Math 554, Exam 1, Summer 2005 Solutions

Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc; although, by using enough paper, you can do the problems in any order that suits you.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail.

There are 7 problems. Problems 1 through 5 are worth 5 points each. Problem 6 is worth 10 points. Problem 7 is worth 15 points. The exam is worth a total of 50 points.

If you would like, I will leave your graded exam outside my office door. You may pick it up any time before the next class. If you are interested, be sure to tell me.

I will post the solutions on my website shortly after the class is finished.

1. Define upper bound. Use complete sentences. Include everything that is necessary, but nothing more.

The real number u is an upper bound of the non-empty set of real numbers E if $e \leq u$ for all $e \in E$.
2. Define supremum. Use complete sentences. Include everything that is necessary, but nothing more.

The real number α is the supremum of the non-empty set of real numbers E if α is an upper bound of E and if d is a real number with $d<\alpha$, then d is not an upper bound of E.
3. State the least upper bound axiom of the real numbers. Use complete sentences. Include everything that is necessary, but nothing more.

Every non-empty set of real numbers which is bounded from above has a supremum.
4. State the Archimedian property of the real numbers. Use complete sentences. Include everything that is necessary, but nothing more.

If x and y are real numbers with $x>0$, then there exists a positive integer n with $y<n x$.

5. Let S be the following set of order pairs:

$$
S=\{(a, b) \mid a, b \in \mathbb{N}\}
$$

Is S a countable set? If yes, exhibit a one-to-one and onto function $f: \mathbb{N} \rightarrow S$. If no, why not?

YES. I will first draw S :

$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$	$(1,5)$	\ldots
$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$	$(2,5)$	\ldots
$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$	$(3,5)$	\ldots
$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$	$(4,5)$	\ldots
$(5,1)$	$(5,2)$	$(5,3)$	$(5,4)$	$(5,5)$	\ldots
\vdots	\vdots	\vdots	\vdots	\vdots	

I count the set S by counting down the diagonals as indicated:

$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$	$(1,5)$	\ldots
1	2	4	7	11	
$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$	$(2,5)$	\ldots
3	5	8	12		
$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$	$(3,5)$	\ldots
6	9	13			
$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$	$(4,5)$	\ldots
10	14				
$(5,1)$	$(5,2)$	$(5,3)$	$(5,4)$	$(5,5)$	\ldots
15					
	\vdots	\vdots	\vdots	\vdots	
\vdots	\vdots				

6. Suppose $f: X \rightarrow Y$ and $g: Y \rightarrow X$ are functions and that $g \circ f$ is the identity function on X. (In other words, $g(f(x))=x$ for all $x \in X$.)
(a) Does the function f have to be one-to-one? If yes, prove it. If no, give a counter example.

YES. Suppose x_{1} and x_{2} are in X with $f\left(x_{1}\right)=f\left(x_{2}\right)$. Apply g to both sides to see that $g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right)$. The hypotheses tells us that $g\left(f\left(x_{1}\right)\right)=x_{1}$ and $g\left(f\left(x_{2}\right)\right)=x_{2}$. We have shown that

$$
f\left(x_{1}\right)=f\left(x_{2}\right) \Longrightarrow x_{1}=x_{2} .
$$

(b) Does the function f have to be onto? If yes, prove it. If no, give a counter example.

NO. Let $X=\{1\}, Y=\{1,2\}, f(1)=1, g(1)=1$, and $g(2)=1$. We see that $g(f(1))=g(1)=1$ and 1 is the only element in X; therefore, $g(f(x))=x$ for all $x \in X$. We also see that Y is not onto.
7. Suppose that A and B are non-empty sets of real numbers with $12 \leq a \leq 20$ for all $a \in A$ and $2 \leq b \leq 4$ for all $b \in B$. Let

$$
C=\left\{\left.\frac{a}{b} \right\rvert\, a \in A \text { and } b \in B\right\} .
$$

(a) What is an upper bound for C ? Prove your answer.

Let c be an element of C. So $c=\frac{a}{b}$ for some $a \in A$ and $b \in B$. We are told that $a \leq 20$ and $2 \leq b$. It follows that $\frac{1}{b} \leq \frac{1}{2}$. All of the numbers involved are positive. We conclude that $c=a\left(\frac{1}{b}\right) \leq 20\left(\frac{1}{2}\right)=10$. We have shown that 10 is an upper bound for C.
(b) Give a formula for $\sup C$ in terms of $\sup A, \sup B, \inf A$, and $\inf B$.

$$
\sup C=\frac{\sup A}{\inf B}
$$

(c) Prove your answer to (b).

Let $\alpha=\sup A, \beta=\inf B$ and $\gamma=\sup C$.
We prove that $\gamma \leq \frac{\alpha}{\beta}$: Let c be an element of C. So $c=\frac{a}{b}$ for some $a \in A$ and $b \in B$. We know that $a \leq \sup A=\alpha$ and $\beta=\inf B \leq b$. It follows that $\frac{1}{b} \leq \frac{1}{\beta}$. All of the numbers involved are positive. We conclude that $c=a\left(\frac{1}{b}\right) \leq \alpha\left(\frac{1}{\beta}\right)$. We have shown that $\frac{\alpha}{\beta}$ is an upper bound for C; and therefore, $\gamma=\sup C \leq \frac{\alpha}{\beta}$.
We prove that $\gamma<\frac{\alpha}{\beta}$ is not possible. Suppose $\gamma<\frac{\alpha}{\beta}$. All of the numbers involved are positive; so, $\beta \gamma<\alpha=\sup A$. It follows that there is an element $a \in A$ with $\beta \gamma<a$. Divide by a positive number to see that $\inf B=\beta<\frac{a}{\gamma}$. It follows that there is an element $b \in B$ with $b<\frac{a}{\gamma}$. Multiply by positive numbers to see $\gamma<\frac{a}{b}$. Thus, there is an element of C which is larger than $\sup C$. This is a contradiction; hence, our supposition $\gamma<\frac{\alpha}{\beta}$ is incorrect.

We showed that $\gamma \leq \frac{\alpha}{\beta}$. We also showd that γ is NOT less than $\frac{\alpha}{\beta}$. The only remaining possibility is that $\gamma=\frac{\alpha}{\beta}$.

