Math 554, Exam 4, Summer 2005 Solution

Write your answers as legibly as you can on the blank sheets of paper provided. Use only **one side** of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc; although, by using enough paper, you can do the problems in any order that suits you.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then **send me an e-mail**.

There are 7 problems. Problem 1 is worth 8 points. Problems 2 through 7 are worth 7 points each. The exam is worth a total of 50 points.

If you would like, I will leave your graded exam outside my office door. You may pick it up any time before the next class. If you are interested, be sure to tell me.

I will post the solutions on my website shortly after the class is finished.

1. Let $E = \{q \in \mathbb{Q} \mid 0 \le q \le 1\}$. Is *E* a compact set? Explain thoroughly. (Recall that \mathbb{Q} is the set of rational numbers.)

The set E is NOT compact. We proved that a set is compact if and only if it is closed and bounded. The set E is NOT closed, therefore, the set E is NOT compact. We know that E is not closed because every irrational number in [0,1]is a limit point of E, but is not in E. Indeed, if r is an irrational number with $r \in [0,1]$, then every ε neighborhood of r contains elements of E because there exists a rational number between any two real numbers.

2. Define *compact*. Use complete sentences. Include everything that is necessary, but nothing more.)

The subset K of \mathbb{R} is *compact* if every open cover of K admits a finite subcover.

3. Define *continuous*. Use complete sentences. Include everything that is necessary, but nothing more.

Let *E* be a subset of \mathbb{R} . The function $f: E \to \mathbb{R}$ is continuous at the point *p* of *E*, if, for all $\varepsilon > 0$, there exists $\delta > 0$, such that whenever $|x - p| < \delta$ and $x \in E$, then $|f(x) - f(p)| < \varepsilon$.

4. Let $f: \mathbb{R} \to \mathbb{R}$ be the function defined by

 $f(x) = \begin{cases} x^3 & \text{if } x \text{ is rational} \\ 5x - 2 & \text{if } x \text{ is irrational.} \end{cases}$

Give a complete " $\varepsilon - \delta$ " proof that f is continuous at p = 2.

We see that f(2) = 8. Let $\varepsilon > 0$ be fixed, but arbitrary. We must prove that there exists $\delta > 0$ such that whenever $|x - 2| < \delta$, then $|f(x) - 8| < \varepsilon$.

We know the formula for the difference of perfect cubes. (Or we do a long division.) At any rate, we see that

$$|x^{3} - 8| = |(x - 2)(x^{2} + 2x + 4)| \le |x - 2|(|x|^{2} + 2|x| + 4).$$

We can make |x-2| be as small as we might like. We "are only interested" in x 's near 2, so we can keep $(|x|^2 + 2|x| + 4)$ from being too big. Said with more details: if |x-2| < 1, then |x| < 3 and $|x|^2 + 2|x| + 4 < 9 + 6 + 4 = 19$. It follows that

(1)
$$|x-2| < \min\{1, \frac{\varepsilon}{19}\} \implies |x^3-8| \le |x-2|(|x|^2+2|x|+4) < \frac{\varepsilon}{19} = \varepsilon.$$

We also see that

$$(5x-2) - 8| = |5x - 10| = 5|x - 2|.$$

So,

(2)
$$|x-2| < \frac{\varepsilon}{5} \implies |(5x-2)-8| = 5|x-2| < 5\frac{\varepsilon}{5} = \varepsilon.$$

We know that f(x) is equal to either x^3 or 5x - 2. Let $\delta = \min\{1, \frac{\varepsilon}{19}, \frac{\varepsilon}{5}\}$. Combine (1) and (2) to see that if $|x - 2| < \delta$, then $|f(x) - 8| < \varepsilon$.

5. STATE the theorem which relates the limit of a function and the limit of various sequences. Use complete sentences. Include everything that is necessary, but nothing more.

Let E be a subset of \mathbb{R} , p be a limit point of E, $f: E \to \mathbb{R}$ be a function, and L be a real number. The following statements are equivalent.

- (a) The limit $\lim f(x)$ is equal to L.
- (b) For every sequence $\{x_n\}$ in E which converges to p with $x_n \neq p$ for all n, the sequence $\{f(x_n)\}$ converges to L.

6. Let K be a compact set and let $f: K \to \mathbb{R}$ be a continuous function. Prove that the image f(K) is a compact set. (I want to see a complete proof.)

Let $\mathcal{U} = \{U_{\alpha} \mid \alpha \in A\}$ be an open cover of f(K). For each point $p \in K$, the element f(p) is in f(K). The set \mathcal{U} covers f(K), so there is an index α_p in A, such that f(p) is in U_{α_p} . The function f is continuous at p; so there exists a $\delta_p > 0$ such that $f(N_{\delta_p}(p) \cap K) \subseteq U_{\alpha_p}$. We create such a neighborhood $N_{\delta_p}(p)$ for each $p \in K$. We see that $\mathcal{N} = \{N_{\delta_p}(p) \mid p \in K\}$ is an open cover of K. The set K is compact; consequently, there exist p_1, \ldots, p_n in K such that the set $\{N_{\delta_{p_1}}(p_1), \ldots, N_{\delta_{p_n}}(p_n)\}$ covers K. It follows that $\{f(N_{\delta_{p_1}}(p_1) \cap K), \ldots, f(N_{\delta_{p_n}}(p_n) \cap K)\}$ covers f(K). But $f(N_{\delta_{p_i}}(p_i) \cap K) \subseteq U_{\alpha_{p_i}}$, for all i; therefore, $\{U_{\alpha_{p_1}}, \ldots, U_{\alpha_{p_n}}\}$ covers f(K). 7. Let f be a continuous function from the closed interval [a, b] to \mathbb{R} . Let $\varepsilon > 0$ be fixed. Prove that there exists $\delta > 0$ such that: whenever x and y are in [a, b] with $|x - y| < \delta$, then $|f(x) - f(y)| < \varepsilon$. (Notice that you are supposed to prove that one δ works for every x and y.)

The function f is continuous on [a, b], so for each point $p \in [a, b]$ there exists "a δ depending on p", call it $\delta_p > 0$, such that whenever

(3)
$$x \in [a, b]$$
 with $|x - p| < \delta_p \implies |f(x) - f(p)| < \frac{\varepsilon}{2}$.

Let $\mathcal{N} = \{N_{\frac{\delta_{p}}{2}}(p) \mid p \in [a, b]\}$. We see that \mathcal{N} is an open cover of the compact set [a, b]. Thus, there exists a finite set of points p_1, \ldots, p_ℓ in [a, b] so that $\{N_{\frac{\delta_{p_1}}{2}}(p_1), \ldots, N_{\frac{\delta_{p_\ell}}{2}}(p_\ell)\}$ covers [a, b]. Let $\delta = \min\{\frac{\delta_{p_1}}{2}, \ldots, \frac{\delta_{p_\ell}}{2}\}$. The number δ is the minimum of a FINITE set of POSITIVE numbers, so $\delta > 0$. I claim that this one δ works for ALL x and y. Suppose, x, y are in [a, b] with $|x - y| < \delta$. The set $\{N_{\frac{\delta_{p_1}}{2}}(p_1), \ldots, N_{\frac{\delta_{p_\ell}}{2}}(p_\ell)\}$ covers [a, b], so there is an index i, with $1 \leq i \leq \ell$ with $|x - p_i| < \frac{\delta_{p_i}}{2}$. It follows that

$$|y - p_i| = |y - x + x - p_i| \le |y - x| + |x - p_i| \le \delta + \frac{\delta_{p_i}}{2} \le \frac{\delta_{p_i}}{2} + \frac{\delta_{p_i}}{2} = \delta_{p_i}.$$

Use (3) twice at $p = p_i$ to see

$$|f(x) - f(y)| = |f(x) - f(p_i) + f(p_i) - f(y)| \le |f(x) - f(p_i)| + |f(p_i) - f(y)|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$