one
of the first to think about the set of permutations. Galois (1830) used groups of permutations as
a way of describing which polynomials (in one variable with rational coefficients) can be “solved
by radical”. Felix Klein (1870) thought about “symmetry groups” of geometric objects. Groups
were used by Gauss (1777-1855), Kronecker (1823-1891), and Kummer (1810-1893) in projects
involving number theory. I visualize that Lagrange proved results about permutations, Klein proved
results about symmetries of geometric objects, and Galois, Gauss, Kronecker, and Kummer proved
results about number theory; before Cayley (1854) said “Hey! All of you proved the same result
and it does not have anything to do with permutations, geometric objects, or number theory. It
holds whenever one has… ” At this point Cayley gave the abstract axioms for a group.

I think the idea of algebra is “Lets focus on the essential underlying idea rather than the specific
example that we seem to be studying.”

Commutative ring theory has a similar history. Themain focus of number theory in the nineteenth
history was to obtain a proof of Fermat’s Last Theorem (that there do not exist positive integers a,
b and c with an + bn = cn when n is an integer at least three.) Fermat (1607-1665) wrote “I have
discovered a truly remarkable proof of this theorem which this margin is too small to contain” in his
copy of Arithmetica of Diophantus. One style of argument was to factor xn + yn − zn over ℤ with
all of the nth roots of one adjoined. This style of argument works when n is a prime integer and the
“coefficient ring” is a “Unique Factorization Domain” (UFD). Alas, when n = 23, the coefficient
ring is not a UFD. (Andrew Wiles proved Fermat’s Last Theorem in 1995.)

1This material is mainly taken from [7, 9, 10].
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In the meantime algebraic geometers were thinking about curves, surfaces, three-folds, etc. One
way to study a geometric object X is to consider all of the (appropriate) functions from X back to
the base field (say ℝ). Algebraic geometers especially care about polynomial maps. Differential
Geometers and Functional Analysts probably want continuous maps. In all of these cases, the set
of functionals (the set of maps from the geometric object to the base field) automatically form a
ring. If f and g are functions from X to ℝ, then define f + g ∶ X → ℝ to be the map that sends
x ∈ X to f (x) + g(x) and define f × g from X to ℝ to be (f × g)(x) = f (x) ⋅ g(x). Algebraic
Geometers call the set of functionals on X the coordinate ring of X; Functional Analysts call the
set of functionals on X the dual Banach space of X.
Dedekind (or maybe Kronecker) observed you number theorists and you algebraic geometers

are really proving the same theorems and the results are not really about number theory or curves,
surfaces, and three-folds, they are really results about ... and at this point he defined an abstract
ring.

The fact that fields were studied long before the official definition of field was given is quite clear.
As humanity wanted to measure more quantities, do calculus, and solve more equations, humanity
understood the (field of) rational numbers, the (field of) constructible numbers, the (field of) real
numbers and (the field) of complex numbers. The official definition of an abstract field is probably
due to Weber (1893) although Dedekind (1871) had an algebraic version and Kronecker (1881) had
a more analytic version.

1.G. Actions. Groups act on sets. (In fact, so far I have only said that a group is a set of invertible
functions from a set to itself.) One learns about the set by way of this group action and learns about
the group by way of this group action. It is quite amazing.

Rings act on modules. A module is an Abelian group with a scalar multiplication. If R is the
ring then the direct sum of copies of R (for example R⊕ R) is an R-module and any subset of an
R-module which is closed under addition and scalar multiplication is another R-module.
A field is a special kind of ring. So, every field also acts on modules. It turns out that every

module over a field kkk is a direct sum of copies of kkk. Modules over a field are called vector spaces.

1.H. Some of the highlights of the course.
1. Groups

(a) We prove the Sylow Theorems about finite groups. Given a finite group we predict the sizes
of some of its subgroups and we give information about how many such subgroups exist.
These results are established by cleverly examining actions of the finite group.

(b) We study “solvable groups” and we prove that the group of all permutations of a five element
set is not solvable. (We pick this idea up again in 1.1.(3d).)

2. Rings
(a) We study Principal Ideal Domains (PID). The ring of integers and the ring of polynomials

over a field are examples of PIDs.
(b) We prove that every PID is a Unique Factorization Domain. (Keep in mind that the notion

of unique factorization is central to both Number Theory and Algebraic Geometry.)
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(c) We find the structure of all finitely generated modules over a PID. (Keep in mind that a
finitely generated module over a field is just a finite dimensional vector space. One can write
down a basis for such a thing. It is easy. A finitely generated module over an arbitrary ring
might be very complicated. But there is structure theorem for a finitely generated module
over a PID. This is an awesome theorem.) Here are two applications of this theorem.
(i) We record the structure of all finitely generated Abelian groups.
(ii) We record the canonical forms for matrices. Let kkk be the field of complex numbers,

V be an n-dimensional vector space over kkk, and T ∶ V → V be a linear transforma-
tion. One would like a basis for V that makes T as pretty as possible. Maybe T is
diagonalizable; that would be pretty. In general, the Jordan canonical form of T looks
like

⎡

⎢

⎢

⎢

⎢

⎢

⎣

Ja1(�1) 0 0 … 0
0 Ja2(�2) 0 … 0
0 0 Ja3(�3) ⋱ ⋮
0 0 0 ⋱ 0
0 0 0 … Jas(�s)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

where Ja(�) is the a × a matrix

Ja(�) =

⎡

⎢

⎢

⎢

⎢

⎣

� 0 … … 0
1 � 0 ⋱ ⋮
0 1 � ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 0
0 … 0 1 �

⎤

⎥

⎥

⎥

⎥

⎦

.

The Jordan canonical form of T is unique (up to rearranging order of the Jordan blocks
Jai(�i). At any rate, T is diagonalizable if and only if each ai is 1. (I have come upon
elementary linear algebra books that say a square matrix over ℂ is “defective” if it isn’t
diagonalizable. I scratch my head and think, “The matrix isn’t defective; it merely has a
more complicated Jordan canonical form than simply being diagonalizable.) I empha-
size that there is nothing numerical about the theory of canonical forms of matrices.
One is merely describing the structure of modules over Principal Ideal Domains; in
other words, this result is exactly the same as the result which gives the structure of
finitely generated Abelian groups. I have to point out how the data (kkk, V , T ) involves a
module over a PID. One says V is a module over the polynomial ring kkk[x], where the
scalar multiplication xv is given by xv = T (v) for all v ∈ V .

3. Galois Theory.

1.1. Let f (x) be a polynomial with rational coefficients and let F be the smallest subfield of ℂ
which contains ℚ and the roots of f . We associate a group G to the pair of fields ℚ ⊆ F . We
prove the following statements.

(a) The group G is finite and the number of elements in G is equal to the dimension of F as a
vector space over ℚ.
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(b) There is a one-to-one correspondence between the subgroups of G and the intermediate
fields K with ℚ ⊆ K ⊆ F . (The Sylow theorems give us information about the subgroups
of a group!)

(c) The polynomial f is solvable by radical if and only if G is solvable.
(d) There are fifth degree polynomials which are not solvable by radical. In other words, it is

not possible to give a formula for the solutions of a fifth degree polynomial equation
in terms of a finite iteration of taking roots and doing addition, subtraction, multipli-
cation, and division. Of course, the quadratic formula gives the solutions of a quadratic
polynomial equation. The course will include the formulas for finding the solutions of third
and fourth degree polynomial equations.

1.I. Some of the reasons that I really like Algebra.
(a) In algebra, one states up front what the rules are.
(b) Algebra is not confined to studying something that “is already there”. That is, one can change

the rules. For example, one can decree, “Today, two is equal to zero.” Henceforth, now one
has (x + y)2 = x2 + y2.

(c) In algebra, the words are well-defined.
(d) Algebra provides tools for proving statements and making calculations. Here are some exam-

ples.
(i) One often calculates the multiplicity of an intersection by calculating the length of a local

ring.
(ii) One often proves that two topological spaces are not homeomorphic by showing that some

algebraic invariant of the spaces are different.
(iii) Algebra provides interesting things for combinatorists to count; and algebra provides new

techniques for counting things.
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2. GROUPS.

2.A. The definition and elementary properties of groups.

Definition 2.1. A group is a setG together with a functionG×G → G, given by (g1, g2)↦ g1 ∗ g2,
for gi ∈ G, which satisfies the following properties.
(a) If g1, g2, and g3 are elements of G, then g1 ∗ (g2 ∗ g3) = (g1 ∗ g2) ∗ g3.
(b) There is an element e in G with e ∗ g = g and g ∗ e = g for all g in G.
(c) For each g in G, there exists an element g′ with g ∗ g′ = e and g′ ∗ g = e.
If G also satisfies g1 ∗ g2 = g2 ∗ g1 for all gi in G, then G is called an Abelian group.

Remarks 2.2. (a) The function ∗ of is usually called an “operation” on G.
(b) One emphasizes that g1 ∗ g2 is in G for all pairs of elements of G by saying that “G is closed

under the operation ∗”.
(c) Property (a) is called the associative property of the group (G, ∗).
(d) The element e of (b) is called an “identity” element of the group (G, ∗).
(e) The element g′ of (c) is called an “inverse” of g.
(f) If (G, ∗) is a group andH is a non-empty subset of G which is closed under ∗ and closed under

the process of taking inverses, then (H, ∗) is also a group and (H, ∗) is called a subgroup of G.

Observation 2.3. Let (G, ∗) be a group. Then the following statements hold.
(a) The identity element of G is unique.
(b) If g is an element of G, then the inverse of g is unique.
(c) If g is an element of G and g′ is the inverse of g, then g is the inverse of g′.

Proof.
(a) If e and e0 both are identity elements of G, then

e0 = e ∗ e0 = e.

The equality on the left holds because e is an identity element of G. The equality on the right holds
because e0 is an identity element of G.
(b) If ℎ and ℎ0 both are inverses of the element g of G, then

ℎ0 = e ∗ ℎ0, because e is the identity element of (G, ∗),
= (ℎ ∗ g) ∗ ℎ0, because ℎ is an inverse of g,
= ℎ ∗ (g ∗ ℎ0), because ∗ is an associative operation on G,
= ℎ ∗ e, because ℎ0 is an inverse of g,
= ℎ, because e is the identity element of (G, ∗).

(c) The hypothesis that g′ is the inverse of g guarantees that g′ ∗ g = e and g ∗ g′ = e. These two
equations also demonstrate that g acts like an inverse of g′. Apply (b) to see that the inverse of g′
in G is unique. It follows that g is the inverse of g′. �
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2.B. Examples of groups.

Example 2.4. The set of integers under addition is an Abelian group, denoted (ℤ,+).

Example 2.5. The set of non-zero complex numbers under multiplication is an Abelian group,
denoted ℂ∗ = (ℂ ⧵ {0},×).

Example 2.6. The set of invertible n × n matrices with complex entries under multiplication is a
non-Abelian group, denoted GLn(ℂ). (The symbol GL stands for General Linear.)

Example 2.7. The set of n×nmatrices with complex entries and determinant one is a non-Abelian
group, denoted SLn(ℂ). (The symbol SL stands for Special Linear.)

Example 2.8. The set of permutations of the set {1, 2, 3,… , n} under composition forms a group,
denoted Sn.
We study S3 in more detail. First we will list the elements of S3 using two-rowed notation. Then

we will list the elements of S3 using one-rowed notation. (It is perfectly obvious what the two-
rowed notation means; but it takes much too much effort to write an element down. One must think
about what one-rowed notation means; but it clearly is more convenient to use.)

The notation
(

1 2 3
a b c

)

means that 1 ↦ a, 2 ↦ b, and 3↦ c. The elements of S3 are
(

1 2 3
1 2 3

)

,
(

1 2 3
3 1 2

)

,
(

1 2 3
2 3 1

)

,
(

1 2 3
2 1 3

)

,
(

1 2 3
3 2 1

)

,
(

1 2 3
1 3 2

)

.

Instead of two-rowed notation we use cycle notation (or one-rowed) notation:
(

1 2 3
1 2 3

)

= (1),
(

1 2 3
3 1 2

)

= (1, 3, 2),
(

1 2 3
2 3 1

)

= (1, 2, 3),
(

1 2 3
2 1 3

)

= (1, 2),
(

1 2 3
3 2 1

)

= (1, 3),
(

1 2 3
1 3 2

)

= (2, 3).

The cycle (1, 2, 3) represents
1 // 2

����������

3

^^========

Compose permutations the same way you always compose functions; in other words,

(f◦g)(x) = f (g(x)).

In particular,
(1, 2) (1, 3)

⏟⏟⏟
Apply this function first

= (1, 3, 2)

If it is necessary, think in the two-rowed language
(

1 2 3
2 1 3

)(

1 2 3
3 2 1

)

=
(

1 2 3
3 1 2

)

.
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In a similar manner
(1, 3)(1, 2) = (1, 2, 3).

We are about to record the multiplication table for S3. Take � = (1, 2) and � = (1, 2, 3). We should
verify that all six permutations of {1, 2, 3} can be expressed in the form �i�j with 0 ≤ i ≤ 1 and
0 ≤ j ≤ 2. Also, record the multiplication table for S3.

Exercise. Here is a small problem. Let � = (1, 2) and � = (1, 2, 3).
(i) Show that

S3 = {�i�j| ∣ 0 ≤ i ≤ 1 and 0 ≤ j ≤ 2}

(ii) Fill in the multiplication table

id � �2 � �� ��2

id
�
�2
�
��
��2

Answers. Here are my answers:
(

1 2 3
1 2 3

)

= (1) = �0,
(

1 2 3
3 1 2

)

= (1, 3, 2) = �2,
(

1 2 3
2 3 1

)

= (1, 2, 3) = �,

(

1 2 3
2 1 3

)

= (1, 2) = �,
(

1 2 3
3 2 1

)

= (1, 3) = ��,
(

1 2 3
1 3 2

)

= (2, 3) = ��2.

id � �2 � �� ��2

id id � �2 � �� ��2
� � �2 id ��2 � ��
�2 �2 id � �� ��2 �
� � �� ��2 id � �2
�� �� ��2 � �2 id �
��2 ��2 � �� � �2 id

Example 2.9. Let G be the set of rotations of the xy-plane which fix the origin. It is easy to see
that G is an Abelian group.

Example 2.10. Let G be

{rotations of the xy-plane which fix the origin}
∪ {reflections of the xy-plane across a line through the origin}.

In Homework problem 1, you will show that G is a group. I propose that you use the following

technique. Let
[

x
y

]

represent the vector which joins origin to the point (x, y) in the xy-plane. Let
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f ∶ ℝ2 → ℝ2 be the function which fixes the origin and rotates each vector in ℝ2 by the angle �.
Find the matrixM with the property that

f
([

x
y

])

=M
[

x
y

]

.

Let l be the line through the origin which passes through the origin and makes the angle �1 with

the positive x-axis and let f1 ∶ ℝ2 → ℝ2 be the function which reflects each vector
[

x
y

]

across l.

Find the matrixM1 with the property that

f1

([

x
y

])

=M1

[

x
y

]

.

As you examine the matrices, it will become obvious thatG is closed under composition; and hence
is a group. (It turns out that the matrices that arise in Example 2.9 form the group which is called
the Special Orthogonal group SO2(ℝ) and the matrices that arise in Example 2.10 form the group
which is called the Orthogonal group O2(ℝ). (The matrixM of GLn(ℝ) is in On(ℝ) ifM−1 =MT.
The matrixM of On(ℝ) is in SOn(ℝ) if detM = 1.) 2

Definition. Let n be an integer with 3 ≤ n. For each non-negative j, let vj be the point (cos
2�j
n
, sin 2�j

n
)

in the xy-plane. The standard regular n-gon is the polygon with vertices {vj ∣ 0 ≤ j ≤ n − 1} and
edges

{the line segment which join vj to vj+1 ∣ 0 ≤ j ≤ n − 1}.

Example 2.11. Let G be the group of Example 2.10. Fix an integer n with 3 ≤ n. Let Dn be the
subgroup of G which carries the regular n-gon onto itself. (The groupDn is called the nth Dihedral
group.) The regular n-gon has n sides of equal length, center at (0, 0), and one vertex at (1, 0).

Example. In particular, the regular 3-gon has vertices (1, 0), (−1∕2,
√

3∕2), and (−1∕2,−
√

3∕2).
Label these vertices 1, 2, 3. The elements of D3 are the identity (this is the permutation (1) of
the vertices), rotation by 2�∕3 radians (this is the permutation (1, 2, 3) of the vertices), rotation by
4�∕3 radians (this is the permutation (1, 3, 2) of the vertices), reflection across the x-axis (this is
the permutation (2, 3) of the vertices), reflection across the line through the origin and vertex 2 (this
is the permutation (1, 3) of the vertices), and reflection across the line through the origin and vertex
3 (this is the permutation (1, 2) of the vertices). Observe that D3 is equal to S3.

Theorem 2.11.1. Let � be rotation by 2�
n
and � be reflection across the x-axis. Then every element

of Dn can be written uniquely in the form

�i�j with 0 ≤ i ≤ 1 and 0 ≤ j ≤ n − 1.

In particular, Dn has 2n elements.

Proof.
Part one. We show that every element of Dn can be written in the given form.

2In general we will writeMT for the transpose of the matrixM . If mi,j is in row i, column j ofM , then mi,j is in
row j, column i ofMT.
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It is clear that the only rotations from G that carry the n-gon to it self are �j for 0 ≤ j ≤ n − 1.
Suppose � is a reflection from G and � carries the n-gon to itself. You will show in Homework

1, that �� is a rotation. Thus, �� = �j for some j. Multiply both sides of the equation on the left
by � to see that � = ��j .

Part two. We show uniqueness.
Suppose �i′�j′ = �i�j with j′ ≤ j. Then

�0 or 1
⏟⏟⏟

We fix vertex 1

= �j−j′ .

If j − j′ is positive, then the right side moves every vertex. Thus, j − j′ = 0 and hence i = i′. �

Example. The group D4 consists of the identity map, three rotations, and reflection across the x-
axis, y = x

⏟⏟⏟
l1

, the y-axis
⏟⏟⏟

l2

, and y = −x
⏟⏟⏟

l3

. DRAW A PICTURE. In Homework 2, among other things,

you will write the reflections across l1, l2, and l3 in the form of Theorem 2.11.1.

Example 2.12. Return to the group ℂ∗ = (ℂ ⧵ {0},×) of Example 2.5.

Facts-Definitions
(a) If z = x+ ⅈy with x, y ∈ ℝ, then z = r(cos �+ ⅈ sin �) with r and � in ℝ. DRAWA PICTURE.
(b) If z is the complex number of (a), then |z| =

√

x2 + y2 = |r|.
(c) If r1, r2, �1, and �2 are real numbers, then

r1(cos �1 + ⅈ sin �1) ⋅ r2(cos �2 + ⅈ sin �2) = r1r2(cos(�1 + �2) + ⅈ sin(�1 + �2)).

(d) If � ∈ ℝ, then cos � + ⅈ sin � = eⅈ�.
My favorite way to think of these “facts” is through Taylor’s series from calculus. Recall, from
calculus, that the following equations hold for all real numbers x:

ex =
∞
∑

n=0

xn

n!
,

sin x =
∞
∑

n=0
(−1)n x2n+1

(2n + 1)!
, and

cos x =
∞
∑

n=0
(−1)n x

2n

(2n)!
.

The Taylor series for the exponential function continues to hold if x is replaced by a complex
number. Thus, if � is a real number then

eⅈ� = 1 + (ⅈ�) +
(ⅈ�)2

2!
+
(ⅈ�)3

3!
+
(ⅈ�)4

4!
+…

=
(

1 − �2

2!
+ �4

4!
+…

)

+ i
(

� − �3

3!
+…

)

= cos � + ⅈ sin �.

This “explains” (d).
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If z = r(cos � + ⅈ sin �) and one believes (d), then (a) yields that z = reⅈ�.
If z = reⅈ�, then (b) yields |z| = |r| and |eⅈ�| = 1. (The non-negative real number |z| is called

the modulus of z. If z = a + bⅈ with a and b real, then |z| =
√

a2 + b2 =
√

z̄z, where z̄ = a − bⅈ ,
is the complex conjugate of z.)

If zj = rjeⅈ�j , then (c) becomes

r1e
ⅈ�1 ⋅ r2e

ⅈ�2 = r1r2eⅈ(�1+�2)

Example 2.12.1. Let U be the subgroup of ℂ∗ consisting of all elements of modulus 1. Then U is
a group.

Example 2.12.2. Some finite subgroups ofℂ∗ are {1}, {1,−1}, {1, ⅈ ,−1,−ⅈ}. Homework problem
3 asks you to find all finite subgroups of ℂ∗.

Example 2.13. Let I be an index set. Suppose that for each i ∈ I ,Gi is a group. The direct product
of {Gi ∣ i ∈ I} is the group

∏

i∈I
(Gi, ∗i) = {(gi)i∈I |gi ∈ I}.

The operation in the direct product is given component-wise. That is, the i-tuple (gi)i∈I times the
i-tuple (g′i )i∈I is equal to the i-tuple

(gi ∗i g′i )i∈I .

The direct sum of the Gi is the group
⨁

i∈I
Gi = {(gi)i∈I |gi ∈ I and at most finitely many gi are not 1}.

The operation in the direct sum is also given component-wise. Of course, if I = {1,… , n}, then

G1 ⊕G2 ⊕…⊕Gn = G1 × G2 ×⋯ × Gn.

Let C2 be the group with two elements. In Homework problem 4, I have asked you to count the
number of four element subgroups of C2 × C2 × C2 × C2.

Direct product and direct sum satisfy the following universal mapping properties. (One could
define direct sum and direct product by way of these UMPs.)

Observation. Let I be an index set. Suppose that for each i ∈ I , Gi is a group.

(a) LetG be a group and, for each i, let �i ∶ G → Gi be a group homomorphism. Then there exists
a unique group homomorphism Φ ∶ G →

∏

i∈I Gi so that the diagram

G ∃!Φ //___

�i0 ""EEEEEEEEEE
∏

i∈I Gi

proji0
��
Gi0

commutes for all i0 ∈ I .
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(b) Let G be an Abelian group and, for each i, let �i ∶ Gi → G be a group homomorphism. Then
there exists a unique group homomorphism Φ ∶

⨁

i∈I Gi → G so that the diagram

G
⨁

i∈I Gi
∃!Φoo_ _ _

Gi0

incli0

OO

�i0

bbFFFFFFFFFF

commutes for all i0 ∈ I .

Note. You should write down complete proofs for these small facts.

Definition 2.14. If G and G′ are groups then a function � ∶ G → G′ is a group homomorphism if

�(g1g2) = �(g1)�(g2),

for all g1, g2 in G. The operation on the left takes place in G. the operation on the right takes place
in G′.

Elementary Properties. Let � ∶ G → G′ be a group homomorphism. The following statements
hold.

∙ If e is the identity element of G, then �(e) is the identity element of G′.
∙ The homomorphism � carries the inverse of g to the inverse of �(g) for all g ∈ G.

Note. You should write down complete proofs for these small facts.

Last timewe said that ifG andG′ are groups, then a function� ∶ G → G′ is a group homomorphism
if

�(g1 ∗ g2) = �(g1) ∗ �(g2)

for all g1, g2 ∈ G.
A group homomorphism which is one-to-one and onto is called a group isomorphism.

Example 2.14.1. The function � ∶ (ℝ,+) → ({r ∈ ℝ ∣ 0 < r},×), given by �(r) = er is a group
isomorphism because

�(r1 + r2) = er1+r2 = er1er2 = �(r1)�(r2).

� is surjective. Take s in the target. Observe that ln s is in the source and �(ln s) = eln s = s.

� is injective. Suppose r1 and r2 are in the source with �(r1) = �(r2). Then er1 = ee2 . Apply ln to
both sides to learn that r1 = r2.

Example 2.14.2. The function � ∶ (ℝ,+)→ U , which is given by

�(�) = eⅈ�

is a surjective group homomorphism which is not injective.
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Example 2.14.3. The function � ∶ U → SO2(ℝ), which is given by

�(eⅈ�) =
[

cos � − sin �
sin � cos �

]

,

is a group isomorphism. The most interesting part of this claim is making sure that “� is well-
defined”. That is, one must show that if eⅈ� = eⅈ�′ , then

[

cos � − sin �
sin � cos �

]

=
[

cos �′ − sin �′
sin �′ cos �′

]

.

Example 2.15. Let G be the collection of rotations of ℝ3 which fix a line through the origin.

Claim 2.15.1. The set G forms a group.

Notice that every element of G is given by matrix multiplication. Indeed, if f is rotation about
the z-axis, then f is rotation of the xy-plane and you will show in Homework 1 that f is given by
matrix multiplication. Observe that rotation about the line l through the origin is the composition

(2.15.2) (move the z-axis to l)◦(rotate about the z-axis)◦(move l to the z-axis)

Each of the three functions in (2.15.2) is given by matrix multiplication3 and the composition is
given by the product of the three matrices.

Claim 2.15.3. Let f ∶ ℝ3 → ℝ3 be a function andM be a matrix in GL3(ℝ) with

f
⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

x
y
z

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

=M
⎡

⎢

⎢

⎣

x
y
z

⎤

⎥

⎥

⎦

,

for all
⎡

⎢

⎢

⎣

x
y
z

⎤

⎥

⎥

⎦

∈ ℝ3.

Then
f ∈ G ⟺ M ∈ SO3(ℝ).

Observe that Claim 2.15.3 implies Claim 2.15.1. We prove Claim 2.15.3.
(Recall that a 3 × 3 matrix M with real entries is in SO3(ℝ) if and only if MMT is the 3 × 3

identity matrix and detM = 1.)

Proof. (⇒)4 Let l be a line through the origin in ℝ3 and f be rotation which fixes l. Let

(2.15.4) v1, v2, v3 be an orthonormal basis for ℝ3 with v3 on l.

Recall the following statements.
(a) The vectors v1, v2, v3 are an orthonormal basis for ℝ3 if vTi vj is equal to the Kronecker delta,

for 1 ≤ i, j ≤ 3.5

3When we “move l to the z-axis” we want to do this in a systematic manner!
4In Homework problem 6 you will carry out this procedure for some explicit specific data.
5We use (−)T to mean “transpose”.
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(b) One way to get vectors as described in (2.15.4) is to start with a unit vector v3 on l, extend v3
to be a basis of ℝ3, and then apply Gram-Schmidt orthogonalization.

We compute the matrix for f as described in (2.15.2). One good matrix for moving the z-axis to l
is

Q =
[

v1 v2 v3
]

.

The matrixQ sends the x-axis to the line containing v1 and the origin. The matrixQ also sends the
y-axis to the line containing v2 and the origin. The inverse ofQ sends l to the z-axis. Of course, the
columns of Q are an orthonormal set; so the inverse of Q is QT. According to Homework problem
1, the matrix for rotation around the z-axis has the form

N =
[

M ′ 0
0 1

]

,

for someM ′ in SO2(ℝ). Thus, the matrix for f is

M = QNQT.

Observe thatM is an orthogonal matrix because

MT = (QT)TNTQT = QNQT =M.

Furthermore, detN = 1 and detQ = detQT with detQ detQT = det I = 1. Thus, detQ =
detQT = ±1 and detM = 1. We have proven thatM ∈ SO3(ℝ).

(⇐) LetM be an element of SO3(ℝ). We will show that there exists a line l through the origin and
an angle � so thatMv is the vector that is obtained by rotating v about l by the angle �, for all v in
ℝ3.

Theorem. Let G be the following set of functions together with the operation composition :

G = {f ∶ ℝ3 → ℝ3
| f is a rotation of ℝ3 which fixes a line through the origin}.

Then
(1) Each element of G is given by matrix multiplication.
(2) The set (G, ◦) is a group.
(3) The groups (G, ◦) and SO3(ℝ) are isomorphic.

The proposed isomorphism is
SO3(ℝ)→ G

is the function which sendsM ∈ SO3(ℝ) to the function multM ∶ ℝ3 → ℝ3, where

multM (v) =Mv,

for v ∈ ℝ3. (The vector space ℝ3 is the Abelian group of column vectors with three real entries.)
Last time we established (1) and we showed that if f ∈ G is multiplication byM , thenM is an

element of SO3(ℝ).
Today we show that if M ∈ SO3(ℝ), then the function ℝ3 → ℝ3 which is given v ↦ Mv is

rotation by some angle about a line through the origin.
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In particular, we must show that ifM is in SO3(ℝ), thenM fixes some non-zero vector v andM
carries the plane perpendicular to v to itself.

In Homework problem 5, you will prove thatM is diagonalizable over ℂ. In other words, you
will prove that there are complex numbers �1, �2 and �3 and linearly independent vectors v1, v2,
and v3 in ℂ3 such thatMvi = �ivi, for 1 ≤ i ≤ 3. Observe that
(a) If � is an eigenvalue ofM , then �̄ is an eigenvalue ofM .
(b)

∏

�i = 1
(c) |�i| = 1 for 1 ≤ i ≤ 3.
(d) the product (1 − �̄i�j)v̄Ti vj is zero for all i and j.
For (a), notice that ifMv = �v, then M̄v̄ = �̄v̄; butM has real entries, so M̄ =M and therefore,
Mv̄ = �̄v̄. Conclude that �̄ is an eigenvalue ofM .

For (b), the matrixM is similar to the diagonal matrix with the eigenvalues on the main diagonal.
Similar matrices have the same determinant. The determinant ofM is 1. It follows that

∏

�i = 1.
For (c), observe that ifMv = �v, with v ≠ 0, then

v̄Tv = v̄TM̄TMv = (Mv)TMv = (�v)T�v = �̄�v̄Tv.

The complex number v̄Tv is not zero; hence the complex number �̄�must be 1. In other words, the
modulus of � must be 1.6

For (d)7, observe that

v̄Ti vj = v̄
T
i M̄

TMvj = (Mvi)TMvj = (�ivi)T�jvj = �̄i�j v̄Ti vj .

It follows immediately from (a)–(c) that at least one of the eigenvalues ofM is real; hence the
eigenvalues ofM are:

1, 1, 1 or 1,−1,−1 or 1, a + bⅈ , a − bⅈ

with b not zero and
√

a2 + b2 = 1.
If the eigenvalues of M are 1, 1, 1, then M is the identity matrix which is rotation fixing the

z-axis by angle zero.
If the eigenvalues ofM are 1,−1,−1, (andM is diagonalizable) then there are linearly indepen-

dent vectors v1, v2, v3 ∈ ℝ3 withMvi = �ivi with �1 = 1, �2 = �3 = −1.8 Apply (d) to see that
v1 is perpendicular to both v2 and v3. Observe thatM is the matrix for rotation by � about the line
containing v1.

Now we focus on the case where the eigenvalues of M are 1, a + bⅈ , and a − bⅈ with a and b
in ℝ with a2 + b2 = 1 and b not zero. Let u1 + ⅈu2 be a non-zero eigenvector of M associated
to 1, w1 + ⅈw2 be a non-zero eigenvector ofM associated to a + bⅈ , and w3 + ⅈw4 be a non-zero
eigenvector of M associated to a − bⅈ with u1, u2, w1, w2, w3, w4 ∈ ℝ3. It is clear that u1 and u2

6If � = a + bⅈ is a complex number with a and b real, then
√

a2 + b2 is called the modulus of � and is denoted |�|.
7Of course, one can prove (c) and (d) simultaneously.
8The fact that there exist linearly independent v1, v2, v3 ∈ ℝ3 withMvi = �ivi requires a small amount of argument.

At first, we are guaranteed linearly independent w1, w2, w3 in ℂ3 withMiwi = �iwi for �1 = 1 and �2 = �3 = −1.
But wi = ai + ⅈbi with ai, bi ∈ ℝ3. The vectors ai and bi are necessarily eigenvectors of M associated to �i. It is
possible to pick v1 from the set {a1, b1} and v2, v3 from the set {a2, b2, a3, b3}.
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each are eigenvectors of M belonging to 1. At least one of the vectors u1 and u2 is non-zero; we
have identified a non-zero vector v1 ∈ ℝ3 withMv1 = v1. (We may as well insist that v1 is a unit
vector.) According to (d), the vectors w1, w2, w3, and w4 of ℝ3 all are in the plane perpendicular
to v1. The vectorsw1+ ⅈw2 andw3+ ⅈw4 span a two dimensional subspace of of ℂ2; so the vectors
w1, w2, w3, and w4 of ℝ3 can not lie on a line; they must span the plane in ℝ3 perpendicular to
v1. Pick an orthogonal set v1, v2, v3. Noticed that the vector spaces (w1, w2, w3, w4) and (v2, v3)
are equal. The hypothesis that w1 + ⅈw2 and w3 + ⅈw4 are eigenvectors ofM ensure thatMv2 and
Mv3 are both in (v2, v3). The matrix forM with respect to the basis v1, v2, v3 has the form

[

1 0
0 M ′

]

.

The matrixM is in SO3(ℝ); hence, the matrixM ′ is in SO2(ℝ). You proved in Homework 1, that
the matrices of SO2(R) are rotation matrices. Thus, multiplication byM fixes the line containing
v1 and rotates the plane perpendicular to v1. �

2.C. Cayley’s Theorem. What you should take away from HW2:
∙ problem 3: For each positive integer n, there is exactly one subgroup of ℂ∗ of order n,
namely Un = {e

2�ⅈj
n ∣ 0 ≤ j ≤ n − 1}. This is the group of nth roots of 1 in ℂ.

∙ problem 4: Each element in a direct sum is interesting. (If G1 and G2 are groups, then the
element (g1, g2) is just interesting as the elements (g1, idG2) and (idG1 , g2), where gi ∈ Gi

and idGi is the identity element of Gi.)
If you recognized that “each element in a direct sum is interesting”, but did not count

well, then work on your counting skills. (One way to do this is to teach Math 574 or 374
...).

∙ problem 5: Wow. There is so much to learn from problem 5.
– The n × n matrix M with entries in the field F is diagonalizable if and only if F n

has a basis of eigenvectors. (I did not know that you wouldn’t know this. In fact, I
introduced the expression “diagonalizable” by accident. I wanted you to prove that if
M ∈ SO3(ℝ), thenℝ3 has a basis of eigenvectors. I swapped the desired condition for
an equivalent but irrelevant conditionwithout realizing that I had done it.) Nonetheless,
many folks taught themselves this result and wrote down a proof. Excellent!

– It is good to understand the assertion that if V is subspace of F n, F is an algebraically
closed field,M is an n × n matrix with entries in F , andMv ∈ V for all v ∈ V , then
M has an eigenvector in V .

– It is worth your while to know the concept “diagonalizable” because our unit on canon-
ical forms of matrices answers the question “Well, if a square matrix is not diagonal-
izable, why isn’t it and what is it.”

– By the way nilpotent matrices are not diagonalizable:
[

0 0
1 0

]

and the sum of a diagonal matrix and a nilpotent matrix is not diagonalizable
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[

1 0
1 1

]

– LetM be an n×nmatrix over the field F . It is very much the philosophy of our course
to consider subspaces V of F n withMv ∈ V for all v ∈ V . (This makes V an F [M]-
module or an F [x]-module where xv is defined to be Mv.) If v is an eigenvector of
M then Fv is a one-dimensional vector space which is an F [M]-module.

– Orthogonal matrices overℝ preserve length and angle. (I had not stated this explicitly;
indeed, I had not thought it explicitly; but I was asked about it after class the other day
and it is such a good question, that I want to share it with every body). IfM is an n× n
matrix with real entries andMMT = I = MTM , then (Mv)T(Mv) = vTv; so v and
Mv have the same length for each v ∈ ℝn. Furthermore (Mv)TMw = vTw for all v
and w in ℝn. So, the angle between v and w is the same as the angle betweenMv and
Mw. (Recall that the dot product of two vectors is the length of the first vector times
the length of the second vector times the cosine of the angle between them.)

– One proves the result of problem 5 by induction. My argument decomposes an F [M]-
module as a direct sum of two smaller F [M]-modules. This argument is also very
much in keeping with the philosophy of our course.

∙ Problem 6. If one has to make a dirty calculation, then make it all the way to the bitter end
and then clean it up. Now one has a chance of making sure that one has the correct answer.
This philosophy comes into play when I am teaching andwhen I amwriting research papers.

My answer to number 5:

Theorem. Every unitary matrix from GLn(ℂ) is diagonalizable.

The proof is a consequence of the following Claim; just take V to be all of ℂn.

Claim. LetM be a unitary n × n matrix with complex entries and let V be a subspace of ℂn with
the property thatMV ⊆ V . Then the restriction ofM to V is diagonalizable.

Proof. WriteM|V for the “restriction ofM to V ”.
We prove the claim by induction on the dimension of V . If dimV = 1, and v is a non-zero

element of V , then v is a basis for V . The hypothesis that MV ⊆ V guarantees that v is an
eigenvalue ofM and henceM|V is diagonalizable.

Now suppose that 1 < dimV . Recall thatM|V has a non-zero eigenvector. 9

Let v0 be a non-zero eigenvector ofM|V which belongs to the eigenvalue �0. (The matrixM is
non-singular, so �0 ≠ 0.) Let

W = {w ∈ V ∣ w̄Tv0 = 0}.
It is clear thatW is a vector space. Observe that

∙ V = ℂv0 ⊕W , and
9Indeed, the characteristic polynomial of M|V is a polynomial in one variable with complex coefficients. Such a

polynomial has a root, say �1 inℂ (by the “Fundamental Theorem of Algebra”). ThusM|V −�1 id is a singular matrix.
Any non-zero vector in the null space ofM|V − �1 id is an eigenvector ofM|V .
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∙ MW ⊆ W .
Once we are confident with these assertions then the proof of the claim is complete by induction
because dimW < dimV . We establish the two assertions.
We first show thatMW ⊆ W . If w ∈ W , then w̄Tv0 = 0 and

(Mw)Tv0 =
1
�0
(Mw)TMv0 =

1
�0
w̄TM

T
Mv0 =

1
�0
w̄T id v0 = w̄Tv0 = 0;

hence,Mw is inW , as claimed.
Now we show that V is contained in the sum of W and ℂv0. If v is an arbitrary element of V ,

then
v = (v −

v̄Tv0
v̄T0v0

⋅ v0) +
v̄Tv0
v̄T0v0

⋅ v0

with (v − v̄Tv0
v̄T0v0

⋅ v0) ∈ W and v̄Tv0
v̄T0v0

⋅ v0 ∈ ℂv0
Finally, the intersection ofW and ℂv0 is zero because v̄T0v0 is not zero. �

The Claim has been established. Thus, as was noted above the claim, the Theorem is also estab-
lished.

We return to the regularly scheduled programming:

Theorem 2.16. (Cayley) Every group is isomorphic to a group of permutations.

Proof. Let G be a group. If g ∈ G, then let gL ∶ G → G be the function gL(g1) = gg1 for all
g1 ∈ G. Notice that gL is a permutation of G!

Let GL = {gL ∶ G → G ∣ g ∈ G}.
Observe (GL, ◦) is a group.
∙ If ℎ, g ∈ G, then ℎL◦gL = (ℎg)L. (So GL is closed under ◦.)
∙ If e is the identity element of G, then eL is the identity element of GL.
∙ If g ∈ G, then (g−1)L = (gL)−1.
∙ Function composition always associates.

Observe that � ∶ G → GL, which is defined by �(g) = gL is a group isomorphism.
Indeed,
∙ we already saw that �(ℎg) = �(ℎ)◦�(g),
∙ if gL is an arbitrary element of GL, for some g ∈ G, then gL = �(g),
∙ if �(g) = �(ℎ), then the functions gL and ℎL of GL are equal. In particular, if e is the
identity element of G, then

g = ge = gL(e) = ℎL(e) = ℎe = ℎ.

�

Corollary 2.17. If G is a group of order10 n, then G is isomorphic to a subgroup of Sn.

Of course, there is more nothing to prove. The proof we gave also establishes the Corollary.
10The order of a group is the number of elements in the group.
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Example 2.18. Lets use Cayley’s Theorem to exhibit S3 as a subgroup of S6. Write S3 as

a1 = (1), a2 = (1, 2), a3 = (1, 3), a4 = (2, 3), a5 = (1, 2, 3), and a6 = (1, 3, 2).

Observe that
(a2)L ∶ S3 → S3

is
a1 ↦ a2
a2 ↦ a1
a3 ↦ (1, 2)(1, 3) = (1, 3, 2) = a6
a4 ↦ (1, 2)(2, 3) = (1, 2, 3) = a5
a5 ↦ (1, 2)(1, 2, 3) = (2, 3) = a4
a6 ↦ (1, 2)(1, 3, 2) = (1, 3) = a3.

So (1, 2)L = (1, 2)(3, 6)(4, 5). Similarly,

(a5)L ∶ S3 → S3
is

a1 ↦ a5
a2 ↦ (1, 2, 3)(1, 2) = (1, 3) = a3
a3 ↦ (1, 2, 3)(1, 3) = (2, 3) = a4
a4 ↦ (1, 2, 3)(2, 3) = (1, 2) = a2
a5 ↦ (1, 2, 3)(1, 2, 3) = (1, 3, 2) = a6
a6 ↦ (1, 2, 3)(1, 3, 2) = (1) = a1.

So (1, 2, 3)L = (1, 5, 6)(2, 3, 4).
In Homework 1, you saw that S3 is generated by (1, 2) and (1, 2, 3). Thus, the proof of Cayley’s

theorem shows that S3 is isomorphic to the subgroup of S6 which is generated by (1, 2)(3, 6)(4, 5)
and (1, 5, 6)(2, 3, 4).

Example 2.19. This is a more interesting example. Does there exist an 8-element group

{1, a, a2, a3, b, ab, a2b, a3b}

which satisfies
a4 = 1, a2 = b2, and ba = a3b?

Step 1. If there exists such a group; it could only have one multiplication table
1 a a2 a3 b ab a2b a3b

1 1 a a2 a3 b ab a2b a3b
a a a2 a3 1 ab a2b a3b b
a2 a2 a3 1 a a2b a3b b ab
a3 a3 1 a a2 a3b b ab a2b
b b a3b a2b ab a2 a 1 a3
ab ab b a3b a2b a3 a2 a 1
a2b a2b ab b a3b 1 a3 a2 a
a3b a3b a2b ab b a 1 a3 a2

We still do not know if this multiplication associates and we certainly do not know if all eight names
are distinct. In Homework problem 7 in problem set three, I will ask you to apply the technique of
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the proof of Cayley’s Theorem in order to identify an eight element subgroup of S8 that has this
multiplication table.

At home you obtained an eight element subgroup of S8 with distinct elements of the form aibj ,
with 0 ≤ i ≤ 3 and 0 ≤ j ≤ 1 whose elements satisfy a4 = 1, b2 = a2, ba = a3b.

Remark. This problem is part of a larger problem; namely, find all groups of order 8. It turns out
that (up to isomorphism) there are 5 groups of order 8: 3 Abelian groups, D4, and this group. This
group is called the Quaternion groupQ8. By the way, it is clear thatD4 andQ8 are not isomorphic.
Indeed, D4 has 5 elements of order11 2 and 2 elements of order 4; whereas, Q8 has 1 element of
order 2 and 6 elements of order 4.

Actually, something much deeper is going on. It is reasonable to ask: suppose I have a group
with a finite set of generators and and a finite set of relations. Is there an algorithm for determining
if a given word is the identity element? This problem is called the “word problem”. It was shown
by Pyotr Novikov (1955) and William Boone (1958) that the word problem is undecidable. (Look
at the Wikipedia page for the Word problem for groups.)

11The order of an element g in the group G is the number of elements in the subgroup of G which is generated by
g. In particular, the order of g is the least positive integer n with gn equal to the identity element, if such an integer n
exists.
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2.D. Cyclic groups.

Definition 2.20. The group G is a cyclic group if there exists an element g in G with

G = {gk ∣ k ∈ ℤ}.

Examples 2.21. The group (ℤ,+) is cyclic of infinite order. The group Un = {e
2j�ⅈ
n
|j ∈ ℤ}, which

is equal to the group of nth roots of 1 in ℂ∗, and the subgroup {(1, 2,… , n)j|j ∈ ℤ} of Sn are cyclic
groups of order n.

Observation 2.22. Two cyclic groups are isomorphic if and only if they have the same order.

Proof.
(⇒) This direction is clear. An isomorphism is always a bijection.

(⇐)We treat two cases: infinite cyclic groups and finite cyclic groups.

∙We show that every infinite cyclic group is isomorphic to (ℤ,+). (This is good enough because
the relation “are isomorphic” is an equivalence relation on the set of groups. You should prove this,
if necessary.12) If G is a cyclic group with generator g and operation ∗, then

� ∶ ℤ → G,

given by �(j) = gj , is an isomorphism. Of course,

gj means

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

g ∗ g ∗ ⋯ ∗ g
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

j times

, if 0 < j,

identity element, if j = 0,
g−1 ∗ g−1 ∗⋯ ∗ g−1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

|j| times

, if 0 < j.

(Please check, if necessary, that �(j + k) = �(j) ∗ �(k), � is one-to-one, and � is onto.)

∙ Suppose A = ⟨a⟩ and B = ⟨b⟩ are both cyclic groups of order n, where n is a finite positive
integer. The elements of A are {aj|0 ≤ j ≤ n − 1} and the elements of B are {bj|0 ≤ j ≤ n − 1},
where a0 is the identity element of A and b0 is the identity element of B. It is clear that

� ∶ A→ B,

given by �(aj) = bj , for 0 ≤ j ≤ n − 1, is a bijection. We show that � is a homomorphism. If
0 ≤ i, j ≤ n − 1, then i + j = k + rn for some integers k and r with 0 ≤ k ≤ n − 1. Observe that

�(ai ⋅ aj) = �(ai+j) = �(ak+rn) = �(ak ⋅ (an)r) = �(ak) = bk = bk+rn = bi+j = bi ⋅ bj = �(ai) ⋅�(aj).

�

The next project is: What are the subgroups of a cyclic group?
12 A relation (∼) on the set S is an equivalence relation if it is reflexive (s ∼ s for all s ∈ S), symmetric (s ∼ s′ ⇒

s′ ∼ s, for all s, s′ ∈ S) and transitive (s ∼ s′ and s′ ∼ s′′ for s, s′, s′′ ∈ S implies s ∼ s′′).
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Example 2.23. ∙ What are the subgroups of ℤ?
Some subgroups that come to mind are:

⟨0⟩, ⟨1⟩, ⟨2⟩, ⟨3⟩, ⟨4⟩, ⟨5⟩, etc.

∙ What are the subgroups of U24?
Some subgroups that come to mind are

U1, U2, U3, U4, U6, U8, U12, U24.

Proposition 2.24. Every subgroup of a cyclic group is cyclic.

Proof. Let G = ⟨g⟩ be a cyclic and let H be a subgroup of G. If H consists only of the identity
element, thenH is certainly cyclic. Otherwise, there is some positive integer s with gs ∈ H . Pick
s to be the least positive integer with gs ∈ H . We claimH = ⟨gs⟩.

The inclusion ⊇ is obvious.

We prove the inclusion ⊆. Let ℎ = gr be an arbitrary element ofH . Write r = ls + m for integers
l and m with 0 ≤ m ≤ s − 1. It follows that gm ∈ H . We picked s to have the property that if
1 ≤ i ≤ s − 1, then gi ∉ H . Thus, m = 0 and

ℎ = gr = gls+m = gls = (gs)l ∈ ⟨gs⟩.

�

Corollary 2.25. If G is a finite cyclic group of order n, then G has exactly one subgroup of order
d for each divisor d of n.

Remark 2.26. In Example 2.23 we listed all of the subgroups of U24.

Proof. Let G = ⟨g⟩. Fix a divisor d of n. Observe that ⟨gn∕d⟩ has order d. On the other hand, ifH
is a subgroup of G of order d, then the proof of Proposition 2.24 shows that H = ⟨gs⟩ where s is
the smallest positive exponent with gs inH . Furthermore, the proof of Proposition 2.24 shows that
this s must divide n (otherwise, there is a smaller exponent with g to that exponent is inH) and n

s
is the order ofH . �

2.E. Lagrange’s Theorem.

Theorem 2.27. IfH is a subgroup of a finite group G, then the order ofH divides the order of G.

We prove Lagrange’s theorem by partitioning G into a bunch of cosets. Each element of G is in
exactly one coset. Each coset has the same number of elements asH has.

Before I define coset, I want to point out that the set of cosets ofH are an interestingmathematical
object. They continue to be interesting even ifH and G are infinite.

2.27.1. The group G acts on the set of cosets of H in G. We use this action when we prove the
Sylow Theorems.

2.27.2. IfH is a “normal” subgroup of G, then the set of cosets ofH in G is a new group.
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We first prove Lagrange’s Theorem.

Theorem. IfH is a subgroup of a finite group G, then the order ofH divides the order of G.

Definition 2.28. IfH is a subgroup of the group G and g ∈ G, then
∙ gH = {gℎ|ℎ ∈ H} is a left coset ofH in G and
∙ Hg = {ℎg|ℎ ∈ H} is a right coset ofH in G.

The proof of Lagrange’s Theorem. Let H be a subgroup of the group G. (Assertions (a) and (b)
hold even if the group G is infinite.) We show:
(a) Every element g of G is in exactly one left coset ofH in G.
(b) There is a one-to-one correspondence between the the elements ofH and the elements of gH

for each element g in G.
Once (a) and (b) are established, we apply this information in the case that G is finite to conclude
that

the number of elements in G = (the number of left cosets ofH in G)×(the number of elements inH).

Proof of (a). Clearly g ∈ gH . If g ∈ g1H , for some g1 ∈ G, then we will prove that gH = g1H .
Well g = g1ℎ1 for some ℎ1 ∈ H .
We show gH ⊆ g1H : If ℎ ∈ H , then gℎ = g1ℎ1ℎ ∈ g1H .
We show g1H ⊆ gH : If ℎ ∈ H , then g1ℎ = gℎ−11 ℎ ∈ gH .

Proof of (b). Let g be in G. Observe that the function f ∶ H → gH , which is given by f (ℎ) = gℎ,
for ℎ ∈ H , is a bijection.

The function f is injective: If f (ℎ) = f (ℎ′), for ℎ, ℎ′ ∈ H , then gℎ = gℎ′. Multiply both sides of
the equation on the left by g−1 to conclude ℎ = ℎ′.

The function f is surjective: A typical element in the target of f is equal to gℎ for some ℎ in H .
We see that f (ℎ) is equal to this typical element. �

Corollary 2.29. If G is a finite Abelian group, then G is cyclic if and only if the order of G is equal
to the exponent of G.

Remarks. (a) The order of the groupG is the number of elements inG. The exponent of the group
G is the least power n for which gn is equal to the identity element for all g ∈ G.

(b) One consequence of Lagrange’s Theorem is that ifG is any finite group then g|G| is the identity
element of G for every element g in G. (I used |G| for the order of G.) Thus, the exponent of
G is finite (when G is a finite group) and is at most the order of G

(c) In Corollary 2.29, the direction⇒ is obvious.
(d) Corollary 2.29 would be false, if the hypothesis “Abelian” were removed. The group S3 has

order 6 and exponent 6, but is not cyclic.
(e) Corollary 2.29 is an immediate consequence of the structure theorem of finite Abelian groups.

(You may use the structure Theorem of finite Abelian group to decide if some claim makes
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sense; but you are not allowed to use it to prove results until we prove it.) At any rate, here is
the invariant factor form of the structure of Finite Abelian Groups:

If G is a finite Abelian group, then G is isomorphic to

(2.29.1) Cd1 ⊕Cd2 ⊕…⊕Cdr

for some positive integers d1,… , dr with d1|d2|⋯ |dr, where Ci is the cyclic group of order i.
It is clear that the exponent of the group (2.29.1) is dr and the order of G is

∏

di. It follows
that the exponent of (2.29.1) is equal to the order of (2.29.1) if and only if r = 1.

There is also an elementary divisor form of this structure theorem. The invariant factor form
corresponds to the rational canonical form of a matrix. The elementary divisor form of the
structure of finite Abelian groups corresponds to the Jordan canonical form of a matrix.

We prove Corollary 2.29. We use two Lemmas. The second Lemma (2.31) requires that we
know every integer can be factored uniquely into irreducible elements. This is one of my favorite
Theorems. (Every PID is a UFD.)We aren’t scheduled to prove it until the Chapter on Ring Theory;
nonetheless, I like it too much to just fake it here. So, I will prove that the ring ℤ is a UFD, but I
will do it in a group theory context. The general argument is exactly the same. I might skip it when
we get there.
Note. The next Lemma reminds me of one of my favorite ways of getting test questions. Every
result has hypotheses and every hypothesis is there for a reason. I often ask for an example that
shows that a given hypothesis is necessary. This is also healthy way to study mathematics even if
one is not thinking about exams.

Lemma 2.30. Let x and y be elements in the groupG. Suppose x and y have each have finite order,
xy = yx, and ⟨x⟩ ∩ ⟨y⟩ = ⟨id⟩. Then the order of xy is equal to the least common multiple13 of the
order of x and the order of y.

Proof. It is clear that (xy)lcm{o(x),o(y)} = id. It suffices to prove that o(x) and o(y) both divide o(xy).
Let r = o(xy). It follows that xr = y−r ∈ ⟨x⟩ ∩ ⟨y⟩ = ⟨id⟩. Thus xr = yr = id. Thus o(x)|r,

o(y)|r, and the proof is complete. �

Lemma 2.31. If x is an element of the finite Abelian group G and the order of x is maximal among
all orders of elements of G, then the order of x is equal to the exponent of G.

The proof of Lemma 2.31 uses the following Theorem.

Definition 2.32. A non-zero non-unit14 element r of ℤ is irreducible if the only proper subgroup
of ℤ which contains r is ⟨r⟩.

13We write lcm for least common multiple. The lcm of two integers a and b is the least non-negative integer that a
and b both divide.

14The units of ℤ are +1 and −1.
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Theorem 2.33. Every non-zero non-unit of ℤ is equal to a finite product of irreducible elements of
ℤ. Furthermore, this factorization into irreducible elements is unique in the sense that if

a
∏

i=1
ri =

b
∏

j=1
sj ,

with ri and sj irreducible integers, then a = b, and, after renumbering ri = si for all i.

Lemma 2.34. The subgroups of ℤ satisfy the Ascending Chain Condition (ACC). In other words,
every ascending chain of subgroups of ℤ stabilizes, in the following sense: If

H1 ⊆ H2 ⊆ H3 ⊆…

is a chain of subgroups of ℤ, then there exists an index n withHn equal toHm for all m with n ≤ m.

Remark 2.35. The subgroups of ℤ do not satisfy the Descending Chain Condition (DCC). Indeed,

ℤ ⊋ 2ℤ ⊋ 22ℤ ⊋ 23ℤ ⊋⋯

is an infinite properly decreasing chain of subgroups of ℤ.

Proof of Lemma 2.34. Observe that ∪iHi is a subgroup of ℤ. Every subgroup of ℤ is cyclic. Thus
∪iHi = ⟨ℎ⟩ for some ℎ ∈ ℤ. Thus ℎ ∈ Hn, for some n, andHn = Hm for all m with n ≤ m. �

Lemma 2.36. If n is an non-zero, non-unit integer, then n ∈ ⟨r⟩ for some irreducible integer r.

Proof. Suppose n is not in ⟨r⟩ for any irreducible integer r. Then n is not irreducible, hence n = n0n′0
with neither n0 nor n′0 a unit.

But n0 is not irreducible (otherwise n ∈ ⟨n0⟩ and n0 is irreducible); thus, n0 = n1n′1 with neither
n1 nor n′1 a unit.

But n1 is not irreducible (otherwise n ∈ ⟨n1⟩ and n1 is irreducible); thus, n1 = n2n′2 with neither
n2 nor n′2 a unit.

We have produced an infinite strictly increasing chain of subgroups of ℤ:

⟨n⟩ ⊊ ⟨n0⟩ ⊊ ⟨n1⟩ ⊊… .

This is a contradiction. �

Lemma 2.37. If n is a non-zero non-unit element of ℤ, then n is a finite product of irreducible
elements of ℤ.

Proof. Apply Lemma 2.36 multiple times

n = r1n1 with r1 an irreducible integer and n1 an integer

If n1 is not a unit, then

n1 = r2n2 with r2 an irreducible integer and n2 an integer

If n2 is not a unit, then

n2 = r3n3 with r3 an irreducible integer and n3 an integer.
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Observe that if nl is not a unit, then

⟨n⟩ ⊊ ⟨n1⟩ ⊊ ⟨n2⟩ ⊊ ⟨n3⟩ ⊊⋯ ⊊ ⟨nl+1⟩

is a strictly increasing chain of subgroups of ℤ. The subgroups of ℤ satisfy (ACC); so, for some l
nl, is a unit and

n = r1⋯ rl−1(rlnl)
is a finite product of irreducible integers. �

September 27, 2023
Due Monday Oct 2, HW3
Due Monday Oct 9, HW4
Exam Wed Oct 18
Are there questions?
Last time we proved that every integer (other than 0, 1,−1) is equal to a finite product of irre-

ducible integers.
We next prove that is factorization is unique in the sense that if

s
∏

i=1
pi =

t
∏

j=1
qj ,

with pi and qj irreducible integers, then s = t and after re-numbering ⟨pi⟩ = ⟨qi⟩ for each i.
Then we prove

Corollary. If G is a finite Abelian group, then G is cyclic if and only if the order of G is equal to
the exponent of G.

The direction (⇐) is obvious. I owe you (⇒).
We prove 2 Lemmas in order to prove the Corollary.
We have a cool consequence of the Corollary. (But we give a proof that is not yet complete.)
We get to work:

Definition 2.38. The non-zero non-unit integer r is a prime integer if whenever a and b are integers
with ab ∈ ⟨r⟩, then a ∈ ⟨r⟩ or b ∈ ⟨r⟩.

Observation 2.39. Let n be an integer. Then n is prime if and only if n is irreducible.

Proof. In this argument, n is a non-zero non-unit element of ℤ.
Assume n is prime integer. We show that n is irreducible. Suppose ⟨a⟩ is a proper subgroup of

ℤ and n ∈ ⟨a⟩. Thus n = ab for some integer b and a is not a unit. The hypothesis that n is prime
ensures that a ∈ ⟨n⟩ or b ∈ ⟨n⟩. Observe that b ∉ ⟨n⟩. Indeed, if b ∈ ⟨n⟩, then b = b′n, for some
integer b′, and n = ab = ab′n15. Thus, 1 = ab′ which is absurd because a is not a unit.

15Remember that we are thinking about the Abelian group (ℤ,+). When we write n(1− ab′) = 0, we mean n added
to itself (1 − ab′) times is zero. Every non-zero element of (ℤ,+) has infinite order. The integer n is not zero; hence
the integer 1 − ab′ must be zero.
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Thus a ∈ ⟨n⟩ and a = a′n, for some integer a′, and n = ab = a′nb. It follows that 1 = a′b and
⟨n⟩ = ⟨a⟩. We have shown that n is an irreducible element of ℤ.

Now suppose that n is an irreducible element of ℤ. We show that n is a prime element of ℤ. Let
a and b be integers with a ∉ ⟨n⟩ and b ∉ ⟨n⟩. Apply the definition of irreducible element to see
that the subgroups ⟨n, a⟩ and ⟨n, b⟩ both must equal ℤ. Thus, there are integers c1, c2, d1, d2 with

1 = c1n + c2a 1 = d1n + d2b.

Observe that 1 ∈ ⟨n, ab⟩. Conclude that ab ∉ ⟨n⟩. Hence n is a prime element of ℤ. �

Proof of Theorem 2.33. It suffices to prove that the factorization into irreducible elements is unique.
Suppose

a
∏

i=1
ri =

b
∏

j=1
sj ,

with ri and sj irreducible integers. The integer r1 is prime and
∏b

j=1 sj ∈ ⟨r1⟩; thus some sj ∈ ⟨r1⟩.
Renumber the s’s, if necessary, to obtain s1 ∈ ⟨r1⟩. The integer s1 is irreducible; hence ⟨s1⟩ = ⟨r1⟩.
Thus s1 = ±r1 and

a
∏

i=2
ri =

b
∏

j=2
sj .

Iterate (or induct) to finish the proof. �
We proved the result about factorization in order to prove the following two Lemmas.

Lemma. 2.30 Let x and y be elements in the groupG. Suppose x and y have each have finite order,
xy = yx, and ⟨x⟩ ∩ ⟨y⟩ = ⟨id⟩. Then the order of xy is equal to the least common multiple16 of the
order of x and the order of y.

Proof. It is clear that (xy)lcm{o(x),o(y)} = id. It suffices to prove that o(x) and o(y) both divide o(xy).
Let r = o(xy). It follows that xr = y−r ∈ ⟨x⟩ ∩ ⟨y⟩ = ⟨id⟩. Thus xr = yr = id. Thus o(x)|r,

o(y)|r, and the proof is complete. �

Remark. Let x and y be elements of a group. Suppose x and y commute and have relatively prime
order. Then the order of xy is the order of x times the order of y

Lemma. 2.31 If x is an element of the finite Abelian group G and the order of x is maximal among
all orders of elements of G, then the order of x is equal to the exponent of G.

Proof. Let y be an element of G. Suppose that

the order of x is pe11 ⋯ pess
the order of y is pf11 ⋯ pfss ,

16We write lcm for least common multiple. The lcm of two integers a and b is the least non-negative integer that a
and b both divide.
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where p1,… , ps are distinct positive prime integers. It suffices to show that fi ≤ ei for all i. We
prove this by contradiction. Renumber the pi, if necessary, and suppose e1 < f1. We will draw a
contradiction.

Observe that the order of xp
e1
1 is pe22 ⋯ pess and the order of yp

f2
2 ⋯p

fs
s is pf11 . Apply Lemma 2.30 to

see that the order of xp
e1
1 yp

f2
2 ⋯p

fs
s is pf11 p

e2
2 ⋯ pess . Thus we have manufactured an element in G which

has order greater than the order of x. This is a contradiction. �

We are now ready to prove

Corollary. 2.29 If G is a finite Abelian group, then G is cyclic if and only if the order of G is equal
to the exponent of G.

Proof of Corollary 2.29. We need only prove that if the finite Abelian group G has the same order
and exponent, then G is cyclic. Let x be an element of G of maximal order. Then

the order of x = the exponent of G, by Lemma 2.31
= the order of G, by hypothesis.

Thus G = ⟨x⟩ and G is cyclic. �
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October 2, 2023
Due today HW3
Due Monday HW4
Exam Wed Oct 18
Are there questions?
Why do I want you to prove things from scratch, when you already know a big theorem that

proves the statement instantly?
A partial proof of a cool corolary.
The arithmetic of cycles.
Quotient groups, normal subgroups, the isomorphism theorems
Last time we proved

Corollary. 2.29 If G is a finite Abelian group, then G is cyclic if and only if the order of G is equal
to the exponent of G.

Corollary 2.40. If F is a field, F ∗ = (F ⧵ {0},×) and G is a finite subgroup of F ∗, then G is a
cyclic group.

My “proof” uses the fact that the polynomial ring F [x] is a Unique Factorization Domain. We
will eventually prove this fact. We will not have a real proof of Corollary 2.40 until we prove that
F [x] is a UFD.

“Proof” Let r be the exponent of G. It follows that gr = 1 for all g ∈ G. The fact that F [x] is a
UFD guarantees that xr − 1 has at most r roots in F . Thus,

the exponent of G ≤ the order of G, by Lagrange’s Theorem,
≤ the exponent of G. We just showed this.

The group G is a finite Abelian group whose order is equal to its exponent. Apply Corollary 2.29
to conclude that G is a cyclic group. �

Remarks. ∙ The cleanest statement of Corollary 2.40 is that the multiplicative group of a
finite field is cyclic.

∙ Once we prove the theorem about the structure of finite Abelian groups and Gauss’ Lemma
(that F [x] is a UFD), then Corollary 2.40 is fairly easy to prove.

∙ The question “Let F be a finite field and let F × be the multiplicative group F ⧵ {0}. De-
scribe the structure of the finite Abelian group F ×. Prove that your description is correct.”
appeared on the Qual.

2.F. The arithmetic of cycles. There are seven thoughts about Sn in this subsection.
(1) Every permutation in Sn is equal to a product of disjoint cycles.

Proof. Let � be an element of Sn. Decompose {1,… , n} into disjoint orbits under the action of
�. (If k ∈ {1,… , n}, then the orbit of k under � is {�i(k) ∣ i ∈ ℤ}.) Observe that �|any fixed orbit
is a cycle. Observe that � =

∏

all orbits �|orbit, and this is a product of cycles. �
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(2) Disjoint cycles in Sn commute.

Proof. If the cycles (u1,… , ua) and (v1,… , vb) are disjoint cycles in Sn, then the functions

(u1,… , ua)(v1,… , vb) and (v1,… , vb)(u1,… , ua)

are equal. �

(3) The order of a k-cycle is k. If �1,… , �l are disjoint cycles, then the order of �1⋯ �l is the
least common multiple of the

{order of �1, order of �2,. . . , order of �l}.

(See Lemma 2.30.)
(4) Every permutation in Sn is equal to a product of transpositions17.

Proof. Observe that

(1, 2, 3,… , r) = (1, r)(1, r − 1)⋯ (1, 4)(1, 3)(1, 2).

�

(5) The notion of even and odd permutation makes sense.

Observation 2.41. Suppose that permutation � in Sn is a product of a transpositions and also
is a product of b transpositions. We claim that a and b are both even or a and b are both odd.

Proof. It suffices to show that (−1)a = (−1)b. Observe that Sn acts on ℤ[x1,… , xn] by �(xi) =
x�(i). Let Δ =

∏

i<j
(xj − xi).

Claim 2.42. If (k,l) in Sn, then (k,l)Δ = −Δ.

Proof of claim. It does no harm to assume that k < l. Observe that

Δ =
(

∏

i<j
{i,j}∩{k,l}=∅

(xj−xi)
)(

∏

i<k
(xk−xi)(xl−xi)

)(

∏

k<i<l

(xi−xk)(xl−xi)
)(

∏

l<i

(xi−xl)(xi−xk)
)

(xl−xk).

(k,l)(Δ) =
(

∏

i<j
{i,j}∩{k,l}=∅

(xj−xi)
)(

∏

i<k
(xl−xi)(xk−xi)

)(

∏

k<i<l

(xi−xl)(xk−xi)
)(

∏

l<i

(xi−xk)(xi−xl)
)

(xl−xk).

The four factors inside
( )

remain unchanged. The factor (xl−xk) has changed to (xk−xl) =
−(xl − xk). The claim is established. �

The observation follows readily, because �(Δ) = (−1)aΔ and �(Δ) = (−1)bΔ. The polyno-
mialΔ in the domainℤ[x1,… , xn] is not identically zero; hence (−1)a = (−1)b, as desired. �

17A transposition is a 2-cycle.
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Definition 2.43. If the element � of Sn is equal to the product of an even number of transposi-
tions, then � is called an even permutation and if � is equal to the product of an odd number of
transpositions, then � is called an odd permutation.

(6) Define the Alternating group and calculate its order.

Definition 2.44. The alternating group An is the following subgroup of Sn:

An = {� ∈ Sn|� is an even permutation}.

Observation 2.45. If 2 ≤ n, then An has order
n!
2
.

Proof. All of the odd permutations of Sn are in the coset (1, 2)An. Indeed, Sn is the disjoint
union of the cosets (1)An ∪ (1, 2)An. We saw, when we proved Lagrange’s Theorem that all
cosets of An in Sn have the same number of elements. It follows that the order of An is

1
2
the

order of Sn. (Of course, Sn has n! elements.) �

(7) Calculate �(a1,… , ar)�−1 and observe that the Klein 4-group is a normal subgroup of S4.

Observation 2.46. If � and (a1,… , ar) are permutations in Sn, then

�(a1,… , ar)�−1 = (�(a1),… , �(ar)).

Proof. Observe that �(a1,… , ar)�−1 and (�(a1),… , �(ar)) are the exact same function. Each
one sends �(ai) to �(ai+1) for 1 ≤ i ≤ r − 1, �(ar) to �(a1), and leaves

{1,… , n} ⧵ {�(a1),… , �(ar)}

completely alone. �

Example 2.47. The subgroup V4 = {(1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)} of S4 is closed
under conjugation. In other words, if � ∈ S4 and � ∈ V4, then ���−1 is in V4. We learn in the
next section that a subgroup which is closed under conjugation is called a normal subgroup.
Felix Klein thought about this group V4 and named it the Vierergruppe.

2.G. Quotient groups, normal subgroups, the isomorphism theorems.

Make identifications to create new objects. Example 1. Surfaces.
Onemajor technique that distinguishesMathematics frommany other disciplines is that inMath-

ematics one can take a perfectly good thing and one can pretend one part of the original thing is
equal to some other part of the original thing and thereby create a brand new perfectly good thing.

The first example that comes to mind is the study of surfaces. One can start with a rectangular
surface
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and pretend that each point on the left side is the same as the corresponding point in the right
side.

OO OO

Now one has a cylinder.
Or one can start with a rectangular surface and pretend that each point on the left side is the same

as the corresponding point in the right side measured in the opposite direction.

OO

��

Now one has a Möbius bond.
One can make identifications on a rectangular surface

// //OO OO

// //

and create a torus.
One can make identifications on a rectangular surface

// //OO OO

oooo

and create a Klein bottle.
The cylinder, the Möbius band, and the torus can all be built in 3-space. The Klein bottle can not

be built in 3-space but it makes just as much sense to a Mathematician as the other three surfaces.

Oct. 4, 2023
HW4 is due on Monday.
HW5 will be posted soon. It is due on Monday, Oct. 16.
Exam 1 is Wednesday, Oct. 18.

Are there any questions?
Last time we took a topological space, made identifications, and produced a new topological

space.

Make identifications to create new objects. Example 2. Groups.
Start with a group G. Pick out two elements g1 and g2. Our goal is to create a new group Ḡ

which is as much like G as possible, but in which the image of g1 in Ḡ is equal to the image of g2
in Ḡ. Lets write ḡ1 in place of “the image of g1 in Ḡ”.
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Notice first that we are putting a relation ∼ on G and saying that ḡ1 = ḡ2 in Ḡ if and only if
g1 ∼ g2 in G. What kind of relations ∼ in G will give rise to groups Ḡ?
(1) The relation ∼ better be an equivalence relation because = in Ḡ is an equivalence relation. (See

the footnote 12 on page 21 for the definition of an equivalence relation, if necessary.)
(2) If g1, g2, and g3 are elements of G with g1 ∼ g2, then one must have g1g3 ∼ g2g3.
(3) In particular, g1 ∼ g2 if and only if g1g−12 ∼ e where e is the identity element of G.
(4) Hence, it suffices to figure out which elements g in G satisfy g ∼ e. LetN = {g ∈ G ∣ g ∼ e}.
(5) Observe thatN must be a subgroup.
(6) Observe that if n ∈ N and g is an arbitrary element of G, then gng−1 ∼ geg−1 = e; hence

gng−1 must be inN .

Definition 2.48. IfN is a subgroup ofG and gng−1 ∈ N for all n ∈ N and g ∈ G, thenG is called
a normal subgroup of G.18

Remark. Sometimes it is easier to make sense of words than symbols. Here is Definition 2.48
expressed in words. A subgroup N of the group G is a normal subgroup if N is closed under
conjugation by elements of G.

Definition 2.49. IfN is a normal subgroup of G, then consider the set
G
N
= {ḡ ∣ g ∈ G and ḡ1 = ḡ2 ⟺ g1g

−1
2 ∈ N}.

Remark. Here are two other ways two other ways to think of the set G
N
.

∙ The set G
N
is the set of equivalence classes in G, where g1 ∼ g2 if and only if g1g−12 ∈ N .

∙ The set G
N
is the set of left cosets ofN in G.

Theorem 2.50. IfN is a normal subgroup of the group G, then G
N
is a group with operation

ḡ1ḡ2 = g1g2.

Furthermore, the identity element of G
N

is ē, where e is the identity element of G and if g is an
element of G, then the inverse of ḡ is g−1.

Proof. We must show that the proposed operation in G
N
makes sense. In other words, suppose

ḡi = ℎ̄i for i ∈ {1, 2} and g1, g2, ℎ1, ℎ2 ∈ G. We must show that g1g2 = ℎ1ℎ2.
Well, if i ∈ {1, 2}, then gi = ℎini for some n1, n2 inN . Thus

g1g2 = ℎ1n1ℎ2n2 = ℎ1ℎ2(ℎ−12 n1ℎ2)n2.

The subgroupN of G is normal so ℎ−12 n1ℎ2 ∈ N and and (ℎ−12 n1ℎ2)n2 ∈ N . Thus, g1g2 = ℎ1ℎ2.
It is now completely trivial to show that G

N
satisfies all of the group axioms. �

Examples 2.51. (a) If G is an Abelian group, then every subgroup of G is normal.
(b) If n is a positive integer, then ℤ

nℤ
is the cyclic group of order n.

18The symbols “N ⊲G” mean “N is a normal subgroup of G”.
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(c) The subgroup ⟨(1, 2)⟩ of S3 is not normal because

(1, 2, 3)(1, 2)(1, 2, 3)−1 = (2, 3) ∉ ⟨(1, 2)⟩.

(d) The subgroup {(1), (1, 2)(1, 3), (1, 3)(2, 4), (1, 4)(2, 3)} is a normal subgroup of S4, A4, andD4.
(See Example 2.47.)

(e) Every subgroup of index 2 is normal.

Proof. LetN be a subgroup of G of index two. Notice that if g is an element of G which is not
inN , then

(2.51.1) G is the disjoint union of the left cosetsN ∪ gN .

We show that N is a normal subgroup of G. Take n ∈ N and g ∈ G. If g ∈ N , then it is
obvious that gng−1 ∈ N . Henceforth, g ∉ N . We assume that gng−1 ∉ N . We will reach a
contradiction. If gng−1 ∉ N , then by (2.51.1) gng−1 ∈ gN ; hence ng−1 ∈ N and g−1 ∈ N ,
which is impossible. �

(f) Consider the groupQ8, which is the eight element group generated by a, bwith a4 = e, b2 = a2,
and ba = a3b. The only element ofQ4 of order 2 is a2. Observe that ⟨a2⟩ is a normal subgroup
ofQ8 (because conjugation preserves order. That is, if g, ℎ are elements of a group, then g and
ℎgℎ−1 have the same order.)

There is also another way to see that ⟨a2⟩ ⊲ Q8. If G is a group, then the center of G is

Z(G) = {g ∈ G ∣ gℎ = ℎg for all ℎ ∈ G}.

It is true (and easy to see) that
Z(G) ⊲ G

for all groups G. Furthermore, one can verify that Z(Q8) = ⟨a2⟩.
(g) Let � ∶ G → G′ be a group homomorphism and let

ker � = {g ∈ G ∣ �(g) is equal to the identity element of G′}.

Then ker � is a normal subgroup of G.

Proof. Check that ker � is closed under the operation of G. Check that if g ∈ ker �, then
g−1 ∈ ker �. Check that ker � is closed under conjugation. �

Theorem 2.52. [The First Isomorphism Theorem.] Let � ∶ G → G′ be a group homomorphism.
(a) If N is a normal subgroup of G and N ⊆ ker �, then � induces a group homomorphism

�̄ ∶ G
N

→ G′, with
�̄(ḡ) = �(g).

(b) The homomorphism

�̄ ∶ G
ker �

→ im�

is an isomorphism.
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Remark 2.53. It is very difficult to produce homomorphisms from random groups. To create such
a homomorphism, I usually view the random group as a quotient of a well-understood group, I
create a homomorphism from the well understood group, and then I apply the First Isomorphism
Theorem.
∙ Here is my first example of this philosophy. When we proved that all cyclic groups of order n are
isomorphic, we gave an unpleasant argument. The “correct” argument is to show that any group of
order n is isomorphic to ℤ

nℤ
:

Let G be a cyclic group of order n with generator g. (Call the operation in G “times”.) Define
� ∶ ℤ → G with �(r) = gr. This is a homomorphism. Apply the First Isomorphism Theorem to
conclude that �̄ ∶ ℤ

nℤ
→ G is an isomorphism.

∙ Here is a second example of this philosophy. The last time I taught the course, I put

Suppose that G is a group with 16 elements and g2 = id for all g ∈ G, where id is the identity
element of G.
(a) Prove that G is Abelian.
(b) Prove thatG is isomorphic to C2⊕C2⊕C2⊕C2, where C2 is equal to the group of complex

numbers {1,−1} under multiplication.
as one of the questions on the exam.
I was horrified how many students defined their isomorphism “the wrong way”. The “right way”

to define the isomorphism is from C2 ⊕C2 ⊕C2 ⊕C2.

Proof of the First Isomorphism Theorem, Theorem 2.52.

We must show that �̄ of (a) is a legitimate function. Once we do that, then everything else is
obvious.

Suppose that g1 and g2 are elements of G with ḡ1 = ḡ2 in
G
N
. We must show that �(g1) = �(g2).

The hypothesis ḡ1 = ḡ2 in
G
N
guarantees that

g1g
−1
2 ∈ N ⊆ ker �.

It follows that �(g1g−12 ) is the identity element of G′; and therefore, �(g1) = �(g2). �

Example 2.54. The groups ℝ
ℤ
and U are isomorphic.

Proof. Consider the homomorphism � ∶ ℝ → U , which is given by �(�) = e2�i�. Apply the First
Isomorphism Theorem. �

Example 2.55. The groups U
U2

and U are isomorphic.

Proof. Consider the homomorphism � ∶ U → U , which is given by �(u) = u2. Apply the First
Isomorphism Theorem. �

Example 2.56. The groups U
Un

and U are isomorphic.
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Proof. Consider the homomorphism � ∶ U → U , which is given by �(u) = un. Apply the First
Isomorphism Theorem. �

Example 2.57. The groups S4
V4

and S3 are isomorphic.

Proof. This one is sneaky. I do not know any homomorphisms from S4 → S3. Instead, I propose
that we consider � ∶ S3 →

S4
V4

to be the composition of the following two homomorphisms19:

S3
inclusion
←←←←←←←←←←←←←←←←←←←←←←←←←←←→ S4

natural quotient map
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

S4
V4
.

So, � is automatically a homomorphism.

Observe that the kernel of � is (1) because (1) is the only element of

V4 ∩ S3.

Thus � is an injection.20

An injective function from a six element set to a six element set is necessarily surjective. �

Example 2.58. The groups Sn
An

and U2 are isomorphic.

Proof. Define � ∶ Sn → U2 by

�(�) =

{

1 if � is even
−1 if � is odd.

Verify that � is a homomorphism. Apply the First Isomorphism Theorem. �

Example 2.59. The groups On(ℝ)
SOn(ℝ)

and U2 are isomorphic.

Proof. Define � ∶ On(ℝ) → U2 by �(M) = detM forM ∈ O2(ℝ). Apply the First Isomorphism
Theorem. �

Example 2.60. If r and s are relatively prime integers21, then
ℤ
rsℤ

≅ ℤ
rℤ

⊕ ℤ
sℤ
.

This assertion is usually called the Chinese Remainder Theorem.

Lemma 2.60.1. If r and s are integers with greatest common divisor d22, then there exist integers
a and b with ar + bs = d.

19If N is a normal subgroup of the group G, then the function � ∶ G → G
N , which is given by �(g) = ḡ, for all

g ∈ G, is a group homomorphism. This homomorphism is called the natural quotient map.
20Have I ever said out loud that the homomorphism � is an injection if and only if the kernel of � consists of the

identity element? At any rate, it is true, easy to prove, and very useful.
21We have established Theorem 2.33; so we have complete understanding of the phrase “relatively prime”. In

particular, “r and s are relatively prime” means that the only integers that divide both r and s are 1 and −1.
22Again, we have established Theorem 2.33 so we have complete understanding of the phrase “greatest common

divisor”. In particular, the greatest integer that divides both r and s is the greatest common divisor of r and s.
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Proof. We proved in Proposition 2.24 that the smallest subgroup ofℤ that contains r and s, denoted
⟨r, s⟩, is cyclic. Let t be the name of the generator; so ⟨r, s⟩ = ⟨t⟩. The integer −t also generates
⟨r, s⟩. So change t to negative t, if necessary. We may assume that t is positive and ⟨r, s⟩ = ⟨t⟩.
The fact that t ∈ ⟨r, s⟩ ensures that t = ar + bs for some integers a and b. We need only show that
t is the greatest common divisor of a and b. The fact that ⟨r, s⟩ ⊆ ⟨t⟩ ensures that t is a common
factor of r and s. On the other hand, the equation t = ar+ bs guarantees that every common factor
of r and s also divides t. �

Now prove the assertion of (2.60). Define � ∶ ℤ → ℤ
rℤ
⊕ ℤ

sℤ
by �(n) = (n̄, n̄). Observe that � is a

homomorphism.

We prove that � is surjective. We know from Lemma 2.60.1 that there are integers a and b with
ra + bs = 1. Observe that �(1 − ar) = (1̄, 0̄) and �(1 − bs) = (0̄, 1̄). Every element in the target
can be written in terms of (1̄, 0̄) and (0̄, 1̄). We conclude that � is surjective.

Observe that ⟨rs⟩ ⊆ ker �. Apply the first part of the First Isomorphism Theorem to conclude that

�̄ ∶ ℤ
⟨rs⟩

→
ℤ
rℤ

⊕ ℤ
sℤ

is a group homomorphism. A surjective function from a set with rs elements to a set with rs
elements is necessarily injective.

Example 2.61. Recall the group Dn = ⟨�, �⟩, where � is reflection across the x-axis and � is
rotation (ccw) by 2�

n
. We know from Theorem 2.11.1 that Dn has 2n elements. We also know that

�2 = id, �n = id, and (��)2 = id. How does one construct a homomorphism from Dn?

Theorem 2.61.1. Let ⟨x, y⟩ be the free group on x and y and let N be the smallest23 normal sub-
group of ⟨x, y⟩ which contains x2, yn, and (xy)2. Then the following statements hold.
(a) The groups Dn and

⟨x,y⟩
N

are isomorphic.
(b) If G is a group and g1 and g2 are elements of G with g21 = id, g

n
2 = id, and (g1g2)

2 = id, then
there exists a group homomorphism Φ ∶ Dn → G with Φ(�) = g1 and Φ(�) = g2.

Proof. We first prove (a). Start with the homomorphism24 � ∶ ⟨x, y⟩ → Dn, given by �(x) = �
and �(y) = �. Observe that x2, yn, and (xy)2 are in ker � (which is a normal subgroup of ⟨x, y⟩). It
follows that N (which is the smallest normal subgroup of ⟨x, y⟩ that contains x2, yn, and (xy)2) is
contained in ker �. The First Isomorphism Theorem guarantees that there exists a homomorphism

�̄ ∶
⟨x, y⟩
N

→ Dn,

with �̄(x̄) = � and �̄(ȳ) = �. Observe that �̄ is surjective and that the domain of �̄ has at most 2n
elements. Conclude that ⟨x,y⟩

N
has exactly 2n elements and �̄ is an isomorphism.

23There does exist a smallest normal subgroup of ⟨x, y⟩ which contains x2, y2, and (xy)2. Indeed, the set of normal
subgroups of ⟨x, y⟩ which contains x2, y2, and (xy)2 is not empty, because ⟨x, y⟩ is one such group. Thus, N = ∩H
asH roams over all normal subgroups of ⟨x, y⟩ which contains x2, y2, and (xy)2.

24The group ⟨x, y⟩ is a free group, we are free to map the generators anywhere we want.
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(b) The group ⟨x, y⟩ is a free group; so there exists a homomorphism  ∶ ⟨x, y⟩ → G with  (x) =
g1 and  (y) = g2. Observe thatN ⊆ ker  . The First Isomorphism Theorem guarantees that there
exists a homomorphism  ̄ ∶ F

N
→ G with  ̄(x̄) = g1 and  ̄(ȳ) = g2. Let Φ ∶ Dn → G be the

composition

Dn
�̄−1
←←←←←←←←←←←←←→

F
N

 ̄
←←←←←←→ G.

Observe that Φ(�) = g1 and Φ(�) = g2. �

Example 2.62. How does one construct a group homomorphism from the group Q8? Recall that
Q8 is an eight element group with distinct elements of the form aibj , with 0 ≤ i ≤ 3 and 0 ≤ j ≤ 1
whose elements satisfy a4 = 1, b2 = a2, ba = a3b.

Exercise 2.62.1. 25 Let ⟨x, y⟩ be the free group on x and y and letN be the smallest normal subgroup
of ⟨x, y⟩ which contains x4, x2y−2, and yxy−1x−3. Then the following statements hold.
(a) The groups Q8 and

⟨x,y⟩
N

are isomorphic.
(b) If G is a group and g1 and g2 are elements of G with g41 = id, g

2
2 = g21 , and g2g1 = g31g2, then

there exists a group homomorphism Φ ∶ Q8 → G with Φ(�) = g1 and Φ(�) = g2.

Theorem 2.63. [The Second Isomorphism Theorem.] If K is a normal subgroup of the group
G, then the following statements hold.
(a) There is a one-to-one correspondence between the subgroups of G which contain K and the

subgroups of G
K
. If H is a subgroup of G which contains K , then the corresponding subgroup

of G
K
is H

K
. If H is a subgroup of G

K
, then the corresponding subgroup of G is

Ĥ = {ℎ ∈ G ∣ ℎ̄ ∈ H }.

(b) IfH is a subgroup ofG withK a subgroup ofH , thenH is a normal subgroup ofG if and only
if H

K
is a normal subgroup of G

K
.

(c) IfH is a normal subgroup of G with K a subgroup ofH , then
G
K
H
K

≅ G
H
.

Proof. We prove (a).
∙ LetH be a subgroup of G containing K . Verify that H

K
is a subgroup of G

K
.

∙ Let H be a subgroup of G
K
. Verify that Ĥ is a subgroup of G which contains K .

∙ LetH be a subgroup of G containing K . verify that

Ĥ
K
= H.

∙ Let H be a subgroup of G
K
. Verify that

Ĥ
K

= H .

25If the statement is true, then prove it. If the statement is false, then fix it and prove it.
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We prove (b).

H ⊲G ⇒ H
K
⊲ G

K
:

If ℎ̄ ∈ H
K
and ḡ ∈ G

K
, then

ḡℎ̄ḡ−1 = gℎg−1 ∈ H
K
.

H ⊲ G ⇐ H
K
⊲ G

K
:

Take ℎ ∈ H and g ∈ G. Then ℎ̄ ∈ H
K
and ḡ ∈ G

K
. Thus, ḡℎ̄ḡ−1 ∈ H

K
; but

ḡℎ̄ḡ−1 = gℎg−1.

Thus gℎg−1 ∈ H
K
and gℎg−1 ∈ H .

We prove (c). Consider the natural quotient map

G
�
←←←←←→

G
H
.

Observe that K ⊆ ker �. Apply the First Isomorphism Theorem to see that

�̄ ∶ G
K

→
G
H
,

given by �̄(gK) = gH is a well-defined group homomorphism. Apply the other part of the First
Isomorphism Theorem to see that

G
K

ker �̄
≅ im �̄.

Observe that �̄ is surjective and ker �̄ = H
K
. Conclude that

G
K
H
K

≅ G
H
.

�

Example 2.64. What are the subgroups of S4
V4
?

We know that the composition

S3
inclusion
←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ S4

naturalquotientmap
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

S4
V4

is an isomorphism. We also know that the subgroups of S3 are

⟨id⟩, ⟨(1, 2)⟩, ⟨(1, 3)⟩, ⟨(2, 3)⟩, A3, and S3.

So the subgroups of S4
V4

are

V4
V4
,

⟨(1, 2)⟩V4
V4

,
⟨(1, 3)⟩V4

V4
,

⟨(2, 3)⟩V4
V4

,
A3V4
V4

, and
S3V4
V4

.

Notice that ifH is a subgroup of a group G andN is a normal subgroup of G, then

HN = {ℎn ∣ ℎ ∈ H and n ∈ N}
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is a subgroup of G and of course is the smallest subgroup of G which containsH andN . Observe
that the above setHN is closed. If ℎ1, ℎ2 ∈ H and n1, n2 ∈ N , then

(ℎ1n1)(ℎ2n2) = ℎ1ℎ2(ℎ−12 n1ℎ2)n2

withℎ1ℎ2 inH becauseH is a subgroup ofG and (ℎ−12 n1ℎ2)n2 inN becauseN is a normal subgroup
of G. A different way to write the subgroups of S4 which contain V4 is

V4, ⟨(1, 2), V4⟩, ⟨(1, 3), V4⟩, ⟨(2, 3), V4⟩, A4, and S4.

Theorem 2.65. [The Third Isomorphism Theorem.] LetG be a group,N be a normal subgroup
of G, and K be a subgroup of G. Then K ∩N is a normal subgroup of K and

KN
N

≅ K
K ∩N

.

Proof. There exists a homomorphism � ∶ K → KN
N

, which is given by �(k) = k̄. (This map is
inclusion followed by the natural quotient map.) It is clear that � is surjective and that the kernel
of � is K ∩N . �

2.H. Groups acting on sets.

Definition 2.66. The group G acts on the set S if there is a function

G × S → S,

written as
(g, s)↦ gs,

which satisfies:

(a) id(s) = s for all s ∈ S, and
(b) g(ℎs) = (gℎ)s for all g, ℎ ∈ G and s ∈ S.

Examples 2.67. (1) The group Sn acts on the set {1, 2,… , n}.
(2) The group GLn(ℝ) acts on the set ℝn.
(3) Every group G acts on itself by left translation.
(4) Every group G acts on itself by conjugation.
(5) IfH is a subgroup of G, then G acts on the set of left cosets ofH in G by left translation.
(6) If K ⊲ G, then G acts on K by conjugation.

Some Ideas 2.68. Let the group G act on the set S.

(1) If x ∈ S, then the orbit of x is {gx|g ∈ G}.
(2) The group G partitions the set S into a collection of disjoint orbits. For example, when

SO2(ℝ) acts on ℝ2, then the action partitions xy-plane into the set of circles with center
(0, 0).

(3) If x ∈ S, then the stabilizer of x is stab x = {g ∈ G ∣ gx = x}.
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(4) Observe that if x ∈ S, then the orbit of x is equal to

{gx|where we take one representative from each left coset of stab x in G}.

Thus26, |orbit x| = [G ∶ stab x].

Conclusion 2.69. If G is a group which acts on a finite set S, then

|S| =
∑

x
[G ∶ stab x],

where the sum is taken over one element x from each orbit.

Application 2.70. Let G be a finite group and let G act on itself by conjugation. The orbits of this
action are the set of conjugacy classes of G.27 If g ∈ G, then

stab g = {ℎ ∈ G ∣ ℎgℎ−1 = g}.

This set is called the centralizer of g in G. One obtains the equation

|G| =
∑

xi

[G ∶ C(xi)],

where one xi is taken from each conjugacy class of G. It is often useful to separate the conjugacy
classes which have exactly one element.

Theorem 2.71. [The Class Equation] If G is a finite group with center28 C , then

|G| = |C| +
∑

xi

[G ∶ C(xi)],

where one xi is taken from each conjugacy class of G which contains more than element.

Corollary 2.72. Let p be a prime integer and n be a positive integer. If G is a group of order pn,
then G has a non-trivial center.

Remark. The assertion of Corollary 2.72 is that the center of G is larger than merely the identity
element of G.

Proof. The Class equation gives that

|G| = |C| +
∑

xi

[G ∶ C(xi)],

where one xi is taken from each conjugacy class of G which contains more than element. Observe
that 1 ≤ |C|, p divides |G|, and p divides each [G ∶ C(xi)] that appears. Thus 1 < |C|. �

Theorem. If G is a group of order pn for some n with 1 ≤ n, then G has a non-trivial center.
26I am writing [G ∶ H] for the number of left cosets of H in G. I used a slightly different notation in Homework

problem 8. This number is called the index ofH in G.
27If g ∈ G, then the conjugacy class of g in G is {ℎgℎ−1 ∣ ℎ ∈ G}.
28The center of the group G is the set of elements of G that commute with every element of G.
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Proof. Let G act on G by conjugation. Then

|G|
⏟⏟⏟
p divides this

=

the center of G
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
|{g ∈ G|{g} = orbit(g)}|
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

This number is not zero

+
∑

g
| orbit(g)|
⏟⏞⏞⏟⏞⏞⏟
[G ∶ stab g]
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

p divides this

,

where the sum is taken over the orbits of size larger than one and exactly one g is taken from each
orbit. �

Corollary 2.73. If G is a group of order p2, where p is a prime integer, then G is Abelian.

Proof. Let C be the center of G. Apply Corollary 2.72 to see that 1 < |C|. Apply Lagrange’s
Theorem to see that |C| is equal to p or p2.

It suffices to prove that p ≠ |C|. Assume |C| = p. We will reach a contradiction. It is clear
that C ⊲ G. Thus, |G

C
| = p. Apply Lagrange’s Theorem to see that G

C
is a cyclic group. It follows

that there is an element g ∈ G such that every element of G has the form gic for some i and some
c ∈ C . It is clear that gic and gjc′ commute for all integers i and j and all elements c and c′ in C .
We have proven that G is an Abelian group and this is absurd because, the center of G is a proper
subgroup of G. �

Corollary 2.74. If p is a prime integer, then every group of order p2 is isomorphic to ℤ
p2ℤ

or ℤ
pℤ
⊕ ℤ

pℤ
.

Proof. LetG be a non-cyclic group of order p2. By Lagrange’s Theorem every non-identity element
of G has order p. Let a be one of these elements. Take b ∈ G ⧵ ⟨a⟩. Observe that ⟨b⟩∩ ⟨a⟩ = {id}.
Otherwise, there exists i with bi equal to a non-identity element of ⟨a⟩. Every non-identity element
of ⟨a⟩ generates ⟨a⟩. In this case,

⟨a⟩ ⊊ ⟨b⟩

and each group has order p. This of course, is absurd.
Use the First Isomorphism Theorem to see that there are group homomorphisms ℤ

pℤ
→ G given

by
n̄ ↦ an and m̄ ↦ bm.

We proved in Corollary 2.73 that G is Abelian, so we may apply the Universal Mapping Property
for direct sum of Abelian groups to see that there exists a homomorphism

� ∶ ℤ
pℤ

⊕ ℤ
pℤ

→ G

with
�((n̄, m̄)) = anbm.

The image of � is a subgroup of G of order greater than p (because ⟨a⟩ has order p and b ∉ ⟨a⟩.
The only subgroup of G which has order larger than p is G itself. Thus, � is surjective. Every
surjective function from a set of size p2 to a set of size p2 is necessarily injective. Thus, � is an
isomorphism. �
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2.I. The Sylow Theorems.

Definition 2.75. Let G be a finite group and p be a prime integer which divides the order of G. If
pr divides the order of G and pr+1 does not divide the order of G, then any subgroup of G of order
pr is called a Sylow p-subgroup of G.

Theorem 2.76. LetG be a finite group and p be a prime integer which divides the order ofG. Then
the following statements hold.
(a) If pr divides the order of G, then G has a subgroup of order pr.
(b) Every subgroup of G of order pr is contained in a Sylow p-subgroup of G.
(c) Any two Sylow p-subgroups of G are conjugate. (In other words, if H1 and H2 are Sylow

p-subgroups of G, then there is an element g ∈ G such that gH1g−1 = H2.)
(d) If n is the number of Sylow p-subgroups then

(i) n divides the index [G ∶ a Sylow p-subgroup] and
(ii) n ≡ 1 mod p.

The First Step 2.77. (Cauchy’s Theorem) Let G be a finite group and p be a prime integer which
divides the order of G. Then G has an element of order p.

WarmUp. Think about p = 2. Pair every element up with its inverse. Some of these pairings have
size 2; the pairing that goes with id has size 1. The group has even size; thus there must be some
non-identity element which is its own inverse.

We want to generalize this approach to work for all p. I propose that we think of the set of tuples
of length 2 so that the product of the two elements is the identity. Letℤ∕2ℤ act on this set by cyclic
permutation. The set of such tuples decomposes into disjoint orbits. We want to count the number
of orbits which have size 1.

Proof. Let
S = {(a1,… , ap) ∣ ai ∈ G and a1⋯ ap = id}.

Observe that |S| = |G|p−1. Indeed, one can pick a1,… , ap−1 at random and then one is forced to
choose ap = (a1⋯ ap−1)−1. Let

ℤ
pℤ

act on S by cyclic permutation:

k(a1,… ap) = (ak+1,… , ap, a1,… , ak).

This is an action because
0(a1,… ap) = (a1,… ap)

and
k′(k((a1,… ap)) = (k′ + k)(a1,… ap).

Thus,
|S| = |{s ∈ S ∣ |orbit of s| = 1}| +

∑

|orbit of s|,
where the sum is taken over one s from each orbit with at least two elements. We know that p
divides |S|. If the orbit of s has more than one element, then

|the orbit of s| = [ ℤ
pℤ
∶ stab s]
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and this number is divisible by p. Thus, p divides |{s ∈ S ∣ |orbit of s| = 1}| and there is an
element x in G, with x not the identity element and xp = id. �

The Next Step 2.78. We prove assertions (a) and (b) of Theorem 2.76.

LetG be a finite group. Suppose p is a prime integer and p divides the order ofG. The following
statements hold.
(a) If pn divides the order of G, then G has a subgroup of order pn.
(b) Every subgroup of G of order pn is contained in some Sylow p-subgroup of G.

Proof. The proof is by induction. Suppose pr divides the order of G and pr+1 does not divide the
order of G. Suppose that H is a subgroup of G of order pn for some n with 1 ≤ n ≤ r − 1. We
prove that there exists a subgroupH1 of G withH ⊆ H1 and |H1| = pn+1.

LetH act on the left cosets ofH in G by left translation.
Let S be the set of left cosets ofH in G. We see that

|S| = |{s ∈ S| the orbit of s has one element}| +
∑

|the orbit of s|,

where the sum is taken over one s from each large orbit.
Observe that |S| = [G ∶ H]. The hypothesis ensures that p divides this number.
If the orbit of s has more than one element, then |orbit of s| = [H ∶ stab s]. We arranged that

[H ∶ stab s] ≠ 1. Thus p divides [H ∶ stab s]. It follows that

p divides |{s ∈ S| the orbit of s has one element}|.

Thus,
p divides |{xH|ℎxH = xH for all ℎ ∈ H}| and

p divides |{xH|x−1ℎx ∈ H for all ℎ ∈ H}|.

Observe that {x ∈ G|x−1ℎx ∈ H for all ℎ ∈ H} is a subgroup of G. This subgroup is called
the normalizer ofH in G. It might be denoted asN(H) orNG(H). At any rateH ⊲N(H). Thus,

N(H)
H

is a legitimate group and we have shown that p divides the order of this group. Apply 2.77 to see
that

N(H)
H

has an element of order p. In other words, N(H) has a subgroup of order pn+1 and this subgroup
containsH . �

The Next Step 2.79. We prove assertion (c) of Theorem 2.76.
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Proof. Let P andH both be Sylow subgroups of G.
LetH act on the set of left cosets of P in G.
Then

|S| = |{s|orbit of s has size 1}| +
∑

s
|the orbit of s|,

where the sum includes exactly one s from each orbit of size more than one.
Of course S is the set of left cosets of P in G; hence |S| = [G ∶ P ] and p does not divide this

number. If the orbit of s has more than one element, then

|the orbit of s| = [H ∶ stab s]

and p does divide this number. Thus, p does not divide

|{s|orbit of s has size 1}|.

In particular,
|{s|orbit of s has size 1}| ≠ 0.

Hence, there is a left coset xP of P in G with the property that ℎxP = xP for all ℎ ∈ H . Thus,
x−1ℎx ∈ P for all ℎ in H for some x ∈ G. Thus, x−1Hx ⊆ P . Both sets have the same size. We
conclude that x−1Hx = P . �

The Next Step 2.80. We prove assertion (di) of Theorem 2.76.

Proof. Let G act on the set of Sylow p-subgroups of G by conjugation. In light of (c) there is
only one orbit; thus,

the number of Sylow p-subgroups of G = [G ∶ stabP ],

where P is any fixed Sylow p-subgroups of G. Observe that

stabP = {x ∈ G ∣ xPx−1 = P } = N(P ).

Thus,
the number of Sylow p-subgroups of G = [G ∶ N(P )],

and this number divides [G ∶ P ] because

[G ∶ P ] = [G ∶ N(P )][N(P ) ∶ P ].

See HW8. �

The Next Step 2.81. We prove assertion (dii) of Theorem 2.76.

Proof. Let P be a Sylow p-subgroup of G.
Let P act on the set of Sylow p-subgroups of G by conjugation.
Obtain

the number of Sylow p-subgroups of G = |{s|the orbit of s has one element}|+
∑

s
|the orbit of s|

where the sum is taken over the set of orbits of size more than 1 and exactly one s is taken from
each such orbit.
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If the orbit of s has size more than 1 then the orbit of s has [P ∶ stab s] elements. This number
is divisible by p.

It is clear that P is an element of S with orbit size 1. We complete the proof by showing that P
is the only Sylow p-subgroup with orbit size 1.

Suppose that Q has orbit size 1. Then xQx−1 = Q for all x ∈ P . Thus, P ⊆ N(Q). The groups
P and Q are both Sylow p-subgroups ofN(Q). According to (c), P and Q are conjugate inN(Q).
On the other hand Q is a normal subgroup of N(Q). So, P = gQg−1 = Q for some g ∈ N(Q).
The equality on the left holds because P and Q are conjugate in N(Q); the equality on the right
holds because, Q ⊲N(Q). �

2.I.1. First Application of the Sylow Theorems.

Observation 2.82. If G is a group of order pq, where q < p are prime integers and q does not
divide p − 1, then G is cyclic.

Example. Every group of order 15 is cyclic.

Proof. We show
(1) G has an element a of order p and an element b of order q;
(2) the subgroups ⟨a⟩ and ⟨b⟩ are normal subgroups of G;
(3) ⟨a⟩ ∩ ⟨b⟩ = {id};
(4) ab = ba;
(5) ab has order pq.

(1) This assertion is an immediate application of the Sylow Theorems.

(2) The number of Sylow p-subgroups of G (denoted np) is congruent to 1 mod p and divides q.
Thus np = 1. The number of Sylow q-subgroups of G (denoted nq) is congruent to 1 mod q and
divides p. (If (aq + 1)|p, with a positive, then aq + 1 = p and aq = p− 1, which has been ruled out
by hypothesis.) Thus, nq is also 1. It follows that ⟨a⟩ and ⟨b⟩ both are normal subgroups of G.

(3) Every non-identity element in ⟨a⟩∩ ⟨b⟩ has order p and also has order q. Of course, this makes
no sense. Thus, ⟨a⟩ ∩ ⟨b⟩ = {id}.

(4) Observe that
(aba−1)b−1 = a(ba−1b−1) ∈ ⟨a⟩ ∩ ⟨b⟩ = {id},

because ⟨a⟩ and ⟨b⟩ both are normal subgroups of G. Thus, ab = ba.

(5) Apply Lemma 2.30 or just notice that ab does not have order 1, p, or q. �

2.I.2. Second Application of the Sylow Theorems. In this section we classify the non-Abelian
groups of order 12. (We classify all finite Abelian groups in the next section. There is no need
to do another special case of that classification here.) We use Lemma 2.83 in our classification.
The easiest way to describe one of the groups of order 12 is by using “semidirect product”. This
technique is introduced in Observation 2.84. You might find Keith Conrad’s notes [3] about this
classification to be interesting.
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Lemma 2.83. The only subgroup of Sn of index two is An.

Proof. 29 LetH be a subgroup of Sn of index two. Thus,H is a normal subgroup of Sn and Sn∕H
is isomorphic to U2. Let � ∶ Sn → U2 be a surjective homomorphism with kernelH . Observe that
all transpositions in Sn are conjugate. Thus, � carries every transposition of Sn to the same value
in the Abelian group U2. The transpositions generate Sn; hence �(�) generates U2 as � roams over
the transpositions of Sn. It follows that �(�) = −1 for each transposition � of Sn and the kernel of
Sn is necessarily equal to An. We have shownH = ker � = An. �

Recall that ifN is a group, then Aut(N) is the set of group isomorphismsN → N . Recall also
that Aut(N) is a group in its own right with the operation composition. Let N and H be groups
and � ∶ H → Aut(N) be a group homomorphism. We form a new group N ⋊� H , called the
semidirect product ofN andH . The elements ofN ⋊� H are

{(n, ℎ) ∣ n ∈ N and ℎ ∈ H}

The operation is
(n1, ℎ1) ⋅ (n2, ℎ2) = (n1�(ℎ1)|n2 , ℎ1ℎ2).

Observation 2.84. If N and H are groups and � ∶ H → Aut(N) is a group homomorphism,
then N ⋊� H is a group. The identity element of N ⋊� H is (idN , idH ). The inverse of (n, ℎ) is
(�(ℎ−1)|n−1 , ℎ−1). The set {(n, idH ) ∣ n ∈ N} is a normal subgroup ofN ⋊� H .

Proof. identity element

(n, ℎ) ⋅ (idN , idH ) = (n�(ℎ)|idN , ℎ idH )
Every homomorphism (in particular �(ℎ)) carries the identity element (in particular idN in N) to
the identity element (in this case idN inN).

= (n, ℎ).

(idN , idH ) ⋅ (n, ℎ) = (idN �(idH )|n, idH ℎ)
Every homomorphism (in this case �) carries the identity element (in this case, idH in H) to the
identity element (in this case, the Automorphism ofN which sends each element to itself).

= (idN n, idH ℎ) = (n, ℎ).

inverse

(n, ℎ) ⋅ (�(ℎ−1)|n−1 , ℎ−1) = (n �(ℎ)|�(ℎ−1)|n−1
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

(

�(ℎ)◦�(ℎ−1)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

�(ℎℎ−1)

)

|

|

|

|

|

|

|

|

|

|

|n−1

, ℎℎ−1) = (nn−1, ℎℎ−1) = (idN , idH )

29I found this proof at https://math.stackexchange.com/questions/27024/a-n-is-the-only-subgroup-of-s-n-of-index-2



48 ALGEBRA I

(�(ℎ−1)|n−1 , ℎ−1) ⋅ (n, ℎ) = (�(ℎ−1)|n−1�(ℎ−1)|n
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

�(ℎ−1)|n−1n

, ℎ−1ℎ) = (�(ℎ−1)|idN , idH ) = (idN , idH ).

The assertion that the inverse of the inverse of (n, ℎ) is (n, ℎ) is true and the proof is interesting.

associativity On the one hand,
(

(n1, ℎ1) ⋅ (n2, ℎ2)
)

⋅ (n3, ℎ3)

=
(

n1�(ℎ1)|n2 , ℎ1ℎ2
)

⋅ (n3, ℎ3)

=
(

n1�(ℎ1)|n2�(ℎ1ℎ2)|n3 , (ℎ1ℎ2)ℎ3
)

.

On the other hand,

(n1, ℎ1) ⋅
(

(n2, ℎ2) ⋅ (n3, ℎ3)
)

=(n1, ℎ1) ⋅
(

(n2�(ℎ2)|n3 , ℎ2ℎ3)
)

=(n1�(ℎ1)|(n2�(ℎ2)|n3 , ℎ1(ℎ2ℎ3)).

These are equal.

The set {(n, idH ) ∣ n ∈ N} is a normal subgroup ofN ⋊� H .
Let (n1, ℎ1) be an arbitrary element ofN ⋊� H . Observe that

(�(ℎ−11 )|n−11 , ℎ
−1
1 )(n, id)(n1, ℎ1)

=(�(ℎ−11 )|n−11 �(ℎ
−1
1 )|n, ℎ

−1
1 )(n1, ℎ1)

=(an element ofN,ℎ−11 ℎ1)✓

�

Example 2.85. If H and N are subgroups of a group G with N a normal subgroup of G and
NH = G, then define � ∶ H → AutN by �(ℎ) is the homomorphism �(ℎ) ∶ N → N which
sends n to �(ℎ)|n = ℎnℎ−1. Observe that G is isomorphic toN ⋊� H . The details are left to you.

Example 2.86. If H and N are groups and � ∶ H → AutN is the homomorphism �(ℎ) is the
identity functionN → N for all ℎ inH . ThenN ⋊� H is the direct productN ×H .

Example 2.87. Let � ∶ ℤ∕4ℤ → Aut(ℤ∕3ℤ) be the homomorphism with

�(b̄)|c̄ = (−1)bc̄,

for all b̄ ∈ ℤ∕4ℤ and c̄ ∈ ℤ∕3ℤ. (We say this a little more slowly: � is a homomorphism
from ℤ∕4ℤ to Aut(ℤ∕3ℤ). If b̄ is in ℤ∕4ℤ, then �(b̄) is an automorphism of ℤ∕3ℤ. If b̄ is in
ℤ∕4ℤ and c̄ ∈ ℤ∕3ℤ, then �(b̄) sends c̄ to (−1)bc̄.)30 The group (ℤ∕3ℤ)⋊� (ℤ∕4ℤ) is called the
dicyclic group. Then

(1) the dicyclic group has 12 elements,
30If n and a are integers, we write ā for the class of a in ℤ∕nℤ.
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(2) ∙ the dicyclic group has 2 elements of order 6,
∙ the dicyclic group has 6 elements of order 4,
∙ the dicyclic group has 2 elements of order 3,
∙ the dicyclic group has 1 element of order 2, and
∙ the dicyclic group has 1 element of order 1, and

(3) there are elements x, y in the dicyclic group such that the dicyclic group is equal to ⟨x, y⟩,
x6 = id, y2 = x3, yxy−1 = x5.

(4) Furthermore, if F is the free group on X, Y , and N is the smallest normal subgroup of F
which contains X6, Y 2X4, and Y XY −1X, then F∕N is isomorphic to the dicyclic group.

(5) If G is a group with 12 elements G = ⟨�,  ⟩, �6 = id,  2 = �3, and  � −1 = �−1, then G
is isomorphic to the dicyclic group.

You will establish most of these assertions for homework.

Theorem 2.88. If G is a non-Abelian group of order 12, then G is isomorphic to exactly one of the
following groups:

A4, D6, or the dicyclic group.

Proof. No two of the three listed groups are isomorphic:

∙ A4 has 3 elements of order 2 and 8 elements of order 3;
∙ D6 has 7 elements of order 2, 2 elements of order 3, and 2 elements of order 6;
∙ and the dicyclic group has 1 element of order 2, 2 elements of order 3, 6 elements of order
4, and 2 elements of order 6.

Observe that G has at least one Sylow 3-subgroup; call it P . Let G act on the set of cosets of P
in G by left translation. This action is equivalent to a group homomorphism � ∶ G → S4. Observe
that the kernel of � is contained in P . Indeed, if g ∈ ker �, then in particular gP = P ; hence
g ∈ P . There are two choices: either ker � is equal to {id} or ker � = P . If ker � = {id}, then
G is isomorphic to a twelve element subgroup of S4. Apply Lemma 2.83 to conclude that G is
isomorphic to A4.
Henceforth, ker � = P . It follows, in particular, that P ⊲ G; and therefore, P is the only Sylow

3-subgroup of G. It follows that G has exactly 2 elements of order 3. Let c be one of the elements
of G of order 3. Every element of the conjugacy class of c, which is {gcg−1|g ∈ G}, has order 3.
Thus the conjugacy class of c has one or two elements. Of course, the size of the conjugacy class of
c is [G ∶ stab c]. Thus stab c has either 6 or 12 elements. Recall that stab c is called the centralizer
of c and this group is equal to {g ∈ G|gc = cg}. The centralizer of c is a group whose order is
divisible 2. Cauchy’s Theorem ensures that there is an element d of order 2 which commutes with
c. The element a = cd has order 6. (See Lemma 2.30, if necessary.) The subgroup ⟨a⟩ of G has
index 2; consequently, ⟨a⟩ is a normal subgroup of G. Take b ∈ G ⧵ ⟨a⟩. It follows that b2 ∈ ⟨a⟩
and bab−1 ∈ ⟨a⟩. But we know much more. The element bab−1 must have order 6; so the only
choices for bab−1 are a and a5. Furthermore, bab−1 can not equal a because the group G is not
Abelian. In a similar manner, we observe that b2 can not equal a or a5, because in either of these
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cases ⟨a⟩ would be a proper subgroup of ⟨b⟩:

6 = |⟨a⟩| < |⟨b⟩| ≤ 12.

Lagrange’s Theorem would force G = ⟨b⟩, which is not possible because G is not Abelian. If
b2 = a2, then

a4 = a5a5 = (bab−1)(bab−1) = ba2b−1 = bb2b−1 = b2 = a2;
and this contradicts the fact that a has order 6. Similarly, if b2 = a4, then

a2 = (a5)4 = (bab−1)4 = ba4b−1 = bb2b−1 = b2 = a4,

which is still impossible. Thus, b2 = id and G is D6; or b2 = a3 and G is the dicyclic group. �

2.I.3. A list of groups of small order. Every group of order n is isomorphic to exactly one of the
groups in the second column.

order the groups explanation
1 {id}

2 ℤ
2ℤ

Use Lagrange’s Theorem.

3 ℤ
3ℤ

Use Lagrange’s Theorem.

4 ℤ
4ℤ
, ℤ
2ℤ
⊕ ℤ

2ℤ
See Corollary 2.74.

5 ℤ
5ℤ

Use Lagrange’s Theorem.

6 ℤ
6ℤ
, S3 See Homework problem 15.

7 ℤ
7ℤ

Use Lagrange’s Theorem.

8 ℤ
8ℤ
, ℤ
4ℤ
⊕ ℤ

2ℤ
, ℤ
2ℤ
⊕ ℤ

2ℤ
⊕ ℤ

2ℤ
, D4, Q8 See Homework problem 20 and Theorem 2.96.

9 ℤ
9ℤ
, ℤ
3ℤ
⊕ ℤ

3ℤ
See Corollary 2.74.

10 ℤ
10ℤ

, D5 See Homework problem 15.

11 ℤ
11ℤ

Use Lagrange’s Theorem.

12 ℤ
12ℤ

, ℤ
6ℤ
⊕ ℤ

2ℤ
, D6, A4, the dicyclic group See Theorems 2.88 and 2.96.

13 ℤ
13ℤ

Use Lagrange’s Theorem.

14 ℤ
14ℤ

, D7 See Homework problem 15.

15 ℤ
15ℤ

See Observation 2.82
16 There are 14 groups of order 16. See [11].

17 ℤ
17ℤ

Use Lagrange’s Theorem.
18 There are 5 groups of order 18. See Theorem 2.89

19 ℤ
19ℤ

Use Lagrange’s Theorem.
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Theorem 2.89. If G is a group of order 18, then G is isomorphic to exactly one of the groups ℤ
18ℤ

,
ℤ
6ℤ
⊕ ℤ

3ℤ
, D9, S3 ⊕

ℤ
3ℤ
, or

(

ℤ
3ℤ
⊕ ℤ

3ℤ

)

⋊�
ℤ
2ℤ
, where � ∶ ℤ

2ℤ
→ Aut

(

ℤ
3ℤ
⊕ ℤ

3ℤ

)

sends 1̄ from ℤ
2ℤ

to

the automorphism of ℤ
3ℤ
⊕ ℤ

3ℤ
which sends each element to its inverse.

Proof. LetG be a group of order 18. IfG is Abelian, thenG is isomorphic to either ℤ
18ℤ

or ℤ
6ℤ
⊕ ℤ

3ℤ
.

(Either make a direct proof or appeal to the structure theorem.) Henceforth, assume that G is not
Abelian. The Sylow Theorem guarantees that G has a subgroup N of order 9. This subgroup has
index 2 in G; so it is a normal subgroup of G. Every group of order p2 is Abelian, soN is Abelian.
Let Z be the center of G.

Claim 2.89.1. The order of Z is 3 or 1.

Proof of Claim 2.89.1. If b is any element ofG not inN , then G = N ∪ bN . If b were inZ, then G
would be Abelian. Thus, b ∉ Z andZ ⊆ N . The groupZ can not be all ofN ; or else, once again,
G would be Abelian. It follows that Z is a proper subgroup ofN . Claim 2.89.1 is established.

Claim 2.89.2. If |Z| = 3, then G ≅ S3 ⊕
ℤ
3ℤ
.

Proof of Claim 2.89.2. In this case G
Z
is isomorphic to ℤ

6ℤ
or S3. However, if

G
Z
were isomorphic

to ℤ
6ℤ
, then G would be Abelian and this case has been ruled out of consideration. So, G

Z
must be

isomorphic to S3. Thus, there exist a and b in G with a3 ∈ Z, b2 ∈ Z, abab ∈ Z, and G is
generated by a, b, and Z.
Observe that there exist A and B in G so that A3 = id, B2 = id, ABAB = id, and G is generated

by A, B, and Z. Indeed, if b2 = c ∈ Z, then take B = bc. Observe that B2 = bcbc = bbcc =
c3 = id. If (aB)2 = c′ ∈ Z, then take A = c′a. Observe that ABAB = c′aBc′aB = c′c′(aB)2 =
c′c′c′ = id. Observe thatA3 must equal id. Indeed, let us supposeA3 = z ∈ Z. We already showed
that BAB−1 = A−1; hence,

z = BzB−1 = BA3B−1 = A−3 = z−1.

The only element of Z which is its own inverse is id.
Observe that the inclusion maps induce an isomorphism

Z ⊕<A,B> → G,

and Claim 2.89.2 is established.

Claim 2.89.3. If |Z| = 1 and x is any element of G with x ∉ N , then x2 = id.

Proof of Claim 2.89.3. The group G
N

is cyclic of order 2; so, x2 ∈ N . Thus, x2 commutes with x
and also with every element of N . It follows that x2 ∈ Z = {id}. The proof of Claim 2.89.3 is
complete.

Claim 2.89.4. If |Z| = 1 andN is cyclic, then G ≅ D9.
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Proof of Claim 2.89.4. Fix a generator a for N and any element b ∈ G ⧵ N . Observe that G is
a group of 18 elements generated by a, b with a9 = id, b2 = id (take x = b in Claim 2.89.3) and
(ab)2 = id (take x = ab in Claim 2.89.3). Thus, G is isomorphic D9 by Theorem 2.61.1 and the
proof of Claim 2.89.4 is complete.

Claim 2.89.5. If |Z| = 1 andN ≅ ℤ
3ℤ
⊕ ℤ

3ℤ
, thenG is isomorphic to

(

ℤ
3ℤ
⊕ ℤ

3ℤ

)

⋊�
ℤ
2ℤ

as described
above.

Proof of Claim 2.89.5. Fix generators a, b for N . Pick c ∈ G ⧵ N . Observe that G is generated
by a, b, c. Observe also that a3 = b3 = id and ab = ba. Apply Claim 2.89.3 three times to see that
c2 = (ca)2 = (cb)2 = id. Consider the free group F = ⟨X, Y ,Z⟩. Let N be the smallest normal
subgroup of F which contains X3, Y 3, Z2, (ZX)2, (ZY )2, XYX2Y 2. It is clear that F

N
has at most

18 elements. If F
N
has at least 18 elements then there is a surjective homomorphism F

N
→ G which

sends the class of X to a, the class of Y to b and the class of Z to c and G ≅ F
N
.

We finish the proof by exhibiting a surjection from F
N

onto a group with 18 elements that is
known to exist. This surjection shows that | F

N
| ≥ 18; and therefore, the calculation of the previous

paragraph may be made. Of course,
(

ℤ
3ℤ
⊕ ℤ

3ℤ

)

⋊�
ℤ
2ℤ

is an honest group with 18 elements. Take
a = ((1, 0), 0), b = ((0, 1), 0), c = ((0, 0), 1). There is no difficulty observing that a3 = b3 = c2 =
((0, 0), 0);

ca = ((0, 0), 1)((1, 0), 0) = ((−1, 0), 1),
cb = ((0, 0), 1)((0, 1), 0) = ((0,−1), 1),

(ca)2 = ((−1, 0), 1)((−1, 0), 1) = ((0, 0), 0) = (cb)2

and ab = ba. The proof of Claim 2.89.5 is complete.

We have shown that ifG is a non-Abelian group of order 18, thenG is isomorphic toD9, S3⊕
ℤ
3ℤ
,

or
(

ℤ
3ℤ
⊕ ℤ

3ℤ

)

⋊�
ℤ
2ℤ
, where � ∶ ℤ

2ℤ
→ Aut

(

ℤ
3ℤ
⊕ ℤ

3ℤ

)

sends 1̄ from ℤ
2ℤ

to the automorphism of
ℤ
3ℤ
⊕ ℤ

3ℤ
which sends each element to its inverse. It is clear that none of these three groups isomorphic

to any other group from the list. The center of S3⊕
ℤ
3ℤ

has 3 elements; the centers of S3⊕
ℤ
3ℤ

and
(

ℤ
3ℤ
⊕ ℤ

3ℤ

)

⋊�
ℤ
2ℤ

each have 1 element. The Sylow 3-subgroup of D9 is cyclic; but the Sylow

3-subgroup of
(

ℤ
3ℤ
⊕ ℤ

3ℤ

)

⋊�
ℤ
2ℤ

is not cyclic. �

2.J. Finitely generated Abelian groups. The ultimate theorem (Theorem 2.96) is obtained from
Theorem 2.90 by way of multiple uses of the Chinese Remainder Theorem (Example 2.60). Indeed,
Theorem 2.90 is the main result; Theorem 2.96 is merely Theorem 2.90 with decorations painted
on it.

Recall that the Abelian group G is finitely generated if there exist an integer n and a surjective
group homomorphism � ∶ ℤn → G.

Theorem 2.90. Every finitely generated Abelian group is isomorphic to the direct sum of cyclic
groups.
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Theorem 2.90 is a consequence of the following five results.

Lemma 2.91. Every subgroup of ℤn is generated by n or fewer generators.

Corollary 2.92. If G is a finitely generated Abelian group then there exist non-negative integers m
and n and an n × m matrix of integersM such that

(2.92.1) ℤn

the subgroup of ℤn generated by the columns ofM
≅ G.

Remark 2.92.2. The Abelian group on the left side of (2.92.1) is usually called the cokernel ofM
and denoted cokerM .

Lemma 2.93. IfMn×m, Nn×n, and Pm×m are matrices of integers with N and P invertible over ℤ,
then cokerM ≅ coker(NMP ).

Lemma 2.94. IfMn×m is a matrix of integers, then there exist matrices Nn×n and Pm×m, which are
invertible over ℤ, such that

NMP =
[

D 0
0 0

]

,

where D equal to the diagonal matrix

D =

⎡

⎢

⎢

⎢

⎣

d1
d2

⋱
dr

⎤

⎥

⎥

⎥

⎦

,

with di ≠ 0.

Lemma 2.95. If

M ′ =
[

D 0
0 0

]

,

with D equal to the diagonal matrix

D =

⎡

⎢

⎢

⎢

⎣

d1
d2

⋱
dr

⎤

⎥

⎥

⎥

⎦

,

is an n × m matrix of integers, then

cokerM ′ = ℤ
d1ℤ

⊕⋯⊕ ℤ
drℤ

⊕ ℤn−r.

Lemma. 2.91. Every subgroup of ℤn is generated by n or fewer generators.

Remark. This is a special case of the result “every finitely generated module over a Noetherian
ring is Noetherian”.

Proof. The proof is by induction on n. We already proved that every subgroup of ℤ is cyclic; see
Proposition 2.24.
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Let G be a subgroup of ℤn. Let

G1 =

{

r ∈ ℤ
|

|

|

|

|

∃b ∈ ℤn−1 with
[

r
b

]

∈ G

}

and

G2 =

{

b ∈ ℤn−1
|

|

|

|

|

[

0
b

]

∈ G

}

.

Observe that G1 is a subgroup of ℤ and G2 is a subgroup of ℤn−1. Thus, G1 is a cyclic group, and,
by induction G2 can be generated by n − 1 elements. Let b2,… , bn be a generating set for G2 and

r1 be a generator of G1. There exists b1 ∈ ℤn−1 with
[

r1
b1

]

∈ G. Observe that
[

r1
b1

]

,
[

0
b2

]

, … ,
[

0
bn

]

generates G. �

Corollary. 2.92. If G is a finitely generated Abelian group, then there exist non-negative integers
m and n and an n × m matrix of integersM such that

ℤn

the subgroup of ℤn generated by the columns ofM
≅ G.

Proof. The hypothesis that G is a finitely generated Abelian group guarantees that there is a sur-
jective homomorphism

ℤn �
←←←←←→ G.

The First Isomorphism Theorem yields that

G ≅ ℤn

ker �
.

Apply Lemma 2.91 to see that ker � is a finitely generated subgroup of ℤn. Take a generating set
for ker � and arrange this generating set to be the columns of a matrix. �

Lemma. 2.93. IfMn×m, Nn×n, and Pm×m are matrices of integers with N and P invertible over ℤ,
then cokerM ≅ coker(NMP ).

Proof. Consider the following commutative diagram of homomorphisms of Abelian groups

ℤm M //

≅P−1
��

ℤn q //

≅ N
��

cokerM // 0

ℤm NMP // ℤn q′ // coker(NMP ) // 0,

where q and q′ are the natural quotient maps. The composition q′◦N is a surjective group homo-
morphism ℤn → coker(NMP ). Apply the First Isomorphism Theorem to see that q′◦N induces
an isomorphism

(q′◦N) ∶ ℤn

ker(q′◦N)
⟶ coker(NMP ).
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We show that
ker(q′◦N) = imM.

Of course, that completes the proof since
ℤn

imM
= cokerM.

The inclusion imM ⊆ ker(q′◦N) is obvious because

q′◦N◦M = q′◦(NMP )◦P −1

and the kernel of q′ is equal to the image ofNMP .

Now we prove ker(q′◦N) ⊆ imM . Let x ∈ ker(q′◦N). It follows that

Nx ∈ ker q′ = im(NMP ).

Thus, there exists an element y ∈ ℤm with Nx = NMPy. The matrix N is invertible; hence
x =MPy ∈ imM . �

Lemma. 2.94. IfMn×m is a matrix of integers, then there exist matricesNn×n and Pm×m, which are
invertible over ℤ, such that

NMP =
[

D 0
0 0

]

,

where D equal to the diagonal matrix

D =

⎡

⎢

⎢

⎢

⎣

d1
d2

⋱
dr

⎤

⎥

⎥

⎥

⎦

,

with di ≠ 0.

Proof. We apply a sequence of elementary row and column operations, which are invertible over
ℤ, toM in order to produce a matrix whose only non-zero entries live on the main diagonal. Notice
that there are six elementary row and column operations which are invertible over ℤ, namely:
(1) we may exchange two rows,
(2) we may exchange two columns,
(3) we may add an integer multiple of one row to a different row,
(4) we may add an integer multiple of one column to a different column,
(5) we may multiply any row by −1, and
(6) we may multiply any column by −1.
The proof is by induction. We will apply elementary operations, as described above, until we obtain
a matrix with every entry in row one and column one, except possibly the entry in position (1, 1),
equal to zero. Then we are finished by induction.
Step A. If every entry in row 1 and column 1 is zero, then we are finished.
Step B. If some entry in row 1 or column 1 is non-zero then we apply elementary operations in

order to make the (1, 1) entry be positive.
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Step C. If the (1, 1) entry divides every entry in row 1 and column 1, then we apply elementary
row and column operations and turn all of the entries in row 1 and column 1 other than the
(1,1) entry into zero. We are finished.

Step D. The only remaining possibility is that the (1, 1) entry x1,1 does not divide x1,j for some j
(or xi,1 for some i). In this case, we use the division algorithm for integers. The integer
x1,1 is positive; consequently, there exist integers q and r with

x1,j = qx1,1 + r or xi,1 = qx1,1 + r

and 1 ≤ r ≤ x1,1−1. We apply two elementary operations in order to put a smaller positive
entry in position (1, 1). That is, we replace column j with column j minus q times column
1 and then we exchange column 1 and column j. (Or we replace row i with row i minus q
times row 1 and then we exchange row 1 and row j.) Return to Step C.

The process stops after a finite number of iterations. �

Lemma. 2.95. If

M ′ =
[

D 0
0 0

]

,

with D equal to the diagonal matrix

D =

⎡

⎢

⎢

⎢

⎣

d1
d2

⋱
dr

⎤

⎥

⎥

⎥

⎦

,

is an n × m matrix of integers, then

cokerM ′ = ℤ
d1ℤ

⊕⋯⊕ ℤ
drℤ

⊕ ℤn−r.

Proof. Consider the group homomorphism

� ∶ ℤn →
ℤ
d1ℤ

⊕⋯⊕ ℤ
drℤ

⊕ ℤn−r,

which is given by

�

⎛

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎣

a1
a2
⋮
an

⎤

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

ā1,… , ār,
⎡

⎢

⎢

⎣

ar+1
⋮
an

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

.

Apply the First Isomorphism Theorem:

ℤn

ker �
≅ ℤ
d1ℤ

⊕⋯⊕ ℤ
drℤ

⊕ ℤn−r.
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Observe that ker � is generated by

⎡

⎢

⎢

⎢

⎣

d1
0
⋮
0

⎤

⎥

⎥

⎥

⎦

,

⎡

⎢

⎢

⎢

⎢

⎣

0
d2
0
⋮
0

⎤

⎥

⎥

⎥

⎥

⎦

, … ,

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
⋮
0
dr
0
⋮
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(In the vector on the right, dr appears in row r.) �

Theorem 2.96. Let G be a finite Abelian group. Then the following statements hold.
(a) There exist positive prime integers pi and positive integers ei such that

(2.96.1) G ≅
⨁

i

ℤ
peii ℤ

.

Furthermore, the decomposition of (2.96.1) is unique in the sense that if qj are positive prime
integers and fj are positive integers with

G ≅
⨁

j

ℤ
qfjj ℤ

,

then each decomposition has the same number of factors and, after renumbering, pi = qi and
ei = fi, for all i.

(b) There exist positive integers �1,… �r such that

(2.96.2) G ≅ ℤ
�1ℤ

⊕…⊕ ℤ
�rℤ

and �1|�2|⋯ |�r.

Furthermore, this decomposition is completely unique; if �1,… , �s are positive integers with

G ≅ ℤ
�1ℤ

⊕…⊕ ℤ
�sℤ

and �1|�2|⋯ |�s,

then r = s and �i = �i for all i.

Proof.
The existence of decomposition (2.96.1). The decomposition of (2.96.1) is obtained by applying
the Chinese Remainder Theorem (Example 2.60) to the decomposition of Theorem 2.90:

G ≅ ℤ
d1ℤ

⊕⋯⊕ ℤ
drℤ

.

If d = pe11 ⋯ pell , where the pi are distinct positive prime integers and the ei are prime integers, then
ℤ
dℤ

= ℤ
pe11 ℤ

⊕⋯⊕ ℤ
pell ℤ

.

The existence of decomposition (2.96.2). Begin with the decomposition of (2.96.1). Arrange the
summands ofG by using “right justification”. That is, identify the positive prime integers p1,… , ps
which contribute a summand to G. For each pi identify the corresponding exponents

(2.96.3) 0 ≤ ei,1 ≤ ei,2 ≤⋯ ≤ ei,r
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Notice that in (2.96.3) all strings of exponents have the same length. We accomplished this but
putting zeros in front of each short exponent string. Notice that ℤ

p0iℤ
is the group {0}. It does no

harm to include zero as a direct summand.

G =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ℤ
pe111 ℤ

⊕ ℤ
pe121 ℤ

⊕…⊕ ℤ
pe1r1 ℤ

⊕ ℤ
pe212 ℤ

⊕ ℤ
pe222 ℤ

⊕…⊕ ℤ
pe2r2 ℤ

⋮
⊕ ℤ

pes1s ℤ
⊕ ℤ

pes2s ℤ
⊕…⊕ ℤ

pesrs ℤ

Let �j =
∏

i p
eij
i . (So �j is the product of the generator of the denominators that appear in column

j.) Apply the Chinese Remainder Theorem to see that

G ≅ ℤ
�1ℤ

⊕ ℤ
�2ℤ

⊕…⊕ ℤ
�rℤ

.

It is clear from the construction that �1|�2|… |�r.
Nowwe show that the p-primary decomposition is unique. This argument consists of a few steps.

Observation 2.97. Let G1 and G2 be finite Abelian groups and n1 and n2 be non-negative integers.
If

G1 ⊕ ℤn1 and G2 ⊕ ℤn2

are isomorphic Abelian groups, then G1 ≅ G2 and n1 = n2.

Proof. If G is an Abelian then the torsion subgroup of G is

�(G) = {g ∈ G ∣ there exists a positive integerN withNg = 0}.

Notice that if
G1 ⊕ ℤn1 ≅ G2 ⊕ ℤn2 ,

then �(LHS) ≅ �(RHS) (hence G1 ≅ G2) and any isomorphism � ∶ LHS→ RHS satisfies

�(�(LHS)) = �(RHS).

Apply the First Isomorphism Theorem to

� ∶ LHS→
RHS
�(RHS)

to conclude
LHS
�(LHS)

≅ RHS
�(RHS)

;

hence,
ℤn1 ≅ ℤn2;
ℤn1

2ℤn1
≅ ℤn2

2ℤn2
;

and
( ℤ
2ℤ

)n1
≅
( ℤ
2ℤ

)n2
.

Count the number of elements to conclude n1 = n2. �
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The uniqueness of decomposition (2.96.1). Suppose the pi and qj are distinct positive prime
integers, the ei and fj are positive integers, and

(2.97.1)
⨁

i

ℤ
peii ℤ

≅
⨁

j

ℤ
qfjj ℤ

.

We want to prove that both decompositions have the same number of factors and that, after renum-
bering, pi = qi and ei = fi. Let p be a prime integer. The p-primary subgroup of G is the

{g ∈ G ∣ pNg = 0 for some positive integerN}.

Observe that if p and q are positive prime integers then the p-primary subgroup of

ℤ
qfℤ

=

{

0 if p ≠ q,
ℤ
qfℤ

if p = q.

Indeed, it is clear that pN ℤ
pfℤ

= 0 for all f ≤ N . It is also clear that pN acts like a unit on ℤ
qfℤ

if
p ≠ q because there exist integers31 a and b with apN + bqf = 1; so apN acts like 1 − bqf on ℤ

qfℤ

and a acts like the inverse of pN on ℤ
qfℤ

.
Consider the p-primary component of (2.97.1) for each positive prime integer p. It suffices to

prove that if

(2.97.2) ℤ
pe1ℤ

⊕…⊕ ℤ
perℤ

≅ ℤ
pf1ℤ

⊕…⊕ ℤ
pfsℤ

with
1 ≤ e1 ≤⋯ ≤ er and 1 ≤ f1 ≤ ⋯ ≤ fs,

then r = s and ei = fi for all i. We use two tricks to finish the argument.

Trick one. If G is an Abelian group and p is an integer, then let

{0} ∶G p = {g ∈ G|pg ∈ {0}}.

Observe that
|{0} ∶LHS p| = pr and |{0} ∶RHS p| = ps

because the subgroup of ℤ
peℤ

of elements of order p or less is generated by pe−1. There are p elements
in this subgroup:

pe−1, 2pe−1, 3pe−1, … , (p − 1)pe−1.

So, r = s and “we continue in this manner to finish the argument”.

Trick two. One way to “continue in this manner” is to “throw away” all of the summands of the
form ℤ

pℤ
. One very clean way to do this is to look at the subgroup pG of G. Of course,

pG = {g +⋯ + g
⏟⏞⏞⏞⏟⏞⏞⏞⏟

p

|g ∈ G}.

31Use Lemma 2.60.1, if necessary.
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Notice that if G = ℤ
peℤ

, then
{

pG = {0} if e = 1
pG ≅ ℤ

pe−1ℤ
if 2 ≤ e.

The assertion when e = 1 is obvious. Use the First Isomorphism Theorem to prove the assertion
when 2 ≤ e. Indeed, if (G,+) is any Abelian group, then there is a surjective homomorphism

� ∶ G → pG

given by �(g) = g +⋯ + g
⏟⏞⏞⏞⏟⏞⏞⏞⏟

p

. Observe that ker � = {0} ∶G p. Apply the First Isomorphism

Theorem to
� ∶ ℤ

peℤ
→ p ℤ

peℤ
,

given by �(g) = pg, to obtain
ℤ
peℤ

ker �
≅ p ℤ

peℤ
.

Recall that we already observed that

ker � = {0} ∶G p,

and, if G = ℤ
peℤ

, then {0} ∶G p = pe−1
ℤ
peℤ

. Conclude
ℤ
peℤ

pe−1 ℤ
peℤ

≅ p ℤ
peℤ

.

Use the second isomorphism theorem to see that the group on the left is
ℤ
peℤ
pe−1ℤ
peℤ

≅ ℤ
pe−1ℤ

.

Multiply both sides of (2.97.2) by p and calculate |{0} ∶ p| to see that

|0 ∶pLHS p| = |0 ∶pRHS p|;

hence
p|{i|2≤ei}| = p|{i|2≤fi}|.

Thus,
|{i|2 ≤ ei}| = |{i|2 ≤ fi}|

and
|{i|1 = ei}| = |{i|1 = fi}|

and the proof is completed by induction (or by iteration).

The uniqueness of the decomposition (2.96.1) implies the uniqueness of the decomposition (2.96.2).
�
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3. RINGS

3.A. The basics.

Definition 3.1. The set R with two operations + and ⋅ is a ring if
(a) (R,+, 0) is an Abelian group,
(b) r ⋅ r′ ∈ R,
(c) there exists 1 ∈ R with 1 ⋅ r = r = r ⋅ 1,
(d) r ⋅ (r′ ⋅ r′′) = (r ⋅ r′) ⋅ r′′,
(e) r(s + s′) = rs + rs′, and
(f) (s + s′)r = sr + s′r for all r, r′, r′′, s, s′ in R.

Examples 3.2. ∙ The set of integers ℤ under addition and multiplication is a ring.
∙ Every field is a ring.
∙ If R is a ring, then R[x] (the set of polynomials in one variable with coefficients in R) is a
ring.

∙ If R is a ring, then R[[x]] (the set of formal power series in one variable with coefficients
in R) is a ring.

∙ If R ⊆ S are rings and s1,… are elements of S, then R[s1,…] is the smallest subring of
S that contains R and s1,… , (For example ℤ[

√

2], ℤ[ⅈ], and ℚ[�] are subrings of ℂ.)
∙ If R is a ring, thenMatn×n(R) (the set of n × n matrices with entries from R) is a ring.
∙ The set of continuous functions from [0, 1] to ℝ is a ring.

Words 3.3. ∙ The ring R is commutative if rr′ = r′r for all r, r′ ∈ R.
∙ The ring R is a domain if R is commutative, 1 ≠ 0, and

ab = 0⇒ a = 0 or b = 0.

∙ The ringR is a field ifR is a commutative ring, 1 ≠ 0, and every non-zero element ofR has
a multiplicative inverse. (That is, if r ∈ R⧵{0}, then there exists r′ ∈ Rwith rr′ = 1 = r′r.)

∙ A division ring or skew field is a non-commutative ring R with 1 ≠ 0 and every non-zero
element has a multiplicative inverse.
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November 15, 2023

∙ characteristic
∙ module
∙ Examples of Division Rings
∙ Group rings
∙ check that R∕I is a legitimate ring when I is a (two-sided) ideal of the ring R
∙ examples of ideals

Characteristic

Definition 3.4. If R is a ring then there is a ring homomorphism � ∶ ℤ → R with �(1) = 1. The
kernel of � is generated by a non-negative integer c. This c is called the characteristic of R.

Examples 3.5. Every ring that contains ℤ has characteristic zero. Our undergraduate students like
characteristic p because if a and b are elements of a ring of characteristic p, then

(a + b)p = ap +
(

p
1

)

ap−1b +…
(

p
p − 1

)

abp−1 + bp = ap + bp.

So, in particular, the function � ∶ R→ R, which is given by �(r) = rp is a ring homomorphism.32

Modules

Definition 3.6. Let R be a ring andM be an Abelian group. If there is a function R ×M → M ,
which sends the ordered pair (r, m), with r ∈ R and m ∈M , to an element rm inM which satisfies

∙ r(m1 + m2) = rm1 + rm2,
∙ (r1 + r2)m = r1m + r3m,
∙ (r1r2)m = r1(r2m),
∙ 1(m) = m,

thenM is a left R-module.

Examples 3.7. Let R be a ring.

∙ R is a left R-module.
∙ If Mi is a left R-module for all i ∈ I , then

⨁

i∈IMi is a left R-modules. In particular,
⨁

i∈I R is a left R-module (called a free R-module).
∙ Every left ideal of R is a left R-module.
∙ If N ⊆ M are left R-modules then the (well understood) Abelian group M∕N is a left
R-module, with scalar multiplication r times m+N is equal to rm+N . (I guess we better
check that this makes sense.)

32A ring homomorphism is a function � from the ring R to the ring S for which �(r + r′) = �(r) + �(r′), �(rr′) =
�(r)�(r′), and �(1) = 1 for all r and r′ in R.
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3.B. Ideals, Quotient rings, and the First Isomorphism Theorem.

Definition 3.8. Let R be a ring.
∙ The subset I ofR is a left ideal is a subgroup of the Abelian group (R,+, 0)which is closed
under left multiplication by elements of R.

∙ The subset I of R is a right ideal is a subgroup of the Abelian group (R,+, 0) which is
closed under right multiplication by elements of R.

∙ The subset I of R is a two-sided ideal or ideal if I is both a left ideal and a right ideal of R.

Remark. IfR is a commutative ring, then the concepts “left ideal”, “right ideal”, “two-sided ideal”,
and “ideal” are identical. Any subset of R which is one of these concepts is all of the concepts.
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Examples of Division Rings.33

The Quaternions Let K be a subfield of ℝ and let

ℍ = K ⊕Ki ⊕ Kj ⊕ Kk.

Define multiplication on ℍ by

i2 = j2 = k2 = −1, ij = k, jk = i, ki = j, ji = −k, kj = −i, ik = −j.

Now we see why every non-zero element of ℍ has an inverse. Observe that

(a + bi + cj + dk)(a − bi − cj − dk)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(a2 + b2 + c2 + d2)
+(−ab + ab − cd + dc)i
+(−ac + bd + ca − db)j
+(−ad + bd − cb + da)k.

If x = a+ bi+ cj + dk is not equal to zero then a2 + b2 + c2 + d2 is not zero (because K ⊆ ℝ) and
x−1 is equal to

1
a2 + b2 + c2 + d2

(a − bi − cj − dk).

Here are other similar Division rings. Let p be a prime integer which is congruent to 3 mod 4.
Consider H = ℚ ⊕ ℚi ⊕ ℚj ⊕ ℚk. Define i2 = −1, j2 = p, ij = −ji = k. The inverse of
a + bi + cj + dk is

1
a2 + b2 − pc2 − pd2

(a − bi − cj − dk).

Some Number Theory tricks guarantee that a2 + b2 − pc2 − pd2 ≠ 0.
Endomorphism rings IfM is a simple left module over the ring R, then EndR(M) is a division
ring.

A simple module is a moduleM with no submodules other than 0 andM .
An R-module Endomorphism ofM is an R-module homomorphism fromM toM .
IfM andN areR-modules, then anR-module homomorphism fromM toN is a homomorphism

of Abelian groups � ∶ M → N which “respects” scalar multiplication in the sense that �(rm) =
r�(m) for all r ∈ R and m ∈M .

Of course, the image of an R-module homomorphism is an R-module. If the target is a simple
module, then the homomorphism is either the zero map or is surjective.

Similarly, the kernel of an R-module homomorphism is an R-module. If the domain is a simple
module, then the homomorphism is either the zero map or is injective.

It is now clear that every non-zero R-module homomorphism from a simple R-module M to
itself is an isomorphism and therefore, EndR(M) is a division ring.

33I found this information at
https://ysharifi.wordpress.com/2022/03/25/examples-of-division-rings/
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Example 3.9. If m is a maximal left ideal in the ring R, then R∕m is a simple left R-module and
EndR(R∕m) is a division ring.

In particular, ifR is the ring of n×nmatrices with entries from the field kkk andm is the subset of
R with every entry in column n equal to zero, thenm is a maximal left ideal of R. So EndR(R∕m)
is a Division ring.

Total ring of fractions

Example 3.10. Let R be a Noetherian ring with no zero divisors. Let Q be the set

{ r
s
∣ r ∈ R and s ∈ R ⧵ {0}}.

Define+,−,×,÷ in the obviousmanner. (Wewill do this procedure slowlywhenR is commutative.)
Then Q is a Division ring. (I skipped over something here. If you really care, check the details
carefully.)
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The Final exam is Friday Dec. 15, 4:00-6:30 in our usual class room.
The Final is comprehensive.
Questions 2, 3, 4 from Exam 2 were old Qual questions.
The question about 72 is hard; but now you have a new tool.
The question about HN

N
is easy.

The question about p6 and p7 is very standard. It can also be asked about Jordan canonical forms.
The point is that to count the number of Abelian groups of order pn with certain properties or to
describe the set of JCF of n× nmatrices with certain properties is equivalent to counting partitions
of n with certain properties.

With respect to problem 1, Part (a) is a silly question. We have been thinking about the direct
sum of Abelian groups. In an “Abelian category” direct sum is equivalent to has a “splitting map”.
This explains (c). The “category of groups” is not an “Abelian category”. This explains (b).

When we last had class, we were listing examples of Division rings. We hadℍ (and some twists),
EndR(M) whereM is a simple left R-module, and every Noetherian ring without zero divisors is
naturally embedded in a smallest Division ring.

I want to give one more example.
Formal Laurent series.

If R is a ring, then the set of formal power series

R[[x]] = {
∞
∑

i=0
rix

i ∣ ri ∈ R}.

over R is another ring. If r0 is a unit, then
∑∞

i=0 rix
i is also a unit. Indeed, the inverse of 1 − xp(x)

is
∞
∑

i=0
(xp(x))i.

If R is a division ring, then every element of R[[x]] has the form xiunit for some i. We do not have
to do much to turn R[[x]] into a division ring; we only have to invert x. At any rate, the ring of
Formal Laurent series

D((x)) =

{

∑

n≤i
dix

i ∣ n ∈ ℤ and di ∈ D

}

is a division ring whenever D is a division ring.

Group rings

Definition 3.11. If R is a ring and G is a group, then the group ring R[G] is a free R-module
⨁

g∈G
Rg.

The multiplication involving the g’s is the multiplication from G.

Remark. The Quaternion ring ℍ is inspired by the Quaternion group Q8 but is NOT a group ring.
(In fact, I suspect thatℍ ≅ K[Q8]

(a2+1)
, whereQ8 is the eight element group with elements aibj , 0 ≤ i ≤ 3,
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0 ≤ j ≤ 1, a4 = id, a2 = b2, and ba = a3b. At any rate, a2 + 1 is in the center of K[Q8]; therefore,
a2 + 1 generates a two-sided ideal.)
Indeed, if G is a finite group then group rings K[G] tends to have zero divisors. Indeed, if g is

an element of G of order n, then

(1 − g)(1 + g +⋯ + gn−1) = 1 − gn = 0.

Many rings and modules studied in Commutative Algebra or Algebraic Geometry are symmet-
ric in the variables or are invariant under change of basis. If there are n variables involved then
these rings and modules become K[Sn]-modules or K[GLn]-modules. The really nice thing about
K[Sn]-modules or K[GLn]-modules is that Maschke’s Theorem applies and every finietly gener-
ated module over these rings is the direct sum of simple modules. The simple modules over K[Sn]
or K[GLn] were identified by Young and are described using Young Tableau, which are boxes ar-
ranged in a stack, corresponding to a partition of n, and filled in with numbers according to some
rules. The numbers are usually strictly ascending in one direction and weakly ascending in the
other direction.

We return to the regularly scheduled material (before we started thinking about Division
rings). We had just defined left ideals, right ideals, and ideals in a ring.

Examples 3.12.

(a) If R is ℤ or F [x], where F is a field, then every ideal is principal.34 Of course, the zero ideal
is principal. If I is a non-zero ideal, then let n be the smallest positive element of ℤ in I (or f
be a non-zero element of I of least degree). If m is an arbitrary element of I , then m = qn + r
for integers q and r with 0 ≤ r ≤ n − 1. (If g ∈ I , then g = qf + r for polynomials q and r
in F [x], where deg r < deg f .) The fact that r is in I , in each case, forces r to be zero. Thus,
I = (n) or I = (f ).

(b) The ideals (x, y) of F [x, y], where F is a field and (2, x) of ℤ[x] are not principal.

Proof. We focus on the ideal in F [x, y]. One can modify our argument to deal with the ideal in
ℤ[x]. First of all, notice that the units of F [x, y] are the non-zero elements of F . (Recall that
the element r in the commutative ring R is a unit if there is an element r′ in R with rr′ = 1.)
Indeed, if 1 = (

∑a
i=0 fi(x)y

i)(
∑b

j=0 gj(x)y
j), with fa and gb non-zero, then a = b = 0, etc.)

Observe that x and y are irreducible35 elements if F [x, y]. The argument starts the same way,
if

x =

(

a
∑

i=0
fi(x)yi

)(

b
∑

j=0
gj(x)yj

)

,

34An ideal of the commutative ring R of the form {r0r ∣ r ∈ R} for any fixed r0 in R is called principal and is
denoted by r0R or (r0). Similarly, if T is any set of elements of the ring R, then (T ) or (T )R is the smallest ideal of R
which contains T .

35The non-zero, non-unit element r of the commutative domain R is irreducible if whenever r = r1r2 with r1 and
r2 in R, then r1 or r2 is a unit in R.
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with fa and gb non-zero, then a+ b = 0, x = f0(x)g0(x). The rest of the calculation takes place
in F [x]. The constant terms of f0 and g0 must multiply to zero and the degrees of f0 and g0
must add to one. The rest is easy. etc.

Suppose (x, y) = (f ) for some f ∈ F [x, y]. We produce a contradiction. The elements x
and y are irreducible in F [x, y] and f divides x. Thus, f is either a unit or a unit times x. A
unit times x can not divide y but f divides y; hence, f must be a unit of F [x, y]. Even this is
impossible because, (x, y) ⊊ F [x, y]. �

(c) Let R be a ring and i be a fixed integer. The set

{M ∈ Matn×n(R)| every entry of column i ofM is zero}

is I is a left ideal ofMatn×n(R). The set

{M ∈ Matn×n(R)| every entry of row i ofM is zero}

is a right ideal ofMatn×n(R).
(d) The only two-sided ideals ofMatn×n(F ), where F is a field, are {0} andMatn×n(F ). (You can

see this easily. IfM is a non-zero matrix in an ideal I ofMatn×n(F ), then by multiplying on the
left and on the right you can produce a matrix with exactly one non-zero entry and that entry
is 1. Then you can produce matrices in I with 1 in position (i, j) and zero everywhere else for
all (i, j), for all (i, j). Then you can conclude I = Matn×n(F ).

Observation 3.13. If I is a two-sided ideal of the ring R, then R
I
is a ring with multiplication

r̄s̄ = rs for r, s ∈ R.

Proof. The quotient R
I
is automatically an Abelian group. It is necessary to check that the multi-

plication is well-defined. If r, r1, s, s1 are in R with r̄ = r̄1 and s̄ = s̄1 in
R
I
, then r1 = r + i1 and

s1 = si + i2 for i1 and i2 in I . It follows that

r1s1 = (r + i1)(s + i2) = rs + i1s + ri2 + i1i2
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

∈I

;

hence, r1s1 = rs in
R
I
. �

Definition 3.14. If R and S are rings, then the function � ∶ R→ S is a ring homomorphism if

�(r + r′) =�(r) + �(r′)
�(1) =1
�(rr′) =�(r)�(r′).

Theorem 3.15. [First Isomorphism Theorem] Let � ∶ R → S be a ring homomorphism. Then
the following statements hold.
(a) The kernel of � is an ideal of R.
(b) If I is an ideal of R with I ⊆ ker �, then � induces a ring homomorphism �̄ ∶ R

I
→ S with

�̄(r̄) = �r.
(c) The induced homomorphism �̄ ∶ R

ker �
→ im� is a ring isomorphism.
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Proof. (a) The kernel of � is an Abelian group. We check that ker � is closed under scalar multi-
plication. If x ∈ ker � and r ∈ R, then �(rx) = �(r)�(x) = �(r)0 = 0.

(b) and (c)We verify that �̄ is a function. If r and r1 are inRwith r̄ = r̄1 in
R
I
, then r−r1 ∈ I ⊆ ker �

and
�(r) − �(r1) = �(r − r1) = 0.

Everything else is automatic. �

Examples 3.16.
(a) The rings ℤ[x]

(x2+1)
and ℤ[ⅈ] are isomorphic.

Proof. Define the ring homomorphism � ∶ ℤ[x] → ℤ[ⅈ] by �(g(x)) = g(ⅈ). Observe that � is
surjective and x2+1 is in ker �. Observe further, that if f (x) is in ker �, then f (x) = q(x2+1)+r
where q and r are polynomials in ℤ[x] and r = ax + b for some integers a and b.36 It follows
that r is also in ker �. The number ⅈ is not a rational number; consequently, aⅈ + b = 0, with
a, b ∈ ℤ only if a = b = 0. Thus, r = 0 and every element of ker � is in the ideal (x2 + 1)
of ℤ[x]. Apply the First Isomorphism Theorem to conclude that � induces an isomorphism
�̄ ∶ ℤ[x]

(x2+1)
→ ℤ[ⅈ]. �

(b) Let � be a complex number which is algebraic over ℚ.37 Let f (x) ∈ ℚ[x] be a non-zero
polynomial of least degree with f (�) = 0. Define the ring homomorphism

� ∶ ℚ[x]→ ℚ[�]

by �(g(x)) = g(�). Observe that ker � = (f ). (Indeed, if g ∈ ker �, then g = qf + r where
q, r ∈ ℚ[x] and deg r < deg f . One sees that r ∈ ker �. The choice of f forces r to be zero.)
Conclude that

ℚ[x]
(f )

≅ ℚ[�].

Definition 3.17. Let R be a commutative ring.
(1) The proper ideal I of R is a maximal ideal if whenever J is an ideal of R with I ⊆ J ⊆ R,

then J = I or J = R.
(2) The proper ideal I of R is a prime ideal if whenever r1 and r2 are elements of R, with

r1r2 ∈ I , then r1 ∈ I or r2 ∈ I .

Proposition 3.18. Let I be an ideal of the commutative ringR. Then the following statements hold:
(a) I is a prime ideal if and only if R∕I is a domain,
(b) I is a maximal ideal if and only if R∕I is a field, and
(c) if I is a maximal ideal, then I is a prime ideal.

36We can use the division algorithm at this point because x2 + 1 is a monic polynomial. A monic polynomial is a
polynomial whose leading coefficient is 1.

37This means that there exists some non-zero polynomial with coefficients from ℚ that � satisfies.
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Proof. (a) (⇐) Suppose I is a prime ideal of R. Let r1, r2 be elements of R with r̄1r̄2 = 0̄ in
R̄ = R∕I . Of course, r̄1r̄2 = 0̄ means r1r2 ∈ I . The ideal I is prime; so r1 ∈ I or r2 ∈ I ; thus,
r̄1 = 0̄ or r̄2 = 0̄ in R̄.

(a) (⇒) Suppose R̄ = R∕I is a domain. Let r1, r2 be elements of R with r1r2 ∈ I . It follows that r̄1
and r̄2 are elements of R̄ with r1r2, which is equal to r̄1r̄2, equal to 0̄. But R̄ is a domain; so, r̄1 = 0̄
or r̄2 = 0̄. In other words, r1 ∈ I or r2 ∈ I .

(b) (⇐) Suppose I is a maximal ideal of R. Let r be an element of R with r̄ ≠ 0̄ in R̄ = R∕I . In
particular r ∉ I and (I, r) is an ideal of R which properly contains the maximal ideal I . It follows
that (I, r) = R and there exists r′ ∈ R and i ∈ I with i + rr′ = 1 and r̄r′ = 1̄.

(b) (⇒) Suppose R̄ = R∕I is a field. Let r be an element of R ⧵ I . We show that (I, r) = R. The
fact that r ∉ I ensures that r̄ is a unit in R̄ so there exists r′ in R with r̄r′ = 1̄ in R̄. In other words,
rr′ − 1 ∈ I . Thus 1 ∈ (r, I).

(c) If I is a maximal ideal, then R∕I is a field. Every field is a domain. Thus, R∕I is a domain and
therefore I is a prime ideal. �

Examples 3.19.
(a) The ideal (0) is a prime ideal of ℤ which is not a maximal ideal. Let n be a non-zero integer.

Observe that the following statements are equivalent:
(i) the ideal (n) of ℤ is a prime ideal,
(ii) the integer n is irreducible,38

(iii) the ideal (n) is a maximal ideal.

Proof.
(ai) ⇒ (aii) We prove that if n is a reducible integer, then (n) is not a prime ideal. Of course,
this is clear. If n = n1n2 with n1, n2 non-unit integers, then n1n2 ∈ (n) with neither n1 nor n2 in
(n); thus (n) is not a prime ideal.

(aii)⇒ (aiii) Suppose n is an irreducible integer. We prove that (n) is a maximal ideal. Let J be
an ideal of ℤ with (n) ⊊ J . The ideal J is principal; so J = (r) for some integer r and r ∉ (n).
On the other hand n ∈ (r); so n = rr′ for some r′ ∈ ℤ. The integer n is irreducible; hence
either r or r′ is a unit times n. We have set things up so that r is not a unit times n; thus, r′ is a
unit times n and r is in fact a unit. At any rate, (n) is a maximal ideal.

(aiii) ⇒ (aii) Apply Proposition 3.18.(c) �

(b) Let R = F [x] be a polynomial ring in one variable over the field F . The ideal (0) is a prime
ideal of R which is not a maximal ideal. Let f be a non-zero polynomial in R. Observe that
the following statements are equivalent:
(i) the ideal (f ) of F [x] is a prime ideal,

38Recall that we proved a little unit about the factorization of integers which starts with Definition 2.32.
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(ii) the polynomial f is irreducible,39

(iii) the ideal (f ) is a maximal ideal.

Proof. Use the same proof as was given in (a). �

(c) Observe that (0) ⊊ (2) ⊊ (2, x) is a chain of prime ideals in ℤ[x]. In this chain, only (2, x) is a
maximal ideal.

(d) Observe that

(0) ⊊ (x1) ⊊ (x1, x2) ⊊ (x1, x2, x3) ⊊ (x1, x2, x3, x4) ⊊ (x1, x2, x3, x4, x5)

is a chain of prime ideals in the polynomial F [x1, x2, x3, x4, x5] over the field F . The only
maximal ideal in this chain is (x1, x2, x3, x4, x5).

Corollary 3.20. If � ∈ ℂ and � is algebraic over ℚ, then ℚ[�] is a field.

Proof. We saw in Example 3.16.b that

ℚ[�] ≅ ℚ[x]
(f )

,

where f is a non-zero polynomial of ℚ[x] of least degree with f (�) = 0. The ring ℚ[�] is a
subring of ℂ; so ℚ[�] is a domain. Thus, (f ) is a non-zero prime ideal of ℚ[x]. Every non-zero
prime ideal of ℚ[x] is a maximal ideal, by Example 3.19.(b). Thus, (f ) is a maximal ideal of ℚ[x]
and ℚ[x]∕(f ) is a field by Proposition 3.18. �

Corollary 3.21. Let �, � ∈ ℂ with � and � algebraic over ℚ. Let f (x) ∈ ℚ[x] be the minimal
polynomial of � over ℚ. (Thus, f ∈ ℚ[x] is a non-zero polynomial of least degree with f (�) = 0.)
Suppose f (�) = 0. Then the rings ℚ[�] and ℚ[�] are isomorphic.

Proof. Apply Example 3.16.(b) to see that ℚ[�] ≅ ℚ[x]
(f )

. The ring ℚ[�] is a domain; so (f ) is a
prime ideal and f is an irreducible polynomial. Let g ∈ Q[x] be the minimal polynomial of �. It
follows that (g) = {ℎ ∈ ℚ[x] ∣ ℎ(�) = 0}. The hypothesis that f (�) = 0 guarantees that f ∈ (g)
and f = g′g for some g′ ∈ ℚ[x]. The polynomial f is irreducible and g is not a unit; hence, f
is a unit times g and f is also a minimal polynomial of �. Thus, ℚ[�] ≅ ℚ[x]

(f )
and the proof is

complete. �

Observation 3.22. [The second isomorphism Theorem] If I is an ideal of the ring R, then the
following statements hold.
(a) Every ideal of R

I
has the form J

I
= {j̄ ∣ j ∈ J}, where J is an ideal of R with I ⊆ J .

(b) There exists a one-to-one correspondence between the ideals of R which contain I and the
ideals of R

I
.

39The factorization of polynomials in F [x] works just like the factorization in ℤ. Re-write the little factorization
unit which starts with Definition 2.32 to be about ideals in a Principal Ideal Domain rather than about subgroups of ℤ.
(Of course a Principal Ideal Domain, is a domain in which every ideal is principal.) Recall from Example 3.12.(a) that
F [x] is a Principal Ideal Domain.
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(c) If J is an ideal of R which contains I , then
R
I
J
I

≅ R
J
.

Proof. The arguments for (a) and (b) are straightforward. We prove (c). Apply the First Isomor-
phism Theorem to the natural quotient map

� ∶ R→ R∕J .

Observe that I ⊆ ker �, so � induces a ring homomorphism �̄ ∶ R∕I → R∕J with �̄(r̄) = �(r) =
r̄. Of course, r̄ on the left is an element of R∕I and r̄ on the right is an element of R∕J . Apply the
First Isomorphism Theorem again to the ring homomorphism �̄ ∶ R∕I → R∕J to see that

R∕I
ker �̄

≅ R∕J .

There is no difficulty in computing that ker �̄ = J∕I . �

3.C. The quotient field of a domain. The basic thought is that every domain sits inside a field.
Indeed, every domain sits inside a “smallest field”. There is no well-defined ordering on the set of
fields which contain a given domain; so we can not just intersect over all of the fields containing
the domain. Instead, we use a Universal Mapping Property.

Definition 3.23. Let D be a domain, F be a field, and i ∶ D → F be an injective ring homomor-
phism. Then F is the quotient field of D (and i ∶ D → F is a quotient field map) if i ∶ D → F
satisfies the following Universal Mapping Property: Whenever Φ ∶ D → K is an injective ring
homomorphism to a field, then there exists a unique ring homomorphism � ∶ F → K , so that the
following diagram commutes

D �
� i //� p

Φ   BBBBBBBB F

∃!�~~}
}

}
}

K.

Observation 3.24. Let D be a domain. If D has a quotient field, then this quotient field is unique.

Proof. Suppose that ij ∶ D → Fj both satisfy the UMP for quotient field, for 1 ≤ j ≤ 2.

D �
� i1 //� s

i2

&&MMMMMMMMMMMMMM� _

i1

��

F1

∃!�1��~
~

~
~

F2

∃!�2xxq q q q q q q

F1.

The hypothesis that i1 ∶ D → F1 is a quotient field map ensures that there exists a unique ring
homomorphism �1 ∶ F1 → F2 such that �1◦i1 = i2. Similarly, the hypothesis that i2 ∶ D → F2 is
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a quotient field map ensures that there exists a unique ring homomorphism �2 ∶ F2 → F1 such that
�2◦i2 = i1. We now have two maps F1 → F1 which cause

D �
� i1 //
� _

i1
��

F1

∃!��~
~

~
~

F1
to commute; namely idF1 and �2◦�1. We conclude that �2◦�1 = idF1 . Thus, �1 is injective and �2
is surjective. Reverse the roles of F1 and F2 to conclude that �2 is injective and �2 is surjective.
We conclude that �1 ∶ F1 → F2 is an isomorphism and

D �
� i1 //
� _

i2
��

F1

�1��~~~~~~~

F2
commutes. �

Example 3.25. If F is a field then the identity map id ∶ F → F is a quotient field map.

Proof. IfΦ ∶ F → K is any injective ring homomorphism into a field, then there does indeed exist
a unique ring homomorphism F → K such that the diagram

F �
� id //
� _

Φ
��

F

∃!~~~
~

~
~

K
commutes; namely Φ. �

Observation 3.26. The inclusion map i ∶ ℤ → ℚ is a quotient field map.

Proof. Suppose ℤ � � Φ // K is an injection into a field. We must prove that there exists a unique
ring homomorphism � ∶ ℚ → K such that �◦i = Φ.

We first show that there is only one candidate for �. Let b be a non-zero integer. If � ∶ ℚ → K
is a ring homomorphism with �◦i = Φ, then

�(a
b
) = �(a)�(1

b
) = (�◦i)(a)�(1

b
) = Φ(a)�( 1

b
).

Furthermore,

1 = Φ(1) = �(i(1)) = �(1) = �( b
b
) = �(b)�( 1

b
) = (�◦i)(b)�( 1

b
) = Φ(b)�( 1

b
).

The hypothesis ensures that Φ(b) ≠ 0. Thus Φ(b) has an inverse in K . We conclude that

(Φ(b))−1 = �(1
b
) and �(a

b
) = Φ(a)(Φ(b))−1.

Now we show that � ∶ ℚ → K , with �(a
b
) = Φ(a)(Φ(b))−1, for a, b ∈ ℤ and b ≠ 0, is a function.

Suppose a, b, c, d are integers with b ≠ 0, d ≠ 0, and a
b
= c

d
in ℚ. We show that

Φ(a)(Φ(b))−1 = Φ(c)(Φ(d))−1
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in K . Well,
ad = bc

in ℚ and also in ℤ; thus

(3.26.1) Φ(a)Φ(d) = Φ(ad) = Φ(bc) = Φ(b)Φ(c).

The homomorphism Φ is injective and b and d are non-zero integers; hence, Φ(b) and Φ(d) are
non-zero elements of the field K . In particular, Φ(b) and Φ(d) have inverses in K . Multiply both
sides of (3.26.1) byΦ(b)−1Φ(d)−1 and use the hypothesis that multiplication inK commutes to see
that

Φ(a)(Φ(b))−1 = Φ(c)(Φ(d))−1

as desired.

Now we show that the function � ∶ ℚ → K , with �(a
b
) = Φ(a)(Φ(b))−1, for a, b ∈ ℤ and b ≠ 0,

is a ring homomorphism.
If a, b, c, d are integers with b and d not zero, then

�(a
b
+ c

d
) = �(ad+bc

cd
) = Φ(ad + bc)(Φ(bd))−1 = Φ(a)(Φ(b))−1 + Φ(c))(Φ(d))−1 = �(a

b
) + �( c

d
),

�(a
b
c
d
) = �( ac

bd
) = Φ(ac)(Φ(bd))−1 = �(a

b
)�( c

d
),

and
�(1) = Φ(1) = 1.

Finally, we record the fact that the function� ∶ ℚ → K , with�(a
b
) = Φ(a)(Φ(b))−1, for a, b ∈ ℤ

and b ≠ 0, satisfies �◦i = Φ.
Of course, this is clear. Indeed, if n ∈ ℤ, then

(�◦i)(n) = �( n
1
) = Φ(n)(Φ(1))−1 = Φ(n).

�

Proposition 3.27. IfD is a domain, then there exists a field F and a quotient field map D �
� i // F .

Proof. Consider the set
S = {(a, b) ∣ a, b ∈ D with b ≠ 0}.

Consider the relation ∼ on S where if (a, b) and (c, d) are in S, then

(a, b) ∼ (c, d) ⟺ ad = bc ∈ D.

Observe that ∼ is an equivalence relation. Let F be the set of equivalence classes S∕∼. In other
words, the elements of F all have the form (a, b), where (a, b) is an element of S and if (a, b) and
(c, d) are elements of S, then (a, b) = (c, d) in F if and only if (a, b) ∼ (c, d). Observe that the
following statements hold.
(1) The functionS×S → S, which is given by (a, b)+(c, d) = (ac+bd, bd), induces a well-defined

function F × F → F .
(2) The function S × S → S, which is given by (a, b) ⋅ (c, d) = (ac, bd). induces a well-defined

function F × F → F .
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(3) The set F with operations + and ⋅, described in (1) and (2), forms a field. The additive identity
of F is (0, 1); the multiplicative identity is (1, 1).

(4) The function i ∶ D → F , given by d ↦ (d, 1), is a ring homomorphism.
(5) The ring homomorphism i of (4) satisfies the Universal Mapping Property of a quotient field

homomorphism.
�

Definition. 3.23 Let D be a domain, F be a field, and i ∶ D → F be an injective ring homomor-
phism. Then F is the quotient field of D (and i ∶ D → F is a quotient field map) if i ∶ D → F
satisfies the following Universal Mapping Property: Whenever Φ ∶ D → K is an injective ring
homomorphism to a field, then there exists a unique ring homomorphism � ∶ F → K , so that the
following diagram commutes

D �
� i //� p

Φ   BBBBBBBB F

∃!�~~}
}

}
}

K.

We proved that if the domainD has a quotient field, then that quotient field is unique. We proved
that ℚ is the quotient field of ℤ.

Proposition 3.28. IfD is a domain, then there exists a field F and a quotient field map D �
� i // F .

Proof. Consider the set
S = {(a, b) ∣ a, b ∈ D with b ≠ 0}.

Consider the relation ∼ on S where if (a, b) and (c, d) are in S, then

(a, b) ∼ (c, d) ⟺ ad = bc ∈ D.

Observe that ∼ is an equivalence relation. Let F be the set of equivalence classes S∕∼. In other
words, the elements of F all have the form (a, b), where (a, b) is an element of S and if (a, b) and
(c, d) are elements of S, then (a, b) = (c, d) in F if and only if (a, b) ∼ (c, d). Observe that the
following statements hold.
(1) The functionS×S → S, which is given by (a, b)+(c, d) = (ac+bd, bd), induces a well-defined

function F × F → F .
(2) The function S × S → S, which is given by (a, b) ⋅ (c, d) = (ac, bd). induces a well-defined

function F × F → F .
(3) The set F with operations + and ⋅, described in (1) and (2), forms a field. The additive identity

of F is (0, 1); the multiplicative identity is (1, 1).
(4) The function i ∶ D → F , given by d ↦ (d, 1), is a ring homomorphism.
(5) The ring homomorphism i of (4) satisfies the Universal Mapping Property of a quotient field

homomorphism.
�
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3.D. Unique Factorization Domains.

Definition 3.29. The domain D is a Unique Factorization Domain (UFD) if

(a) Every non-zero element of D which is not a unit is a finite product of irreducible elements.
(b) If d =

∏r
i=1 pi and d =

∏s
i=1 qi are two factorizations of the non-zero non-unit d into irreducible

elements, then r = s and after renumbering pi = unitiqi for all i.

Examples 3.30. (a) Every field is a UFD. (Indeed, every element of a field is zero or a unit.)
(b) Every PID is a UFD. (This is a Theorem. We have essentially proved it. We will tidy it up.)

Just in case I neglected to define PID, I include: The domain R is a Principal Ideal Domain
(PID) if every ideal of R has the form (r) for some r in R. The standard examples of PIDs are:
every field is a PID; the ring of integers is a PID; if F is a field, then the polynomial ring F [x]
(in one variable!) is a PID.)

(c) If D is a UFD, then D[x] is a UFD. (This is a Theorem. Essentially, it is due to Gauss.) In
particular, if D is a PID (or a field), then D[x1,… , xn] is a UFD.

(d) If P is a smooth point on an Algebraic variety X, then the ring of rational functions on X
which are defined at P (usually denoted OX,P ) is a UFD. This theorem is due to Auslander-
Buchsbaum-Serre 1959. This Theorem made Algebraic Geometers pay attention to Homolog-
ical Algebra.

(e) The ring ℤ[
√

−5] is not a UFD. (This will likely be a homework problem.)
(f) The ring R = F [x, y, z, w]∕(xy − zw) is not a UFD, where F is a field. The elements x, y, z,

w of R are all irreducible and none is a unit times another. But xy = zw in R. If you care, R
is the homogeneous coordinate ring of the image of the Segre embedding of ℙ1 ×ℙ1 into ℙ3. I
can unpack that. Projective one space is

{[x0 ∶ x1] ∣ (x0, x1) ∈ F 2 ⧵ {(0, 0)}}
[x0 ∶ x1] ∼ [tx0 ∶ tx1] for t ∈ F ⧵ {0}

So,ℙ1 is ordinary affine one space {[1 ∶ x1]} together with a point at infinity [0 ∶ 1]. Projective
space is nice because it is compact (in the Zariski topology) and all the points look alike. If
you happen to be standing at [0 ∶ 1], then from your point of view [1 ∶ 0] is “infinity”. One
disadvantage to projective space is that the product of projective spaces is not a projective space.
Ah, but one can embed a product of projective spaces in projective space. The Segre embedding
of

ℙ1 × ℙ1 � � // ℙ3

is

([x0 ∶ x1], [y0 ∶ y1])↦ [x0y0 ∶ x0y1 ∶ x1y0 ∶ x1y1].

(Be sure to notice that this function is well-defined.) If the coordinates ofℙ3 are [x ∶ z ∶ w ∶ y],
then the set of polynomials that vanish on the image of the above Segre embedding is the ideal
(xy− zw) in the polynomial ring F [x, y, z, w]. (One direction of this assertion is obvious. The
other direction requires a little work, but not much.) Hence the homogeneous coordinate ring
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for the image of this Segre embedding is

F [x, y, z, w]
(xy − zw)

.

(g) The ring ℤ[ⅈ] is a Euclidean Domain; hence a PID; hence a UFD. I will probably make this a
homework problem.

History 3.31. Fermat’s Last Theorem was conjectured in 1640. It states that xn + yn = zn has no
positive integer solutions for 3 ≤ n.
In the mid-1800’s it was realized that in ℤ[!p] every non-zero element which is not a unit can

be factored into irreducible elements, where !p = e2�ⅈ∕p. (In this discussion, p is a prime integer.)
It was assumed that this factorization is unique. A famous false proof of FLT was given under
the hypothesis that ℤ[!p] is a UFD for all primes p. Dirichlet observed that ℤ[!23] is not a UFD.
Kummer invented “ideal theory”. (He considered “idealized integers”. These are the objects we call
ideals.) The rings ℤ[!p] and ℤ[

√

−5] are examples of “rings of algebraic integers” – each element
in these rings satisfies amonic polynomial with integer coefficients. Every ring of algebraic integers
is a Dedekind Domain. Kummer proved that in a Dedekind domain every ideal can be factored into
a product of prime ideals in a unique manner. I have probably will assign a homework problem that
asks you to exhibit a special case of Kummer’s Theorem.

An aside: The fact that the factorization is unique is easy but requires a little more than you know.
The argument goes something like this. Suppose P1,…Pa and Q1,… , Qb are prime ideals in the
Dedekind Domain R and

(3.31.1)
∏

Pi =
∏

Qj ,

then a = b and, after re-numbering Pi = Qi. The fact that
∏

Qj ⊆ P1 and P1 is prime forces
Qj ⊆ P1, for some j. (Renumber the Q’s to get Q1 ⊆ P1.) In a Dedekind domain all non-zero
primes ideals are maximal ideals. (You probably do not know this.) So Q1 = P1. The next thing
you don’t know is that each non-zero ideal I in a Dedekind Domain has an “inverse”. This “inverse”
is a finitely generatedR-submodule I−1 of the quotient fieldK ofRwith II−1 = R. (In this context
anR-submodule ofK is an Abelian group which is a subgroup of (K,+) and is closed under scalar
multiplication by R.) Multiply both sides of equation (3.31.1) by P −1

1 and repeat or use induction.

Theorem 3.32. If R is a PID, then R is a UFD.

We have essentially established this very important Theorem.

Definition 3.33. The ringR is Noetherian if the ideals ofR satisfy the Ascending Chain Condition
(ACC). The ideals of R satisfy (ACC) if whenever

I1 ⊆ I2 ⊆⋯

is an ascending chain of ideals of R, then there exists an integer n such that In = In+k for all
non-negative integers k.
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Remark 3.34. I am thinking ofR as a commutative ring; but it could just aswell be non-commutative.
IfR is non-commutative one could say thatR is left-Noetherian if the left ideals ofR satisfy (ACC)
or right-Noetherian if the right ideals of R satisfy (ACC).

Observation 3.35. If R is a (commutative) ring, then R is Noetherian if and only if every ideal of
R is finitely generated.

Proof. Suppose every ideal of R is finitely generated and

I1 ⊆ I2 ⊆⋯

is an ascending chain of ideals of R. Then ∪iIi is an ideal. This ideal is finitely generated and all
of the generators are in In for some n. It follows that In = In+k for all non-negative k.

Suppose some ideal I is not finitely generated. Take i1 ∈ I . Then (i1) ⊊ I . It follows that there
is an element i2 ∈ I ⧵ (i1). Thus,

(i1) ⊊ (i2) ⊊ I.
Continue in this manner to build an ascending chain of ideals of R which never stabilizes. �

Observation 3.36. If R is a Noetherian domain, and r is an element of R which is not zero and is
not a unit, then r is a finite product of irreducible elements of R.

Proof. Modify the proof given in Lemmas 2.36 and 2.37. In these results we proved that every
integer is a finite product of irreducible integers. The only property about integers that we used
is that the subgroups of the group (ℤ,+) satisfy the ascending chain condition. Notice that the
subgroups of the group (ℤ,+) are exactly the same as the ideals of the ring ℤ. �

Corollary 3.37. If r is an element of the PID R and r is not zero and not a unit, then r is a finite
product of irreducible elements. �

Proposition 3.38. If r is an element of the PIDR and r is not zero and not a unit, then r is irreducible
if and only if (r) is a prime ideal.

Proof. In fact, the following three statements are equivalent because R is a PID:
(a) r is an irreducible element of R,
(b) (r) is a maximal ideal of R, and
(c) (r) is a prime ideal of R.
To prove this equivalence, modify Example 3.19 as needed. �

Proposition 3.39. The domain R is a UFD if and only if every non-zero non-unit element of R is a
finite product of irreducible elements and every irreducible element of R generates a prime ideal.

Proof. If necessary, one should look at the proof of Theorem 2.33 on page 24. �

This completes the proof of Theorem 3.32.
I do want to prove the Hilbert Basis Theorem. If R is a Noetherian (commutative) ring, then

R[x] is a Noetherian ring. (Hence as a consequence,
R[x1,… , xn]

I
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is a Noetherian ring for any non-negative integer n and any ideal I ofR[x1,… , xn].) So, you would
have to work hard to find a domain R and an element r in R with r not zero, r not a unit, and r not
equal to a finite product of irreducible elements. (I will probably ask you to do this as a homework
problem.)

Theorem 3.40. [The Hilbert Basis Theorem] If R is a (commutative) Noetherian ring, then R[x]
is also a Noetherian ring.

Proof. Let J be an ideal of R[x]. For each integer n, let

In = {r ∈ R|rxn + l.o.t. ∈ J}.

Observe that
I0 ⊆ I2 ⊆⋯

are ideals of R. Every ascending chain of ideals in R stabilizes; hence, there exists n0 with

In0+k = In0
for all non-negative k. For each i with 0 ≤ i ≤ n0 pick polynomials fi,1,… , fi,Ni

in R[x] such that
each fi,j is in J and has degree i; furthermore the leading coefficients of fi,1,… , fi,Ni

generate Ii.
I claim that

n0
⋃

i=0
{fi,1,… , fi,Ni

}

generates J . It is clear that
( n0
⋃

i=0
{fi,1,… , fi,Ni

}

)

⊆ J.

We prove the other inclusion. Let f be an element of J . We prove that

f ∈

( n0
⋃

i=0
{fi,1,… , fi,Ni

}

)

by induction on the degree of f . It is clear that if deg f = 0, then f ∈ (f0,1,… , f0,N0
). Suppose

that g ∈ J with deg g < deg f implies that

g ∈

( n0
⋃

i=0
{fi,1,… , fi,Ni

}

)

Observe that f minus a linear combination of elements from
n0
⋃

i=0
{fi,1,… , fi,Ni

}

is in J and has degree less than the degree of f . (This works for deg f ≤ n0 as well as n0 < deg f .)
Hence the proof is complete by induction. �

Theorem 3.41. If R is a UFD, then R[x] is a UFD.
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The idea: The ring R[x] sits between two UFDs:

R ⊆ R[x] ⊆ K[x]

where K is the quotient field of R. We will prove that the irreducible elements of R[x] are the
irreducible elements of R and the elements f of R[x] such that the coefficients of f are relatively
prime and f is irreducible in K[x].

Definition 3.42. Let R be a UFD and f ∈ R[x]. If the coefficients of f are relatively prime, then
f is called a primitive polynomial

Lemma 3.43. [Gauss’ Lemma] Let R be a UFD. If f and g are primitive polynomials in R[x],
then fg is primitive.

Proof. Let f =
∑s

i=0 fix
i and g =

∑t
j=0 gjx

j , with fi and gj in R. Let p be an arbitrary irreducible
element of R. Suppose that p|fi for i < a and p does not divide fa and p|gj for j < b and p does
not divide gb. Observe that the coefficient of xa+b in fg is

⋯ + fa−1gb+1
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

p| this

+ fagb
⏟⏟⏟

p does not divide this

+ fa+1gb−1 +…
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

p| this

.

Thus, p does not divide the coefficient of xa+b in fg. We conclude that fg is primitive. �

Corollary 3.44. Let R be a UFD and f be a primitive polynomial in R[x]. Let K be the quotient
field of R.
(a) Let f =

∏s
i=1 gi in K[x] with gi =

ai
bi
ℎi for ai, bi in R and ℎi a primitive polynomial of R[x].

Then f is equal to
∏s

i=1 ℎi times a unit of R.
(b) The polynomial f is irreducible in R[x] if and only if f is irreducible in K[x].

Proof. (a) Observe that (
∏

bi)f = (
∏

ai)(
∏

ℎi). The polynomials f and
∏

ℎi are both primitive
in R[x]. (Use Gauss’ Lemma for

∏

ℎi.) Hence
∏

ai is equal to a unit of R times
∏

bi in R.

(b) Suppose f is irreducible in R[x] and f = g1g2 in K[x]. Write gi =
ai
bi
ℎi with ai, bi in R and

ℎi primitive in R[x]. Apply (a) to conclude that f is equal to ℎ1ℎ2 times a unit of R in R[x]. The
polynomial f is irreducible in R[x]; so ℎ1 or ℎ2 is a unit of R[x]; hence a unit of R. Thus, either
g1 or g2 is a unit in K[x] and f is irreducible in R[x].

Suppose f is irreducible inK[x]. Suppose f = g1g2 inR[x]. The hypothesis that f is irreducible
in K[x] ensures that either g1 or g2 is a unit of K[x]; hence, an element of K . But f is primitive in
R[x]. Thus, g1 or g2 is a unit in R. We conclude that f is irreducible in R[x]. �

The proof of Theorem 3.41. Take f ∈ R[x]. Use Corollary 3.44.(a) to write f =
∏

ri
∏

fj
where the ri are irreducible in R and the fj are primitive in R[x] and irreducible in K[x]. We have
exhibited a factorization of f into irreducible elements of R[x].
Suppose

(3.44.1)
∏

ri
∏

fj =
∏

sk
∏

gl
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with ri and sk irreducible in R and fj and gl primitive in R[x] and irreducible in K[x]. First look
inK[x] to see that there are exactly as many fj’s as there are gl’s and after renumbering fj is equal
to a unit of K times gj . The unit of K is a∕b for a, b in R with b not zero. Multiply both sides by b:
bfj = agj . The polynomials fj and gj are primitive in R[x]; hence, b is equal to a unit of R times
a. At any rate, we can cancel all of the fj’s and gl’s from (3.44.1) at the expense of multiplying
one of the sides by a unit ofR. We are left with

∏

ri is equal to a unit ofR times
∏

sk, where the ri
and the sk are irreducible elements of R. The hypothesis that R is a UFD ensures that the number
of ri is equal to the number of sk and after re-numbering ri is equal to a unit of R times si. �
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