
Math 554, Exam 4, Summer 2004
Write your answers as legibly as you can on the blank sheets of paper provided.
Use only one side of each sheet. Take enough space for each problem. Turn in
your solutions in the order: problem 1, problem 2, . . . ; although, by using enough
paper, you can do the problems in any order that suits you.

There are 8 problems. Problems 1 and 2 are worth 7 points each. Problems 3
through 8 are worth 6 points each. The exam is worth a total of 50 points.

If I know your e-mail address, I will e-mail your grade to you. If I don’t already
know your e-mail address and you want me to know it, then send me an e-mail.

I will leave your exam outside my office door by noon tomorrow, you may pick it
up any time between then and the next class.

I will post the solutions on my website shortly after the class is finished.

1. For each natural number n , let Cn be a closed set in R . Is the

intersection
∞⋂

n=1
Cn always a closed set? If yes, prove the result. If no,

give a counterexample.

YES! We show that the complement R \
∞⋂

n=1
Cn is an open set. It is well-known

(and easy to check) that

R \
∞⋂

n=1

Cn =
∞⋃

n=1

(R \ Cn).

Each set Cn is closed; hence, each R \ Cn is an open set. The union of open sets
is open as we saw in problem 4 on Exam 3:

For each natural number n , let Un be an open set in R . Is the union
∞⋃

n=1
Un always an open set? If yes, prove the result. If no, give a

counterexample.

YES! If p ∈
∞⋃

n=1
Un , then p ∈ Un1 for some fixed n1 ; hence, there exists ε such

that Nε(p) ⊆ Un1 . It follows that Nε(p) ⊆
∞⋃

n=1
Un ; and therefore,

∞⋃
n=1

Un is an

open subset of R .

2. For each natural number n , let Cn be a closed set in R . Is the union
∞⋃

n=1
Cn always a closed set? If yes, prove the result. If no, give a

counterexample.

NO! For each natural number n , let Cn be the closed interval [ 1
n , 2− 1

n ] . It is

easy to see that
∞⋃

n=1
Cn = (0, 2) . It is clear that the open interval (0, 2) is not a

closed set because this set does not contain the limit point 0 .



2

3. Define open set. Use complete sentences.

The subset E of R is an open set if for all points p ∈ E , there exists an ε > 0
with Nε(p) ⊆ E .

4. Define compact. Use complete sentences.

The subset K of R is compact if every open cover of K admits a finite subcover.

5. State the Heine-Borel Theorem.

The closed interval [a, b] is compact.

6. Prove the Heine-Borel Theorem.

Let U = {Uα | α ∈ A} be an open cover of [a, b] . Let

E = {r ∈ [a, b] | [a, r] can be covered by a finite subset of U }.

The set E is bounded (because every element of E is between a and b ) and the
set E is non-empty because a ∈ E . The least upper bound axiom assures us that
c = sup E exists.

We first claim that c ∈ E . The number c ∈ [a, b] ; and [a, b] is covered by U ;
so there is a set Uα0 from U (for some α0 ∈ A ) with c ∈ Uα0 . The set Uα0 is
open; so some neighborhood, Nε(c) , of c , is contained in Uα0 , for some ε > 0 .
The number c is the supremum of E , so there is an element r ∈ E ∩Nε(c) . The
interval [a, r] may be covered by a finite subset set Uα1 , . . . , Uαn

of U , for some
α1, . . . , αn from A . So, Uα0 , Uα1 , . . . , Uαn

covers [a, c] ; and therefore, c ∈ E .

Now, we claim that c = b . (Once we establish this claim, then the proof is
complete.) It is clear that c ≤ b (because b is an upper bound for E ). We
complete the proof of this claim by contradiction. Suppose

(*) c < b.

We know from the first claim that there exists a finite subset Uβ1 , . . . , Uβm
of U ,

(for some β1, . . . , βm in A ), which covers [a, c] . In particular, c is in Uβi
for

some i , with 1 ≤ i ≤ m . The set Uβi
is open; so some neighborhood Nε1(c)

of c , for some ε1 > 0 , is contained in Uβi
. There are numbers in Nε1(c) which

fall between c and b . For the sake of concreteness, there is a number d with
c < d < c + ε1 and d < b . It is clear that Uβ1 , . . . , Uβm

covers [a, d] . Thus,
d ∈ E and supE = c < d . This is impossible. Our supposition is false; c is not
less than b . The only remaining option is that c is equal to b .

7. Let f(x) =
{

2x − 1 if x ≤ 2
2x + 1 if 2 < x.

What is lim
x→2

f(x) ? Prove your answer.

This limit does not exist. We proved that if lim
x→2

f(x) = L and {xn} is a
sequence of real numbers, which never equals 2 , but which converges to 2 , then
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the sequence {f(xn)} converges to L . The sequence {2− 1
n} converges to 2 and

never equals 2 and the sequence

{f(2 − 1
n
)} = {2(2 − 1

n
) − 1} = {3 − 2

n
}.

This sequence converges to 3 . On the other hand, The sequence {2+ 1
n
} converges

to 2 and never equals 2 and the sequence

{f(2 + 1
n )} = {2(2 + 1

n ) + 1} = {5 + 2
n}.

This sequence converges to 5 . If lim
x→2

f(x) existed, this this limit would have to
equal 3 . It would also have to equal 5 . Well, it is not possible for some number
to equal both 3 and 5 . We conclude that lim

x→2
f(x) does not exist.

8. Let f(x) =
{

2x − 1 if x ≤ 2
2x + 1 if 2 < x.

What is lim
x→3

f(x) ? Prove your answer.

The limit is 7 . Let ε > 0 be fixed, but arbitrary. Let δ = min{1, ε
2} . If

|x − 3| < δ , then 2 < x and

|f(x) − 7| = |2x + 1 − 7| = 2|x − 3| < 2 ε
2 = ε.


