Math 554, Exam 3 Solutions, Summer 2004

Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Take enough space for each problem. Turn in your solutions in the order: problem 1, problem 2, ...; although, by using enough paper, you can do the problems in any order that suits you.

There are 9 problems. Problems 1 through 5 are worth 6 points each. Problems 6 through 9 are worth 5 points each. The exam is worth a total of 50 points.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail.

I will leave your exam outside my office door by noon tomorrow, you may pick it up any time between then and the next class.

I will post the solutions on my website shortly after the class is finished.

1. Define Cauchy sequence. Use complete sentences.

The sequence $\left\{a_{n}\right\}$ is a a Cauchy sequence if for all $\varepsilon>0$, there exists n_{0} such that whenever $n, m>n_{0}$, then $\left|a_{n}-a_{m}\right|<\varepsilon$.

2. Define limit point. Use complete sentences.

The real number p is a limit point of the set of real numbers E if, for all $\varepsilon>0$, there exists $q \in E$ with $q \neq p$ and $|q-p| \leq \varepsilon$.
3. For each natural number n, let U_{n} be an open set in \mathbb{R}. Is the intersection $\bigcap_{n=1}^{\infty} U_{n}$ always an open set? If yes, prove the result. If no, give a counterexample.

NO! Let U_{n} be the open interval $\left(-\frac{1}{n}, \frac{1}{n}\right)$, for each natural number n. We see that each U_{n} is open, but the intersection $\bigcap_{n=1}^{\infty} U_{n}$ is equal to $\{0\}$, which is not open.
4. For each natural number n, let U_{n} be an open set in \mathbb{R}. Is the union $\bigcup_{n=1}^{\infty} U_{n}$ always an open set? If yes, prove the result. If no, give a counterexample.

YES! If $p \in \bigcup_{n=1}^{\infty} U_{n}$, then $p \in U_{n_{1}}$ for some fixed n_{1}; hence, there exists ε such that $N_{\varepsilon}(p) \subseteq U_{n_{1}}$. It follows that $N_{\varepsilon}(p) \subseteq \bigcup_{n=1}^{\infty} U_{n}$; and therefore, $\bigcup_{n=1}^{\infty} U_{n}$ is an open subset of \mathbb{R}.
5. State the theorem which characterizes the closed sets of \mathbb{R} in terms of information about the limit points.

The subset K of \mathbb{R} is closed if and only if K contains all of its limit points.
6. Prove the first version of the Bolzano-Weierstrass Theorem. That is, prove that every bounded infinite subset of \mathbb{R} has a limit point.

Let S be a bounded infinite subset of \mathbb{R}, and let I be a finite closed interval which contains S. Cut I in half. At least one of the resulting two closed subintervals of I contains infinitely many elements of S. Call this interval I_{1}. Continue in this manner to build the closed interval I_{n}, for each natural number n, with the length of I_{n} equal to $1 / 2^{n}$ times the length of I and I_{n} contains infinitely many elements of S. The nested interval property of \mathbb{R} tells us that the intersection $\bigcap_{n=1}^{\infty} I_{n}$ is non-empty. Let p be an element of $\bigcap_{n=1}^{\infty} I_{n}$. We will show that p is a limit point of S. Given $\varepsilon>0$, there exists n large enough that the length of I_{n} is less than ε. We know that $p \in I_{n}$. It follows that $I_{n} \subseteq N_{\varepsilon}(p)$. Furthermore, there is at least one element q of S with $q \neq p$ and $q \in N_{\varepsilon}(p)$; since $I_{n} \cap S$ is infinite.
7. Let $\left\{p_{n}\right\}$ be a bounded sequence of real numbers and let $p \in \mathbb{R}$ be such that every convergent subsequence of $\left\{p_{n}\right\}$ converges to p. Prove that the sequence $\left\{p_{n}\right\}$ converges to p.

Suppose that

$$
\begin{equation*}
\text { the sequence }\left\{p_{n}\right\} \text { does NOT converge to } p \text {. } \tag{6}
\end{equation*}
$$

In this case, there exists $\varepsilon>0$ such that

$$
\begin{equation*}
\text { for every } n_{0} \in \mathbb{N} \text { there exists } n>n_{0} \text { such that }\left|p_{n}-p\right| \geq \varepsilon \tag{7}
\end{equation*}
$$

Apply (7) to find $n_{1}>1$, with $\left|p_{n_{1}}-p\right|>\varepsilon$. Apply (7) to find $n_{2}>n_{1}$, with $\left|p_{n_{2}}-p\right|>\varepsilon$. Apply (7) to find $n_{3}>n_{2}$, with $\left|p_{n_{3}}-p\right|>\varepsilon$. Continue in this manner to construct a subsequence

$$
\begin{equation*}
p_{n_{1}}, p_{n_{2}}, p_{n_{3}}, \ldots \tag{8}
\end{equation*}
$$

of the original sequence $\left\{p_{n}\right\}$ which never gets closer to p than ε. The BolzanoWeierstrass Theorem (version 2) guarantees that some subsequence of (8) converges. This subsequence of (8) does not converge to p because the subsequence never gets within ε of p. On the other hand, subsequence of (8) is also a subsequence of the original sequence $\left\{p_{n}\right\}$; and therefore, must converge to p by the original hypothesis. This is a contradiction. The original supposition (6) must be false. We conclude that the sequence $\left\{p_{n}\right\}$ does converge to p.
8. Let a_{1} be a real number in the open interval (0,1). Define the sequence $\left\{a_{n}\right\}$ by $a_{n+1}=\frac{1}{5}\left(1-a_{n}^{3}\right)$, for all $n \geq 1$. Prove that the sequence $\left\{a_{n}\right\}$ is a contractive sequence.

Observe that

$$
\left|\frac{a_{n+2}-a_{n+1}}{a_{n+1}-a_{n}}\right|=\left|\frac{\frac{1}{5}\left(1-\left(\frac{1}{5}\left(1-a_{n}^{3}\right)\right)^{3}\right)-\frac{1}{5}\left(1-a_{n}^{3}\right)}{\frac{1}{5}\left(1-a_{n}^{3}\right)-a_{n}}\right| .
$$

Multiply top and bottom by 5 to get

$$
\begin{gathered}
=\left|\frac{\left(1-\left(\frac{1}{5}\left(1-a_{n}^{3}\right)\right)^{3}\right)-\left(1-a_{n}^{3}\right)}{\left(1-a_{n}^{3}\right)-5 a_{n}}\right|=\left|\frac{1-\left(\frac{1}{5}\left(1-a_{n}^{3}\right)\right)^{3}-1+a_{n}^{3}}{\left(1-a_{n}^{3}\right)-5 a_{n}}\right| \\
=\left|\frac{-\left(\frac{1}{5}\left(1-a_{n}^{3}\right)\right)^{3}+a_{n}^{3}}{\left(1-a_{n}^{3}\right)-5 a_{n}}\right|
\end{gathered}
$$

Pull $\frac{-1}{125}$ out of the numerator to get

$$
=\left|\frac{-1}{125}\right|\left|\frac{\left(1-a_{n}^{3}\right)^{3}-\left(5 a_{n}\right)^{3}}{\left(1-a_{n}^{3}\right)-5 a_{n}}\right| .
$$

The numerator is the difference of perfect cubes. (If you don't remember the formula for the difference of perfect cubes, then just divide $A^{3}-B^{3}$ by $A-B$ to find the other factor; use long division. At any rate, $\left.A^{3}-B^{3}=(A-B)\left(A^{2}+A B+B^{2}\right).\right)$ At this point, we have

$$
\left|\frac{a_{n+2}-a_{n+1}}{a_{n+1}-a_{n}}\right|=\frac{1}{125}\left|\frac{\left(\left(1-a_{n}^{3}\right)-5 a_{n}\right)\left(\left(1-a_{n}^{3}\right)^{2}+\left(1-a_{n}^{3}\right) 5 a_{n}+\left(5 a_{n}\right)^{2}\right)}{\left(1-a_{n}^{3}\right)-5 a_{n}}\right| .
$$

The factor on the left of the numerator is exactly equal to the denominator; so

$$
\begin{gathered}
\left|\frac{a_{n+2}-a_{n+1}}{a_{n+1}-a_{n}}\right|=\frac{1}{125}\left|\left(1-a_{n}^{3}\right)^{2}+\left(1-a_{n}^{3}\right) 5 a_{n}+\left(5 a_{n}\right)^{2}\right| \\
=\frac{1}{125}\left|1-2 a_{n}^{3}+a_{n}^{6}+5 a_{n}-5 a_{n}^{4}+25 a_{n}^{2}\right| .
\end{gathered}
$$

Use the triangle inequality to see that

$$
\left|\frac{a_{n+2}-a_{n+1}}{a_{n+1}-a_{n}}\right| \leq \frac{1}{125}\left(|1|+2\left|a_{n}^{3}\right|+\left|a_{n}^{6}\right|+5\left|a_{n}\right|+5\left|a_{n}^{4}\right|+25\left|a_{n}^{2}\right|\right)
$$

Induction shows that each number a_{n} is in the open interval $(0,1)$. Indeed, $a_{1} \in(0,1)$, and if $a_{n-1} \in(0,1)$, then $a_{n-1}^{3} \in(0,1)$; so, $1-a_{n-1}^{3} \in(0,1)$, and $a_{n}=\frac{1}{5}\left(1-a_{n-1}^{3}\right) \in(0,1)$. Thus,

$$
\left|\frac{a_{n+2}-a_{n+1}}{a_{n+1}-a_{n}}\right| \leq \frac{1}{125}(1+2+1+5+5+25)=\frac{39}{125} .
$$

We have shown that

$$
\left|a_{n+2}-a_{n+1}\right| \leq \frac{39}{125}\left|a_{n+1}-a_{n}\right|
$$

for all n. The number $b=\frac{39}{125}$ is between 0 and 1 . Thus, $\left\{a_{n}\right\}$ is a contractive sequence.
9. Let K be a closed non-empty subset of \mathbb{R} and let x be an element of \mathbb{R}, with $x \notin K$. Prove that there exists at least one element y of K which is closest to x. In other words, if $z \in K$, then $|x-y| \leq|x-z|$.

Let $D=\{|x-z| \mid z \in K\}$. The set D is bounded below by 0 ; so this set has an infimum d in \mathbb{R}. Our job is to show that there is an element y of K with $|x-y|=d$. The fact that d is the infimum of D ensures that for each natural number n, there is $z_{n} \in K$, with $\left|x-z_{n}\right|<d+\frac{1}{n}$. The sequence $\left\{z_{n}\right\}$ is bounded, since each z_{n} is always within 1 of x; so the Bolzano-Weierstrass Theorem (version 2) ensures that some subsequence of $\left\{z_{n}\right\}$ converges. Suppose that the subsequence converges to y. It is clear that $|x-y|=d$. Either the tail end of the subsequence is constant (in which case $y=z_{n} \in K$ for infinitely many n), or y is a limit point of K. The set K is closed; so K contains all of its limit points. In any event, $y \in K$ and the proof is complete.

