Math 554, Exam 4, Summer 2004

Write your answers as legibly as you can on the blank sheets of paper provided. Use only **one side** of each sheet. Take enough space for each problem. Turn in your solutions in the order: problem 1, problem 2, \ldots ; although, by using enough paper, you can do the problems in any order that suits you.

There are 8 problems. Problems 1 and 2 are worth 7 points each. Problems 3 through 8 are worth 6 points each. The exam is worth a total of 50 points.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then **send me an e-mail**.

I will leave your exam outside my office door by noon tomorrow, you may pick it up any time between then and the next class.

I will post the solutions on my website shortly after the class is finished.

1. For each natural number n, let C_n be a closed set in \mathbb{R} . Is the intersection $\bigcap_{n=1}^{\infty} C_n$ always a closed set? If yes, prove the result. If no, give a counterexample.

YES! We show that the complement $\mathbb{R} \setminus \bigcap_{n=1}^{\infty} C_n$ is an open set. It is well-known (and easy to check) that

$$\mathbb{R} \setminus \bigcap_{n=1}^{\infty} C_n = \bigcup_{n=1}^{\infty} (\mathbb{R} \setminus C_n).$$

Each set C_n is closed; hence, each $\mathbb{R} \setminus C_n$ is an open set. The union of open sets is open as we saw in problem 4 on Exam 3:

For each natural number n, let U_n be an open set in \mathbb{R} . Is the union $\bigcup_{n=1}^{\infty} U_n$ always an open set? If yes, prove the result. If no, give a counterexample.

YES! If $p \in \bigcup_{n=1}^{\infty} U_n$, then $p \in U_{n_1}$ for some fixed n_1 ; hence, there exists ε such that $N_{\varepsilon}(p) \subseteq U_{n_1}$. It follows that $N_{\varepsilon}(p) \subseteq \bigcup_{n=1}^{\infty} U_n$; and therefore, $\bigcup_{n=1}^{\infty} U_n$ is an open subset of \mathbb{R} .

2. For each natural number n, let C_n be a closed set in \mathbb{R} . Is the union $\bigcup_{n=1}^{\infty} C_n$ always a closed set? If yes, prove the result. If no, give a counterexample.

NO! For each natural number n, let C_n be the closed interval $\left[\frac{1}{n}, 2 - \frac{1}{n}\right]$. It is easy to see that $\bigcup_{n=1}^{\infty} C_n = (0, 2)$. It is clear that the open interval (0, 2) is not a closed set because this set does not contain the limit point 0.

3. Define open set. Use complete sentences.

The subset E of \mathbb{R} is an *open set* if for all points $p \in E$, there exists an $\varepsilon > 0$ with $N_{\varepsilon}(p) \subseteq E$.

4. Define *compact*. Use complete sentences.

The subset K of \mathbb{R} is *compact* if every open cover of K admits a finite subcover.

5. State the Heine-Borel Theorem.

The closed interval [a, b] is compact.

6. Prove the Heine-Borel Theorem.

Let $\mathcal{U} = \{U_{\alpha} \mid \alpha \in A\}$ be an open cover of [a, b]. Let

 $E = \{r \in [a, b] \mid [a, r] \text{ can be covered by a finite subset of } \mathcal{U} \}.$

The set E is bounded (because every element of E is between a and b) and the set E is non-empty because $a \in E$. The least upper bound axiom assures us that $c = \sup E$ exists.

We first claim that $c \in E$. The number $c \in [a, b]$; and [a, b] is covered by \mathcal{U} ; so there is a set U_{α_0} from \mathcal{U} (for some $\alpha_0 \in A$) with $c \in U_{\alpha_0}$. The set U_{α_0} is open; so some neighborhood, $N_{\varepsilon}(c)$, of c, is contained in U_{α_0} , for some $\varepsilon > 0$. The number c is the supremum of E, so there is an element $r \in E \cap N_{\varepsilon}(c)$. The interval [a, r] may be covered by a finite subset set $U_{\alpha_1}, \ldots, U_{\alpha_n}$ of \mathcal{U} , for some $\alpha_1, \ldots, \alpha_n$ from A. So, $U_{\alpha_0}, U_{\alpha_1}, \ldots, U_{\alpha_n}$ covers [a, c]; and therefore, $c \in E$.

Now, we claim that c = b. (Once we establish this claim, then the proof is complete.) It is clear that $c \leq b$ (because b is an upper bound for E). We complete the proof of this claim by contradiction. Suppose

$$(*) c < b.$$

We know from the first claim that there exists a finite subset $U_{\beta_1}, \ldots, U_{\beta_m}$ of \mathcal{U} , (for some β_1, \ldots, β_m in A), which covers [a, c]. In particular, c is in U_{β_i} for some i, with $1 \leq i \leq m$. The set U_{β_i} is open; so some neighborhood $N_{\varepsilon_1}(c)$ of c, for some $\varepsilon_1 > 0$, is contained in U_{β_i} . There are numbers in $N_{\varepsilon_1}(c)$ which fall between c and b. For the sake of concreteness, there is a number d with $c < d < c + \varepsilon_1$ and d < b. It is clear that $U_{\beta_1}, \ldots, U_{\beta_m}$ covers [a, d]. Thus, $d \in E$ and $\sup E = c < d$. This is impossible. Our supposition is false; c is not less than b. The only remaining option is that c is equal to b.

7. Let
$$f(x) = \begin{cases} 2x - 1 & \text{if } x \leq 2\\ 2x + 1 & \text{if } 2 < x. \end{cases}$$
 What is $\lim_{x \to 2} f(x)$? Prove your answer.

This limit does not exist. We proved that if $\lim_{x\to 2} f(x) = L$ and $\{x_n\}$ is a sequence of real numbers, which never equals 2, but which converges to 2, then

the sequence $\{f(x_n)\}$ converges to L. The sequence $\{2-\frac{1}{n}\}$ converges to 2 and never equals 2 and the sequence

$$\{f(2-\frac{1}{n})\} = \{2(2-\frac{1}{n})-1\} = \{3-\frac{2}{n}\}.$$

This sequence converges to 3. On the other hand, The sequence $\{2+\frac{1}{n}\}$ converges to 2 and never equals 2 and the sequence

$$\{f(2+\frac{1}{n})\} = \{2(2+\frac{1}{n})+1\} = \{5+\frac{2}{n}\}.$$

This sequence converges to 5. If $\lim_{x\to 2} f(x)$ existed, this limit would have to equal 3. It would also have to equal 5. Well, it is not possible for some number to equal both 3 and 5. We conclude that $\lim_{x\to 2} f(x)$ does not exist.

8. Let $f(x) = \begin{cases} 2x - 1 & \text{if } x \leq 2\\ 2x + 1 & \text{if } 2 < x. \end{cases}$ What is $\lim_{x \to 3} f(x)$? Prove your answer.

The limit is 7. Let $\varepsilon > 0$ be fixed, but arbitrary. Let $\delta = \min\{1, \frac{\varepsilon}{2}\}$. If $|x-3| < \delta$, then 2 < x and

$$|f(x) - 7| = |2x + 1 - 7| = 2|x - 3| < 2\frac{\varepsilon}{2} = \varepsilon.$$