
Math 554, Exam 3, Summer 2005, solution
Write your answers as legibly as you can on the blank sheets of paper provided.
Use only one side of each sheet. Be sure to number your pages. Put your solution
to problem 1 first, and then your solution to number 2, etc; although, by using
enough paper, you can do the problems in any order that suits you.

If I know your e-mail address, I will e-mail your grade to you. If I don’t already
know your e-mail address and you want me to know it, then send me an e-mail.

There are 6 problems. Problems 1 through 2 are worth 9 points each. Problems 3
through 6 are worth 8 points each. The exam is worth a total of 50 points.

If you would like, I will leave your graded exam outside my office door. You may
pick it up any time before the next class. If you are interested, be sure to tell
me.

I will post the solutions on my website shortly after the class is finished.

1. For each natural number n , let
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Prove that {sn} is a Cauchy sequence.

Let n < m . We see that
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∣

∣
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∣
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Observe that 1

`!
< 1

2`−1 because 2`−1 ≤ 1 · 2 · 3 · . . . · ` . It follows that
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∣

1

2n
+

1

2n+1
+ · · · + 1

2m−1

∣

∣

∣

∣
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If r is any real number other than 1 , and S = rn + rn+1 + · · ·+ rm−1 , then

S − rS = rn + rn+1 + · · · + rm−1 − (rn+1 + · · ·+ rm) = rn − rm;

hence,

S =
rn − rm

1 − r
.

We see that

|sm − sn| ≤
1

2n − 1

2m

1 − 1

2

= 2

(

1

2n
− 1
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)

≤ 2
1

2n
=

1

2n−1
.

(The inequality on the right used the fact that 0 < 1

2m < 1

2n .)

Given ε > 0 , pick n0 so large that 1

2n0−1 < ε . If n and m are any integers
greater than n0 , then min{n, m} > n0 , and

|sn − sm| ≤ 1

2min{m,n}−1
<

1

2n0−1
< ε.

The proof is complete.
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2. Let A be a set. For each a ∈ A , let Ua be an open subset of R .

(a) Does
⋃

a∈A

Ua have to be an open set? If yes, prove the statement?

If no, give a counterexample.

(b) Does
⋂

a∈A

Ua have to be an open set? If yes, prove the statement?

If no, give a counterexample.

The answer to (a) is YES. If p ∈ ⋃

a∈A

Ua , then p ∈ Ua0
for some a0 ∈ A ; hence,

there exists ε > 0 with Nε(p) ⊆ Ua0
. It follows that Nε(p) ⊆ ⋃

a∈A

Ua and
⋃

a∈A

Ua

is an open set.

The answer to (b) is NO. Let A = N . For each n ∈ N , let Un = (− 1

n
, 1

n
) . We see

that each Un is an open set; but that
∞
⋂

n=1

Un = {0} ; which is not an open set.

3. Define the sequence converges. Use complete sentences. Include
everything that is necessary, but nothing more.

The sequence of real numbers {an} converges to the real number p if for all
ε > 0 , there exists an integer n0 such that whenever n is an integer with n > n0 ,
then |an − p| < ε .

4. For each natural number n ∈ N , let Kn be a closed set of the form

(−∞, bn) for some bn ∈ R . Assume Kn ⊇ Kn+1 for all n . Does
∞
⋃

n=1

Kn

have to be non-empty? If yes, prove the statement? If no, give a
counterexample.

OOPS!. This problem is riddled with typos. The set Kn = (−∞, bn) is not a

closed set. However, in any event, if Kn ⊇ Kn+1 for all n , then
∞
⋃

n=1

Kn = K1

and the set K1 = (−∞, b1) is not empty; indeed, b1 − 1 ∈ K1 ; so the union
∞
⋃

n=1

Kn is also not empty because b1 − 1 ∈
∞
⋃

n=1

Kn . One should probably state

that
∞
⋃

n=1

Kn has to be non-empty; justify this statement; and then move on.

5. Consider the sequence {an} with a1 = 10 and, for all n ≥ 2 ,
an = 1

2
(an−1 + 7

an−1

) .

(a) Show that this sequence is bounded below by
√

7 .

(b) Show that the sequence is a decreasing sequence.
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We prove (a) by induction. We see that
√

7 < a1 . For n ≥ 2 , we assume that√
7 < an−1 . We prove

√
7 < an . Observe that

0 ≤ (an−1 −
√

7)2 = a2
n−1 − 2

√
7an−1 + 7.

It follows that
2
√

7an−1 ≤ a2
n−1 + 7.

Divide both sides by 2an−1 , which we know is positive (by induction), to see

√
7 <

1

2

(

an−1 +
7

an−1

)

= an.

Now we do (b). We saw in (a) that
√

7 < an−1 , whenever 2 ≤ n . The numbers√
7 and an−1 are positive; hence, it follows that 7 ≤ a2

n−1 . Divide both sides by
the positive number an−1 to see that

7

an−1

≤ an−1.

Add an−1 to both sides to see

an−1 +
7

an−1

≤ 2an−1.

Divide by 2 to get

an =
1

2

(

an−1 +
7

an−1

)

≤ an−1.

6. Consider the sequence {an} with a1 = 1

4
and, for all n ≥ 2 ,

an = 1

3
(1 − a3

n−1) .

(a) Show that 0 < an < 1

3
, for all n .

(b) Prove that {an} is a contractive sequence.

We prove (a) by induction. We see that 0 < a1 < 1

3
. Our induction hypothesis

is that 0 < an−1 < 1

3
. We prove 0 < an < 1

3
. The induction hypothesis ensures

that 0 < a3
n−1 < 1

27
; hence, 1 − 1

27
< 1 − a3

n−1 < 1 ; so, 0 < 1 − a3
n−1 < 1 . It

follows that 0 < 1

3
(1 − a3

n−1) < 1

3
. We have established that 0 < an < 1

3
.

For (b), we compare |an+1 − an| and |an − an−1| . We see that

|an+1−an| =
∣

∣

1

3
(1 − a3

n) − 1

3
(1 − a3

n−1)
∣

∣ = 1

3

∣

∣(1 − a3
n) − (1 − a3

n−1)
∣

∣ = 1

3
|a3

n−1−a3
n|.
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We know how to factor the difference of perfect cubes. (Do a long division, if
necessary.)

|an+1 − an| = 1

3

∣

∣(an−1 − an)(a2
n−1 + an−1an + a2

n)
∣

∣

= 1

3
|an−1 − an||a2

n−1 + an−1an + a2
n|.

Use the triangle inequality to see

|an+1 − an| ≤ 1

3
|an−1 − an|(|an−1|2 + |an−1||an| + |an|2|).

Use part (a) to see

|an+1 − an| ≤ 1

3
|an−1 − an|(| 1

32 + 1

3

1

3
+ 1

32 |) = 1

3
|an−1 − an|( 3

9
).

We have shown that
|an+1 − an| ≤ 1

9
|an−1 − an|.

We have shown that {an} is a contractive sequence.


