Math 554, Exam 1, Summer 2005 Solutions

Write your answers as legibly as you can on the blank sheets of paper provided. Use only **one side** of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc; although, by using enough paper, you can do the problems in any order that suits you.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then **send me an e-mail**.

There are 7 problems. Problems 1 through 5 are worth 5 points each. Problem 6 is worth 10 points. Problem 7 is worth 15 points. The exam is worth a total of 50 points.

If you would like, I will leave your graded exam outside my office door. You may pick it up any time before the next class. If you are interested, be sure to tell me.

I will post the solutions on my website shortly after the class is finished.

1. Define *upper bound*. Use complete sentences. Include everything that is necessary, but nothing more.

The real number u is an $upper\ bound$ of the non-empty set of real numbers E if $e \leq u$ for all $e \in E$.

2. Define *supremum*. Use complete sentences. Include everything that is necessary, but nothing more.

The real number α is the *supremum* of the non-empty set of real numbers E if α is an upper bound of E and if d is a real number with $d < \alpha$, then d is not an upper bound of E.

3. State the least upper bound axiom of the real numbers. Use complete sentences. Include everything that is necessary, but nothing more.

Every non-empty set of real numbers which is bounded from above has a supremum.

4. State the Archimedian property of the real numbers. Use complete sentences. Include everything that is necessary, but nothing more.

If x and y are real numbers with x > 0, then there exists a positive integer n with y < nx.

5. Let S be the following set of order pairs:

$$S = \{(a, b) \mid a, b \in \mathbb{N}\}.$$

Is S a countable set? If yes, exhibit a one-to-one and onto function $f\colon\mathbb{N}\to S$. If no, why not?

YES. I will first draw S:

(1, 1)	(1, 2)	(1,3)	(1, 4)	(1, 5)	
(2, 1)	(2, 2)	(2,3)	(2, 4)	(2, 5)	
(3, 1)	(3, 2)	(3,3)	(3, 4)	(3,5)	
(4, 1)	(4, 2)	(4, 3)	(4, 4)	(4, 5)	
(5,1)	(5, 2)	(5,3)	(5, 4)	(5, 5)	•••
:	:	:	:	:	
•	•	•	•	•	

I count the set S by counting down the diagonals as indicated:

(1,1) 1	(1,2) 2	(1,3) 4	(1,4) 7	$(1,5) \\ 11$	
$^{(2,1)}_{3}$	(2,2) 5	(2,3) 8	(2,4) 12	(2,5)	
$\substack{(3,1)\\6}$	(3,2) 9	$(3,3) \\ 13$	(3,4)	(3,5)	
$^{(4,1)}_{10}$	(4,2) 14	(4,3)	(4,4)	(4,5)	
$(5,1) \\ 15$	(5,2)	(5,3)	(5,4)	(5,5)	
:	:	:	:	:	

6. Suppose $f: X \to Y$ and $g: Y \to X$ are functions and that $g \circ f$ is the identity function on X. (In other words, g(f(x)) = x for all $x \in X$.) (a) Does the function f have to be one-to-one? If yes, prove it. If no,

give a counter example.

YES. Suppose x_1 and x_2 are in X with $f(x_1) = f(x_2)$. Apply g to both sides to see that $g(f(x_1)) = g(f(x_2))$. The hypotheses tells us that $g(f(x_1)) = x_1$ and $g(f(x_2)) = x_2$. We have shown that

$$f(x_1) = f(x_2) \implies x_1 = x_2.$$

(b) Does the function f have to be onto? If yes, prove it. If no, give a counter example.

NO. Let $X = \{1\}$, $Y = \{1, 2\}$, f(1) = 1, g(1) = 1, and g(2) = 1. We see that g(f(1)) = g(1) = 1 and 1 is the only element in X; therefore, g(f(x)) = x for all $x \in X$. We also see that Y is not onto.

7. Suppose that A and B are non-empty sets of real numbers with $12 \le a \le 20$ for all $a \in A$ and $2 \le b \le 4$ for all $b \in B$. Let

$$C = \{ \frac{a}{b} \mid a \in A \text{ and } b \in B \}.$$

(a) What is an upper bound for C? Prove your answer.

Let c be an element of C. So $c = \frac{a}{b}$ for some $a \in A$ and $b \in B$. We are told that $a \leq 20$ and $2 \leq b$. It follows that $\frac{1}{b} \leq \frac{1}{2}$. All of the numbers involved are positive. We conclude that $c = a(\frac{1}{b}) \leq 20(\frac{1}{2}) = 10$. We have shown that 10 is an upper bound for C.

(b) Give a formula for $\sup C$ in terms of $\sup A$, $\sup B$, $\inf A$, and $\inf B$.

$$\sup C = \frac{\sup A}{\inf B}$$

(c) **Prove your answer to (b).**

Let $\alpha = \sup A$, $\beta = \inf B$ and $\gamma = \sup C$.

We prove that $\gamma \leq \frac{\alpha}{\beta}$: Let c be an element of C. So $c = \frac{a}{b}$ for some $a \in A$ and $b \in B$. We know that $a \leq \sup A = \alpha$ and $\beta = \inf B \leq b$. It follows that $\frac{1}{b} \leq \frac{1}{\beta}$. All of the numbers involved are positive. We conclude that $c = a(\frac{1}{b}) \leq \alpha(\frac{1}{\beta})$. We have shown that $\frac{\alpha}{\beta}$ is an upper bound for C; and therefore, $\gamma = \sup C \leq \frac{\alpha}{\beta}$.

We prove that $\gamma < \frac{\alpha}{\beta}$ is not possible. Suppose $\gamma < \frac{\alpha}{\beta}$. All of the numbers involved are positive; so, $\beta\gamma < \alpha = \sup A$. It follows that there is an element $a \in A$ with $\beta\gamma < a$. Divide by a positive number to see that $\inf B = \beta < \frac{\alpha}{\gamma}$. It follows that there is an element $b \in B$ with $b < \frac{\alpha}{\gamma}$. Multiply by positive numbers to see $\gamma < \frac{a}{b}$. Thus, there is an element of C which is larger than $\sup C$. This is a contradiction; hence, our supposition $\gamma < \frac{\alpha}{\beta}$ is incorrect.

We showed that $\gamma \leq \frac{\alpha}{\beta}$. We also showd that γ is NOT less than $\frac{\alpha}{\beta}$. The only remaining possibility is that $\gamma = \frac{\alpha}{\beta}$.