Math 554, Exam 1, Summer 2006

Write your answers as legibly as you can on the blank sheets of paper provided. Use only **one side** of each sheet. Leave room on the upper left hand corner of each page for the staple. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc; although, by using enough paper, you can do the problems in any order that suits you.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then **send me an e-mail**.

There are 7 problems. Problem 1 is worth 8 points. Each of the other problems is worth 7 points. The exam is worth a total of 50 points.

If you would like, I will leave your graded exam outside my office door. You may pick it up any time before the next class. If you are interested, be sure to tell me.

I will post the solutions on my website later this afternoon.

1. State the least upper bound axiom of the real numbers. Use complete sentences. Include everything that is necessary, but nothing more.

Every non-empty set of real numbers which is bounded from above has a supremum.

2. Define "limit of a sequence". Use complete sentences. Include everything that is necessary, but nothing more.

The *limit of the sequence* of real numbers $\{a_n\}$ is the real number p if for all $\varepsilon > 0$, there exists an integer n_0 such that whenever n is an integer with $n > n_0$, then $|a_n - p| < \varepsilon$.

- 3. Suppose X and Y are sets, $f: X \to Y$ and $g: Y \to X$ are functions, and $g \circ f$ is the identity function on X. (In other words, g(f(x)) = x for all $x \in X$.)
 - (a) Does the function g have to be one-to-one? If yes, prove it. If no, give a counter example. Write in complete sentences.

NO. Let $X = \{1\}$, $Y = \{1, 2\}$, f(1) = 1, g(1) = g(2) = 1. It is clear that $f: X \to Y$ and $g: Y \to X$ are functions and that g(f(x)) = x for all x in X.

It is also clear that g is not one-to-one, because 1 and 2 are distinct elements of Y with g(1) = g(2).

(b) Does the function g have to be onto? If yes, prove it. If no, give a counter example. Write in complete sentences.

YES. Let x be an arbitrary element of the set X. We know that f(x) is an element of Y and that g(f(x)) = x.

4. Suppose that $\{a_n\}$ is a sequence which converges to a and $\{b_n\}$ is a sequence that converges to b. Prove that $\{a_n + b_n\}$ is a sequence which converges to a + b. I expect a complete, coherent argument. Write in complete sentences.

Fix $\varepsilon > 0$. Observe that the triangle inequality yields that

$$|(a_n + b_n) - (a + b)| \le |a_n - a| + |b_n - b|.$$

The sequence $\{a_n\}$ converges to a, so there exists a natural number n_1 so that for all $n > n_1$, $|a_n - a| < \frac{\varepsilon}{2}$. The sequence $\{b_n\}$ converges to b, so there exists a natural number n_2 so that for all $n > n_2$, $|b_n - b| < \frac{\varepsilon}{2}$. Let $n_0 = \max\{n_1, n_2\}$. If $n > n_0$, then

$$|(a_n+b_n)-(a+b)| \le |a_n-a|+|b_n-b| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

We conclude that the sequence $\{a_n + b_n\}$ converges to a + b.

5. Prove that between any two real numbers there exists an irrational number. Give a complete proof. Write in complete sentences. If you quote some result we did in class, be sure to quote the complete result.

Let a < b be real numbers. In class we proved that between any two real numbers there is a rational number. We apply the result from class to the real numbers 0 < b - a to find a rational number q with 0 < q < b - a. We notice that $\frac{\sqrt{2}}{2}$ is an irratioanl number with $0 < \frac{\sqrt{2}}{2} < 1$; hence, $0 < \frac{\sqrt{2}}{2}q < q < b - a$. Add ato every part of the inequality to see that $a < \frac{\sqrt{2}}{2}q + a < q + a < b$. If a is an irrational number, then q + a is an irrational number between a and b. If a is a rational number, then $\frac{\sqrt{2}}{2}q + a$ is an irrational number between a and b.

6. Consider the sequence $\{a_n\}$ with $a_1 = \sqrt{12}$, and $a_n = \sqrt{12 + a_{n-1}}$ for $n \ge 2$. Prove that the sequence $\{a_n\}$ converges. Find the limit of the sequence $\{a_n\}$. Write in complete sentences.

It is clear that every term a_n is at most 4. We see that $a_1 \leq 4$. If $a_{n-1} \leq 4$, then $a_{n-1} + 12 \leq 16$; so $a_n = \sqrt{a_{n-1} + 12} < \sqrt{16} = 4$. It is also clear that the sequence is an increasing sequence. We just saw that $a_n \leq 4$ for all n. Multiply both sides by the positive number $a_n + 3$ to see that $a_n^2 + 3a_n \leq 4a_n + 12$. In other words, we have $a_n^2 \leq a_n + 12$. The numbers a_n and $a_n + 12$ are both positive. it follows that $a_n \leq \sqrt{a_n + 12} = a_{n+1}$. The sequence $\{a_n\}$ is an increasing bounded sequence. We proved in class that every monotone bounded sequence converges. It follows that the sequence $\{a_n\}$ converges. We know that $\lim_{n \to \infty} a_n$ exists. Let L be the name of this limit. Take the limit of both sides of $a_n = \sqrt{12 + a_{n-1}}$ to see that $L = \sqrt{12 + L}$, or $L^2 = 12 + L$, which is $L^2 - L - 12 = 0$. This equation factors to become (L - 4)(L + 3) = 0; hence L = 4 or L = -3. Every a_n is positive so L = -3 is not possible. We conclude that $\lim_{n \to \infty} a_n = 4$.

7. Let $\{a_k\}$ be a sequence of real numbers. For each natural number n, let

$$s_n = \frac{a_1 + a_2 + \dots + a_n}{n}$$

Suppose that the sequence $\{a_k\}$ converges to the real number a. Prove that the sequence $\{s_n\}$ also converges to a. Give a complete ε style proof. Write in complete sentences.

Fix $\varepsilon > 0$. The sequence $\{a_k\}$ converges to a so there exists a natural number k_0 so that if $k > k_0$, then $|a_k - a| < \frac{\varepsilon}{2}$. Let B equal the fixed number $B = |(\sum_{k=1}^{k_0} a_k) - k_0 a|$. Pick a natural number n_1 with $\frac{2B}{\varepsilon} < n_1$. Let $n_0 = \max\{n_1, k_0\}$. If $n_0 < n$, then

$$|s_n - a| = \left|\frac{a_1 + a_2 + \dots + a_n}{n} - a\right| = \left|\frac{a_1 + a_2 + \dots + a_n - na}{n}\right| = \left|\frac{(a_1 + a_2 + \dots + a_{k_0} - k_0a) + (a_{k_0+1} - a) + (a_{k_0+2} - a) + \dots + (a_n - a)}{n}\right|.$$

Use the triangle inequality to see that

$$|s_n - a| \le \frac{|a_1 + a_2 + \dots + a_{k_0} - k_0 a|}{n} + \frac{|a_{k_0 + 1} - a|}{n} + \frac{|a_{k_0 + 2} - a|}{n} + \dots + \frac{|a_n - a|}{n}.$$

The first term on the right of the sign \leq is $\frac{B}{n}$. Our choice of n_0 ensures that $\frac{B}{n} < \frac{\varepsilon}{2}$. If ℓ is a positive integer, then our choice of n_0 ensures that $|a_{k_0+\ell}-a| \leq \frac{\varepsilon}{2}$. At this point we have

$$|s_n - a| \le \frac{\varepsilon}{2} + (n - k_0)\frac{\varepsilon}{n} \le \frac{\varepsilon}{2} + n\frac{\varepsilon}{n} = \varepsilon.$$

We have shown that $n > n_0 \implies |s_n - a| < \varepsilon$. We conclude that the sequence $\{s_n\}$ converges to a.