Math 554, Exam 3, Summer 2005, solution

Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc; although, by using enough paper, you can do the problems in any order that suits you.
If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail.

There are 6 problems. Problems 1 through 2 are worth 9 points each. Problems 3 through 6 are worth 8 points each. The exam is worth a total of 50 points.

If you would like, I will leave your graded exam outside my office door. You may pick it up any time before the next class. If you are interested, be sure to tell me.

I will post the solutions on my website shortly after the class is finished.

1. For each natural number n, let

$$
s_{n}=1+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!} .
$$

Prove that $\left\{s_{n}\right\}$ is a Cauchy sequence.
Let $n<m$. We see that

$$
\left|s_{m}-s_{n}\right|=\left|\frac{1}{(n+1)!}+\frac{1}{(n+2)!}+\cdots+\frac{1}{m!}\right| .
$$

Observe that $\frac{1}{\ell!}<\frac{1}{2^{\ell-1}}$ because $2^{\ell-1} \leq 1 \cdot 2 \cdot 3 \cdot \ldots \cdot \ell$. It follows that

$$
\left|s_{m}-s_{n}\right| \leq\left|\frac{1}{2^{n}}+\frac{1}{2^{n+1}}+\cdots+\frac{1}{2^{m-1}}\right| .
$$

If r is any real number other than 1 , and $S=r^{n}+r^{n+1}+\cdots+r^{m-1}$, then

$$
S-r S=r^{n}+r^{n+1}+\cdots+r^{m-1}-\left(r^{n+1}+\cdots+r^{m}\right)=r^{n}-r^{m}
$$

hence,

$$
S=\frac{r^{n}-r^{m}}{1-r}
$$

We see that

$$
\left|s_{m}-s_{n}\right| \leq \frac{\frac{1}{2^{n}}-\frac{1}{2^{m}}}{1-\frac{1}{2}}=2\left(\frac{1}{2^{n}}-\frac{1}{2^{m}}\right) \leq 2 \frac{1}{2^{n}}=\frac{1}{2^{n-1}} .
$$

(The inequality on the right used the fact that $0<\frac{1}{2^{m}}<\frac{1}{2^{n}}$.)
Given $\varepsilon>0$, pick n_{0} so large that $\frac{1}{2^{n_{0}-1}}<\varepsilon$. If n and m are any integers greater than n_{0}, then $\min \{n, m\}>n_{0}$, and

$$
\left|s_{n}-s_{m}\right| \leq \frac{1}{2^{\min \{m, n\}-1}}<\frac{1}{2^{n_{0}-1}}<\varepsilon .
$$

The proof is complete.
2. Let A be a set. For each $a \in A$, let U_{a} be an open subset of \mathbb{R}.
(a) Does $\bigcup_{a \in A} U_{a}$ have to be an open set? If yes, prove the statement? If no, give a counterexample.
(b) Does $\bigcap_{a \in A} U_{a}$ have to be an open set? If yes, prove the statement? If no, give a counterexample.

The answer to (a) is YES. If $p \in \bigcup_{a \in A} U_{a}$, then $p \in U_{a_{0}}$ for some $a_{0} \in A$; hence, there exists $\varepsilon>0$ with $N_{\varepsilon}(p) \subseteq U_{a_{0}}$. It follows that $N_{\varepsilon}(p) \subseteq \bigcup_{a \in A} U_{a}$ and $\bigcup_{a \in A} U_{a}$ is an open set.

The answer to (b) is NO. Let $A=\mathbb{N}$. For each $n \in \mathbb{N}$, let $U_{n}=\left(-\frac{1}{n}, \frac{1}{n}\right)$. We see that each U_{n} is an open set; but that $\bigcap_{n=1}^{\infty} U_{n}=\{0\}$; which is not an open set.
3. Define the sequence converges. Use complete sentences. Include everything that is necessary, but nothing more.

The sequence of real numbers $\left\{a_{n}\right\}$ converges to the real number p if for all $\varepsilon>0$, there exists an integer n_{0} such that whenever n is an integer with $n>n_{0}$, then $\left|a_{n}-p\right|<\varepsilon$.
4. For each natural number $n \in \mathbb{N}$, let K_{n} be a closed set of the form $\left(-\infty, b_{n}\right)$ for some $b_{n} \in \mathbb{R}$. Assume $K_{n} \supseteq K_{n+1}$ for all n. Does $\bigcup_{n=1}^{\infty} K_{n}$ have to be non-empty? If yes, prove the statement? If no, give a counterexample.

OOPS!. This problem is riddled with typos. The set $K_{n}=\left(-\infty, b_{n}\right)$ is not a closed set. However, in any event, if $K_{n} \supseteq K_{n+1}$ for all n, then $\bigcup_{n=1}^{\infty} K_{n}=K_{1}$ and the set $K_{1}=\left(-\infty, b_{1}\right)$ is not empty; indeed, $b_{1}-1 \in K_{1}$; so the union $\bigcup_{n=1}^{\infty} K_{n}$ is also not empty because $b_{1}-1 \in \bigcup_{n=1}^{\infty} K_{n}$. One should probably state that $\bigcup_{n=1}^{\infty} K_{n}$ has to be non-empty; justify this statement; and then move on.
5. Consider the sequence $\left\{a_{n}\right\}$ with $a_{1}=10$ and, for all $n \geq 2$, $a_{n}=\frac{1}{2}\left(a_{n-1}+\frac{7}{a_{n-1}}\right)$.
(a) Show that this sequence is bounded below by $\sqrt{7}$.
(b) Show that the sequence is a decreasing sequence.

We prove (a) by induction. We see that $\sqrt{7}<a_{1}$. For $n \geq 2$, we assume that $\sqrt{7}<a_{n-1}$. We prove $\sqrt{7}<a_{n}$. Observe that

$$
0 \leq\left(a_{n-1}-\sqrt{7}\right)^{2}=a_{n-1}^{2}-2 \sqrt{7} a_{n-1}+7
$$

It follows that

$$
2 \sqrt{7} a_{n-1} \leq a_{n-1}^{2}+7
$$

Divide both sides by $2 a_{n-1}$, which we know is positive (by induction), to see

$$
\sqrt{7}<\frac{1}{2}\left(a_{n-1}+\frac{7}{a_{n-1}}\right)=a_{n} .
$$

Now we do (b). We saw in (a) that $\sqrt{7}<a_{n-1}$, whenever $2 \leq n$. The numbers $\sqrt{7}$ and a_{n-1} are positive; hence, it follows that $7 \leq a_{n-1}^{2}$. Divide both sides by the positive number a_{n-1} to see that

$$
\frac{7}{a_{n-1}} \leq a_{n-1}
$$

Add a_{n-1} to both sides to see

$$
a_{n-1}+\frac{7}{a_{n-1}} \leq 2 a_{n-1}
$$

Divide by 2 to get

$$
a_{n}=\frac{1}{2}\left(a_{n-1}+\frac{7}{a_{n-1}}\right) \leq a_{n-1}
$$

6. Consider the sequence $\left\{a_{n}\right\}$ with $a_{1}=\frac{1}{4}$ and, for all $n \geq 2$, $a_{n}=\frac{1}{3}\left(1-a_{n-1}^{3}\right)$.
(a) Show that $0<a_{n}<\frac{1}{3}$, for all n.
(b) Prove that $\left\{a_{n}\right\}$ is a contractive sequence.

We prove (a) by induction. We see that $0<a_{1}<\frac{1}{3}$. Our induction hypothesis is that $0<a_{n-1}<\frac{1}{3}$. We prove $0<a_{n}<\frac{1}{3}$. The induction hypothesis ensures that $0<a_{n-1}^{3}<\frac{1}{27}$; hence, $1-\frac{1}{27}<1-a_{n-1}^{3}<1$; so, $0<1-a_{n-1}^{3}<1$. It follows that $0<\frac{1}{3}\left(1-a_{n-1}^{3}\right)<\frac{1}{3}$. We have established that $0<a_{n}<\frac{1}{3}$.
For (b), we compare $\left|a_{n+1}-a_{n}\right|$ and $\left|a_{n}-a_{n-1}\right|$. We see that
$\left|a_{n+1}-a_{n}\right|=\left|\frac{1}{3}\left(1-a_{n}^{3}\right)-\frac{1}{3}\left(1-a_{n-1}^{3}\right)\right|=\frac{1}{3}\left|\left(1-a_{n}^{3}\right)-\left(1-a_{n-1}^{3}\right)\right|=\frac{1}{3}\left|a_{n-1}^{3}-a_{n}^{3}\right|$.

We know how to factor the difference of perfect cubes. (Do a long division, if necessary.)

$$
\begin{gathered}
\left|a_{n+1}-a_{n}\right|=\frac{1}{3}\left|\left(a_{n-1}-a_{n}\right)\left(a_{n-1}^{2}+a_{n-1} a_{n}+a_{n}^{2}\right)\right| \\
=\frac{1}{3}\left|a_{n-1}-a_{n}\right|\left|a_{n-1}^{2}+a_{n-1} a_{n}+a_{n}^{2}\right| .
\end{gathered}
$$

Use the triangle inequality to see

$$
\left|a_{n+1}-a_{n}\right| \leq \frac{1}{3}\left|a_{n-1}-a_{n}\right|\left(\left|a_{n-1}\right|^{2}+\left|a_{n-1}\right|\left|a_{n}\right|+\left|a_{n}\right|^{2} \mid\right) .
$$

Use part (a) to see

$$
\left|a_{n+1}-a_{n}\right| \leq \frac{1}{3}\left|a_{n-1}-a_{n}\right|\left(\left|\frac{1}{3^{2}}+\frac{1}{3} \frac{1}{3}+\frac{1}{3^{2}}\right|\right)=\frac{1}{3}\left|a_{n-1}-a_{n}\right|\left(\frac{3}{9}\right) .
$$

We have shown that

$$
\left|a_{n+1}-a_{n}\right| \leq \frac{1}{9}\left|a_{n-1}-a_{n}\right|
$$

We have shown that $\left\{a_{n}\right\}$ is a contractive sequence.

