PRINT Your Name: \qquad

Quiz for June 1, 2004

Let A and B be nonempty subsets of positive real numbers that are bounded from above. Let $C=\{a b \mid a \in A$ and $b \in B\}$. Prove that $\sup C=(\sup A)(\sup B)$.

ANSWER: Let $\alpha=\sup A, \beta=\sup B$ and $\gamma=\sup C$.
We show $\gamma \leq \alpha \beta$. It suffices to show that $\alpha \beta$ is an upper bound for C. Let c be an arbitrary element of C. It follows that $c=a b$ for some $a \in A$ and some $b \in B$. We know that α is an upper bound for A, so $a \leq \alpha$. We know that β is an upper bound for B, so $b \leq \beta$. Multipliy $a \leq \alpha$ by the positive number b to see thar $a b \leq \alpha b$. Multiply $b \leq \beta$ by the positive number α to see that $\alpha b \leq \alpha \beta$. Conclude that

$$
c=a b \leq \alpha b \leq \alpha \beta ;
$$

and therefore $\alpha \beta$ is an upper bound for C.
We show $\alpha \beta \leq \gamma$. We do this part of the argument by contradiction. If $\gamma<\alpha \beta$, then $\frac{\gamma}{\alpha}<\beta$. (We know that A is a non-empty set of positive numbers, and α is an upper bound for A. It follows that α is positive, and so not zero.) But β is $\sup B$; so there exists $b \in B$ with $\frac{\gamma}{\alpha}<b$. The number b is positive; so not zero. We have $\frac{\gamma}{b}<\alpha$. But α is $\sup A$; so there exists $a \in A$ with $\frac{\gamma}{b}<a$. We now have $\gamma<a b \in C$; which contradicts the fact that γ is an upper bound for C. Our original supposition that $\gamma<\alpha \beta$ must be wrong; so, we have established that $\alpha \beta \leq \gamma$.

We have shown that $\gamma \leq \alpha \beta$ and $\alpha \beta \leq \gamma$. It follows that $\alpha \beta=\gamma$ and the proof is complete.

