Math 554, Exam 4, Summer 2005 Solution
Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc; although, by using enough paper, you can do the problems in any order that suits you.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail.

There are 7 problems. Problem 1 is worth 8 points. Problems 2 through 7 are worth 7 points each. The exam is worth a total of 50 points.

If you would like, I will leave your graded exam outside my office door. You may pick it up any time before the next class. If you are interested, be sure to tell me.

I will post the solutions on my website shortly after the class is finished.

1. Let $E=\{q \in \mathbb{Q} \mid 0 \leq q \leq 1\}$. Is E a compact set? Explain thoroughly. (Recall that \mathbb{Q} is the set of rational numbers.)
The set E is NOT compact. We proved that a set is compact if and only if it is closed and bounded. The set E is NOT closed, therefore, the set E is NOT compact. We know that E is not closed because every irrational number in $[0,1]$ is a limit point of E, but is not in E. Indeed, if r is an irrational number with $r \in[0,1]$, then every ε neighborhood of r contains elements of E because there exists a rational number between any two real numbers.
2. Define compact. Use complete sentences. Include everything that is necessary, but nothing more.)

The subset K of \mathbb{R} is compact if every open cover of K admits a finite subcover.
3. Define continuous. Use complete sentences. Include everything that is necessary, but nothing more.

Let E be a subset of \mathbb{R}. The function $f: E \rightarrow \mathbb{R}$ is continuous at the point p of E, if, for all $\varepsilon>0$, there exists $\delta>0$, such that whenever $|x-p|<\delta$ and $x \in E$, then $|f(x)-f(p)|<\varepsilon$.
4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by

$$
f(x)= \begin{cases}x^{3} & \text { if } x \text { is rational } \\ 5 x-2 & \text { if } x \text { is irrational. }\end{cases}
$$

Give a complete " $\varepsilon-\delta$ " proof that f is continuous at $p=2$.

We see that $f(2)=8$. Let $\varepsilon>0$ be fixed, but arbitrary. We must prove that there exists $\delta>0$ such that whenever $|x-2|<\delta$, then $|f(x)-8|<\varepsilon$.
We know the formula for the difference of perfect cubes. (Or we do a long division.) At any rate, we see that

$$
\left|x^{3}-8\right|=\left|(x-2)\left(x^{2}+2 x+4\right)\right| \leq|x-2|\left(|x|^{2}+2|x|+4\right) .
$$

We can make $|x-2|$ be as small as we might like. We "are only interested" in x 's near 2 , so we can keep $\left(|x|^{2}+2|x|+4\right)$ from being too big. Said with more details: if $|x-2|<1$, then $|x|<3$ and $|x|^{2}+2|x|+4<9+6+4=19$. It follows that

$$
\begin{equation*}
|x-2|<\min \left\{1, \frac{\varepsilon}{19}\right\} \Longrightarrow\left|x^{3}-8\right| \leq|x-2|\left(|x|^{2}+2|x|+4\right)<\frac{\varepsilon}{19} 19=\varepsilon \tag{1}
\end{equation*}
$$

We also see that

$$
|(5 x-2)-8|=|5 x-10|=5|x-2|
$$

So,

$$
\begin{equation*}
|x-2|<\frac{\varepsilon}{5} \Longrightarrow|(5 x-2)-8|=5|x-2|<5 \frac{\varepsilon}{5}=\varepsilon . \tag{2}
\end{equation*}
$$

We know that $f(x)$ is equal to either x^{3} or $5 x-2$. Let $\delta=\min \left\{1, \frac{\varepsilon}{19}, \frac{\varepsilon}{5}\right\}$. Combine (1) and (2) to see that if $|x-2|<\delta$, then $\mid f(x)-8) \mid<\varepsilon$.
5. STATE the theorem which relates the limit of a function and the limit of various sequences. Use complete sentences. Include everything that is necessary, but nothing more.
Let E be a subset of \mathbb{R}, p be a limit point of $E, f: E \rightarrow \mathbb{R}$ be a function, and L be a real number. The following statments are equivalent.
(a) The limit $\lim _{x \rightarrow p} f(x)$ is equal to L.
(b) For every sequence $\left\{x_{n}\right\}$ in E which converges to p with $x_{n} \neq p$ for all n, the sequence $\left\{f\left(x_{n}\right)\right\}$ converges to L.
6. Let K be a compact set and let $f: K \rightarrow \mathbb{R}$ be a continuous function. Prove that the image $f(K)$ is a compact set. (I want to see a complete proof.)
Let $\mathcal{U}=\left\{U_{\alpha} \mid \alpha \in A\right\}$ be an open cover of $f(K)$. For each point $p \in K$, the element $f(p)$ is in $f(K)$. The set \mathcal{U} covers $f(K)$, so there is an index α_{p} in A, such that $f(p)$ is in $U_{\alpha_{p}}$. The function f is continuous at p; so there exists a $\delta_{p}>0$ such that $f\left(N_{\delta_{p}}(p) \cap K\right) \subseteq U_{\alpha_{p}}$. We create such a neighborhood $N_{\delta_{p}}(p)$ for each $p \in K$. We see that $\mathcal{N}=\left\{N_{\delta_{p}}(p) \mid p \in K\right\}$ is an open cover of K. The set K is compact; consequently, there exist p_{1}, \ldots, p_{n} in K such that the set $\left\{N_{\delta_{p_{1}}}\left(p_{1}\right), \ldots, N_{\delta_{p_{n}}}\left(p_{n}\right)\right\}$ covers K. It follows that $\left\{f\left(N_{\delta_{p_{1}}}\left(p_{1}\right) \cap K\right), \ldots, f\left(N_{\delta_{p_{n}}}\left(p_{n}\right) \cap K\right)\right\}$ covers $f(K)$. But $f\left(N_{\delta_{p_{i}}}\left(p_{i}\right) \cap K\right) \subseteq U_{\alpha_{p_{i}}}$, for all i; therefore, $\left\{U_{\alpha_{p_{1}}}, \ldots, U_{\alpha_{p_{n}}}\right\}$ covers $f(K)$.
7. Let f be a continuous function from the closed interval $[a, b]$ to \mathbb{R}. Let $\varepsilon>0$ be fixed. Prove that there exists $\delta>0$ such that: whenever x and y are in $[a, b]$ with $|x-y|<\delta$, then $|f(x)-f(y)|<\varepsilon$. (Notice that you are supposed to prove that one δ works for every x and y.)

The function f is continuous on $[a, b]$, so for each point $p \in[a, b]$ there exists "a δ depending on $p "$, call it $\delta_{p}>0$, such that whenever

$$
\begin{equation*}
x \in[a, b] \text { with }|x-p|<\delta_{p} \Longrightarrow|f(x)-f(p)|<\frac{\varepsilon}{2} . \tag{3}
\end{equation*}
$$

Let $\mathcal{N}=\left\{\left.N_{\frac{\delta_{p}}{2}}(p) \right\rvert\, p \in[a, b]\right\}$. We see that \mathcal{N} is an open cover of the compact set $[a, b]$. Thus, there exists a finite set of points p_{1}, \ldots, p_{ℓ} in $[a, b]$ so that $\left\{N_{\frac{\delta_{p_{1}}}{2}}\left(p_{1}\right), \ldots, N_{\frac{\delta_{p_{\ell}}}{2}}\left(p_{\ell}\right)\right\}$ covers $[a, b]$. Let $\delta=\min \left\{\frac{\delta_{p_{1}}}{2}, \ldots \frac{\delta_{p_{\ell}}}{2}\right\}$. The number δ is the minimum of a FINITE set of POSITIVE numbers, so $\delta>0$. I claim that this one δ works for ALL x and y. Suppose, x, y are in $[a, b]$ with $|x-y|<\delta$. The set $\left\{N_{\frac{\delta_{p_{1}}}{2}}\left(p_{1}\right), \ldots, N_{\frac{\delta_{p_{\ell}}}{2}}\left(p_{\ell}\right)\right\}$ covers $[a, b]$, so there is an index i, with $1 \leq i \leq \ell$ with $\left|x-p_{i}\right|<\frac{\delta_{p_{i}}}{2}$. It follows that

$$
\left|y-p_{i}\right|=\left|y-x+x-p_{i}\right| \leq|y-x|+\left|x-p_{i}\right| \leq \delta+\frac{\delta_{p_{i}}}{2} \leq \frac{\delta_{p_{i}}}{2}+\frac{\delta_{p_{i}}}{2}=\delta_{p_{i}}
$$

Use (3) twice at $p=p_{i}$ to see

$$
\begin{aligned}
|f(x)-f(y)|=\mid f(x)-f\left(p_{i}\right)+ & f\left(p_{i}\right)-f(y)\left|\leq\left|f(x)-f\left(p_{i}\right)\right|+\left|f\left(p_{i}\right)-f(y)\right|\right. \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

