Math 554, Final Exam, Summer 2005

Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc; although, by using enough paper, you can do the problems in any order that suits you.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail. Otherwise, get your grade from VIP.

There are 13 problems. Problems 1 through 9 are worth 8 points each. Problems 10 through 13 are worth 7 points each. The exam is worth a total of 100 points.

I will post the solutions on my website shortly after the class is finished.

1. Let $f: E \rightarrow \mathbb{R}$ be a function which is defined on a subset E of \mathbb{R}. Define $\lim _{x \rightarrow p} f(x)=L$. Use complete sentences. (Be sure to tell me what kind of a thing p is, and what kind of a thing L is.)
2. STATE either version of the Bolzano-Weierstrass Theorem.
3. PROVE either version of the Bolzano-Weierstrass Theorem.
4. Define Cauchy sequence. Use complete sentences.
5. PROVE that every Cauchy sequence converges.
6. Let I be an interval and $f: I \rightarrow \mathbb{R}$ be a function which is differentiable at the point p of I. PROVE that f is continuous at p.
7. Let f be a continuous function from the closed interval $[a, b]$ to \mathbb{R}. Let $\varepsilon>0$ be fixed. Prove that there exists $\delta>0$ such that: whenever x and y are in $[a, b]$ with $|x-y|<\delta$, then $|f(x)-f(y)|<\varepsilon$. (Notice that you are supposed to prove that one δ works for every x and y.)
8. Give an example of a bounded infinite closed set that does not contain any intervals. Explain thoroughly.
9. Let A be an index set. For each index a in A, let F_{a} be a closed subset of \mathbb{R}. Is the union $\bigcup_{a \in A} F_{a}$ always closed? If yes, prove the claim. If no, give a counterexample.
10. Let f and g be functions from the subset E of \mathbb{R} to \mathbb{R}, and let p be a limit point of \mathbb{R}. Suppose that $\lim _{x \rightarrow p} f(x)$ exists and equals A. Suppose, also, that $\lim _{x \rightarrow p} g(x)$ exists and equals B. Prove $\lim _{x \rightarrow p} f(x) g(x)$ exists and equals $A B$.
11. Let c_{1} be an arbitrary element of the open interval $(0,1)$. For each $n \in \mathbb{N}$, let $c_{n+1}=\frac{1}{5}\left(c_{n}^{2}+2\right)$. Prove that the sequence $\left\{c_{n}\right\}$ is contractive.
12. Consider the sequence $\left\{a_{n}\right\}$ with $a_{1}=4$, and for $n \in \mathbb{N}, a_{n+1}=\sqrt{2 a_{n}+3}$. Prove that the sequence converges. Find the limit of the sequence.
13. Let $f(x)=\left\{\begin{array}{ll}x^{2}+x & \text { if } x \text { is rational } \\ x & \text { if } x \text { is irrational. }\end{array}\right.$ Is f differentiable at 0 ? Prove your answer.
