
FINAL EXAM SOLUTIONS MATH 701 FALL 2023

Write your answers as legibly as you can on the blank sheets of paper provided. Write complete
answers in complete sentences. Make sure that your notation is defined!

Use only one side of each sheet; start each problem on a new sheet of paper; and be sure to
number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc.

If some problem is incorrect, then give a counterexample and/or supply the missing hypothesis
and prove the resulting statement. If some problem is vague, then be sure to explain your interpre-
tation of the problem.

You should KEEP this piece of paper.
Take a picture of your exam (for your records) just before you turn the exam in. I will e-mail

your grade and my comments to you. I will keep your exam. Fold your exam in half before you
turn it in.

The exam is worth 100 points. There are nine problems.
1. (11 points) Prove that there is no finite group G with G∕Z(G) has exactly 143 elements.

Suppose such a group exists. We will obtain a contradiction.
We first observe thatG∕Z(G) is cyclic. Let n11 and n13 be the number of Sylow 11 and Sylow

13 subgroups of G∕Z(G), respectively. The Sylow Theorems guarantee that n11 ≡ 1 mod 11,
n11|13, n13 ≡ 1 mod 13, and n13|11. Thus, n13 = n11 = 1. Let H be the Sylow subgroup
of G∕Z(G) of order 11 and K be the Sylow subgroup of G∕Z(G) of order 13. Each of these
subgroups is a normal subgroup of G∕Z(G); each of these subgroups is cyclic; the intersection
of the two subgroups is the identity element ofG∕Z(G), elements ofH commute with elements
of K:

(ℎkℎ−1)k−1 = ℎ(kℎ−1k−1) ∈ H ∩K = {id}.

We conclude thatG∕Z(G) is a cyclic group. Let g be an element ofG so that the coset g ∗ Z(G)
generates G∕Z(G). It follows that every element of G has the form giz for some i and some z ∈
Z(G). It follows further that G is Abelian. Thus Z(G) = G. We have reached a contradiction.
It is not possible for G∕Z(G) to have exactly 143 elements and at the same time to have exactly
1 element.

2. (11 points) Let U be the multiplicative group of complex numbers of modulus 1, let ℝ be
the additive group of real numbers, and let ℤ be the additive group of integers. Prove that
U ≅ ℝ∕ℤ.

Let � ∶ ℝ → U be the function �(r) = e2�r. Observe that � is a group homomorphism; � is
surjective; and the kernel of � is ℤ. Apply the First Isomorphism Theorem.
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3. (11 points) Let G1 and G2 be Abelian groups and let � ∶ G1 → G2 and � ∶ G2 → G1 be
group homomorphisms so that ��(g) = g , for all g ∈ G1. Prove that G2 is isomorphic to
im � ⊕ ker �.

We let + denote the operation in each group Gi. Consider the homomorphism

� ∶ im � ⊕ ker � → G2,

which is given by �(x, y) = x + y. The map makes sense because im � and ker � are both
subgroups ofG2. We show that� is a bijection by showing im �∩ker � = {0} and im �+ker � =
G2.

im � ∩ ker � = {0}: If g2 ∈ im � ∩ ker �, then g2 = �g1 for some g1 ∈ G1 and 0 = �(g2) =
(�◦�)(g1) = g1; hence, g2 = �(g1) = 0.

im � + ker � = G2: If g2 ∈ G2, then g2 = (�◦�)(g2) + (g2 − (�◦�)(g2)), with (�◦�)(g2) ∈ im �
and (g2 − (�◦�)(g2)) ∈ ker �.

4. (11 points) Consider � ∶ ℤ
⟨9⟩

→ ℤ
⟨18⟩

, given by n̄ ↦ n̄, and � ∶ ℤ
⟨18⟩

→ ℤ
⟨9⟩

given by n̄ ↦ n̄. Is �
a group homomorphism? Is � a group homomorphism? Explain.

Consider the subgroups ⟨18⟩ ⊆ ⟨9⟩ of ℤ. It follows that ⟨9⟩
⟨18⟩

is a subgroup of ℤ
⟨18⟩

. Thus, � is a
group homomorphism. Indeed � is the natural quotient map

ℤ
⟨18⟩

→

ℤ
⟨18⟩
⟨9⟩
⟨18⟩

followed by the isomorphism of the Second Isomorphism Theorem
ℤ

⟨18⟩
⟨9⟩
⟨18⟩

≅
←←←←←←→

ℤ
⟨9⟩

.

Thus � is a group homomorphism.
On the other hand, “�” is not a function 0̄ = 9̄ in ℤ

⟨9⟩
; but “�”(0̄) = 0̄,“�”(9̄) = 9̄, and 0̄ ≠ 9̄ in

ℤ
⟨18⟩

. So, � is not a group homomorphism.
5. (11 points) LetR be a commutative ring. Let I be a prime ideal ofR such thatR∕I satisfies

the descending chain condition on ideals. Prove that R∕I is a field.

It suffices to show that if D is a (commutative) domain which satisfies the descending chain
condition on ideals, then D is a field. Let d be a non-zero element of D. Observe that

(d) ⊇ (d2) ⊇ (d3) ⊇…

is a descending chain of ideals of D. It follows that there exists an index i with (di) = (di+1).
In particular, di = �di+1 for some � in D. Thus di(1 − �d) = 0. The element di is a non-zero
element of the domain D; thus, 1 = �d and d is a unit. Every non-zero element of D is a unit;
hence D is a domain.

6. (11 points) Let R = ℤ[x] . Give three prime ideals of R that contain the ideal (6, 2x).

The ideals (3, x), (2, x), and (2) are prime ideals of R which contain (6, 2x).
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7. (11 points) Prove the following form of the Chinese Remainder Theorem. Let R be a com-
mutative ring and suppose that I and J are ideals of R such that I + J = R. Then R

I∩J
and

R
I
⊕ R

J
are isomorphic rings. (The direct sum of two rings is a ring; the multiplication takes

place coordinate-wise.)

Define the the ring homomorphism � ∶ R → R
I
⊕ R

J
by �(r) = (r̄, r̄). We are told that there

exist elements i ∈ I and j ∈ J with i + j = 1. Thus, �(1 − i) = (1̄, 0̄) and �(1 − j) = (0̄, 1̄).
The homomorphism � is surjective. The kernel of � is I ∩ J . Apply The First Isomorphism
Theorem.

8. (12 points) Let R be a commutative ring. For x ∈ R , let A(x) = {r ∈ R ∣ xr = 0} . Suppose
� ∈ R has the property that A(�) is not properly contained in A(x) for any x ∈ R . Prove
the A(�) is a prime ideal of R.

This problem should state that x and � are non-zero elements of R.

Suppose r1 and r2 are in R with r1r2 ∈ A(�). Suppose further that r1 ∉ A(�). In particular,
r1� ≠ 0 andA(�) ⊆ A(r1�). It is clear that r2 ∈ A(r1�). The hypothesis thatA(�) is not properly
contained in A(x) for any x ∈ R ensures that r2 is an element of A(�) and the proof is complete.

9. (11 points) Let p be the smallest prime dividing the order of the finite group G. Prove that
any subgroup of index p in G is a normal subgroup.

LetH be a subgroup of G of index p and let S be the set of left cosets ofH in G. Notice that S
has p elements. Let G act on S by left translation. That is, g1 sends gH to g1gH . It follows that
there is a group homomorphism � ∶ G → Sym(S). The kernel of � is a normal subgroup of G
and G

ker �
is isomorphic to a subgroup of Sym(S). If follows that | G

ker �
| divides p!. (In particular,

the prime factorization of | G
ker �

| involves primes of size p and smaller and p can be involved at
most once.)

On the other hand, | G
ker �

| divides |G|; hence the smallest prime that can divide | G
ker �

| is p.
At this point we know that | G

ker �
| is one or p.

Observe that ker � ⊆ H . Indeed, if g ∈ ker �, then g ⋅ idH = idH ; hence g ∈ H . (One
consequence of this is that | G

ker �
| is not equal to one; hence | G

ker �
| = p.)

We have ker � ⊆ H ⊆ G with [G ∶ ker �] = [G ∶ H]. We conclude thatH = ker �, which
is a normal subgroup of G.


