Math 554, Exam 4, Summer 2004
Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Take enough space for each problem. Turn in your solutions in the order: problem 1, problem 2, ... ; although, by using enough paper, you can do the problems in any order that suits you.

There are 8 problems. Problems 1 and 2 are worth 7 points each. Problems 3 through 8 are worth 6 points each. The exam is worth a total of 50 points.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail. I will leave your exam outside my office door by noon tomorrow, you may pick it up any time between then and the next class.

I will post the solutions on my website shortly after the class is finished.

1. For each natural number n, let C_{n} be a closed set in \mathbb{R}. Is the intersection $\bigcap_{n=1}^{\infty} C_{n}$ always a closed set? If yes, prove the result. If no, give a counterexample.
YES! We show that the complement $\mathbb{R} \backslash \bigcap_{n=1}^{\infty} C_{n}$ is an open set. It is well-known (and easy to check) that

$$
\mathbb{R} \backslash \bigcap_{n=1}^{\infty} C_{n}=\bigcup_{n=1}^{\infty}\left(\mathbb{R} \backslash C_{n}\right)
$$

Each set C_{n} is closed; hence, each $\mathbb{R} \backslash C_{n}$ is an open set. The union of open sets is open as we saw in problem 4 on Exam 3:

For each natural number n, let U_{n} be an open set in \mathbb{R}. Is the union $\bigcup_{n=1}^{\infty} U_{n}$ always an open set? If yes, prove the result. If no, give a counterexample.

YES! If $p \in \bigcup_{n=1}^{\infty} U_{n}$, then $p \in U_{n_{1}}$ for some fixed n_{1}; hence, there exists ε such that $N_{\varepsilon}(p) \subseteq U_{n_{1}}$. It follows that $N_{\varepsilon}(p) \subseteq \bigcup_{n=1}^{\infty} U_{n}$; and therefore, $\bigcup_{n=1}^{\infty} U_{n}$ is an open subset of \mathbb{R}.
2. For each natural number n, let C_{n} be a closed set in \mathbb{R}. Is the union $\bigcup_{n=1}^{\infty} C_{n}$ always a closed set? If yes, prove the result. If no, give a counterexample.

NO! For each natural number n, let C_{n} be the closed interval $\left[\frac{1}{n}, 2-\frac{1}{n}\right]$. It is easy to see that $\bigcup_{n=1}^{\infty} C_{n}=(0,2)$. It is clear that the open interval $(0,2)$ is not a closed set because this set does not contain the limit point 0 .

3. Define open set. Use complete sentences.

The subset E of \mathbb{R} is an open set if for all points $p \in E$, there exists an $\varepsilon>0$ with $N_{\varepsilon}(p) \subseteq E$.

4. Define compact. Use complete sentences.

The subset K of \mathbb{R} is compact if every open cover of K admits a finite subcover.

5. State the Heine-Borel Theorem.

The closed interval $[a, b]$ is compact.

6. Prove the Heine-Borel Theorem.

Let $\mathcal{U}=\left\{U_{\alpha} \mid \alpha \in A\right\}$ be an open cover of $[a, b]$. Let

$$
E=\{r \in[a, b] \mid[a, r] \text { can be covered by a finite subset of } \mathcal{U}\} .
$$

The set E is bounded (because every element of E is between a and b) and the set E is non-empty because $a \in E$. The least upper bound axiom assures us that $c=\sup E$ exists.

We first claim that $c \in E$. The number $c \in[a, b]$; and $[a, b]$ is covered by \mathcal{U}; so there is a set $U_{\alpha_{0}}$ from \mathcal{U} (for some $\alpha_{0} \in A$) with $c \in U_{\alpha_{0}}$. The set $U_{\alpha_{0}}$ is open; so some neighborhood, $N_{\varepsilon}(c)$, of c, is contained in $U_{\alpha_{0}}$, for some $\varepsilon>0$. The number c is the supremum of E, so there is an element $r \in E \cap N_{\varepsilon}(c)$. The interval $[a, r]$ may be covered by a finite subset set $U_{\alpha_{1}}, \ldots, U_{\alpha_{n}}$ of \mathcal{U}, for some $\alpha_{1}, \ldots, \alpha_{n}$ from A. So, $U_{\alpha_{0}}, U_{\alpha_{1}}, \ldots, U_{\alpha_{n}}$ covers $[a, c]$; and therefore, $c \in E$.

Now, we claim that $c=b$. (Once we establish this claim, then the proof is complete.) It is clear that $c \leq b$ (because b is an upper bound for E). We complete the proof of this claim by contradiction. Suppose

$$
\begin{equation*}
c<b . \tag{*}
\end{equation*}
$$

We know from the first claim that there exists a finite subset $U_{\beta_{1}}, \ldots, U_{\beta_{m}}$ of \mathcal{U}, (for some $\beta_{1}, \ldots, \beta_{m}$ in A), which covers $[a, c]$. In particular, c is in $U_{\beta_{i}}$ for some i, with $1 \leq i \leq m$. The set $U_{\beta_{i}}$ is open; so some neighborhood $N_{\varepsilon_{1}}(c)$ of c, for some $\varepsilon_{1}>0$, is contained in $U_{\beta_{i}}$. There are numbers in $N_{\varepsilon_{1}}(c)$ which fall between c and b. For the sake of concreteness, there is a number d with $c<d<c+\varepsilon_{1}$ and $d<b$. It is clear that $U_{\beta_{1}}, \ldots, U_{\beta_{m}}$ covers $[a, d]$. Thus, $d \in E$ and $\sup E=c<d$. This is impossible. Our supposition is false; c is not less than b. The only remaining option is that c is equal to b.
7. Let $f(x)=\left\{\begin{array}{ll}2 x-1 & \text { if } x \leq 2 \\ 2 x+1 & \text { if } 2<x .\end{array}\right.$ What is $\lim _{x \rightarrow 2} f(x)$? Prove your answer.

This limit does not exist. We proved that if $\lim _{x \rightarrow 2} f(x)=L$ and $\left\{x_{n}\right\}$ is a sequence of real numbers, which never equals 2 , but which converges to 2 , then
the sequence $\left\{f\left(x_{n}\right)\right\}$ converges to L. The sequence $\left\{2-\frac{1}{n}\right\}$ converges to 2 and never equals 2 and the sequence

$$
\left\{f\left(2-\frac{1}{n}\right)\right\}=\left\{2\left(2-\frac{1}{n}\right)-1\right\}=\left\{3-\frac{2}{n}\right\} .
$$

This sequence converges to 3 . On the other hand, The sequence $\left\{2+\frac{1}{n}\right\}$ converges to 2 and never equals 2 and the sequence

$$
\left\{f\left(2+\frac{1}{n}\right)\right\}=\left\{2\left(2+\frac{1}{n}\right)+1\right\}=\left\{5+\frac{2}{n}\right\} .
$$

This sequence converges to 5 . If $\lim _{x \rightarrow 2} f(x)$ existed, this this limit would have to equal 3. It would also have to equal 5 . Well, it is not possible for some number to equal both 3 and 5 . We conclude that $\lim _{x \rightarrow 2} f(x)$ does not exist.
8. Let $f(x)=\left\{\begin{array}{ll}2 x-1 & \text { if } x \leq 2 \\ 2 x+1 & \text { if } 2<x .\end{array}\right.$ What is $\lim _{x \rightarrow 3} f(x)$? Prove your answer.

The limit is 7 . Let $\varepsilon>0$ be fixed, but arbitrary. Let $\delta=\min \left\{1, \frac{\varepsilon}{2}\right\}$. If $|x-3|<\delta$, then $2<x$ and

$$
|f(x)-7|=|2 x+1-7|=2|x-3|<2 \frac{\varepsilon}{2}=\varepsilon
$$

