Math 554, Exam 3 Solutions, Summer 2004

Write your answers as legibly as you can on the blank sheets of paper provided. Use only **one side** of each sheet. Take enough space for each problem. Turn in your solutions in the order: problem 1, problem 2, \ldots ; although, by using enough paper, you can do the problems in any order that suits you.

There are 9 problems. Problems 1 through 5 are worth 6 points each. Problems 6 through 9 are worth 5 points each. The exam is worth a total of 50 points.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then **send me an e-mail**.

I will leave your exam outside my office door by noon tomorrow, you may pick it up any time between then and the next class.

I will post the solutions on my website shortly after the class is finished.

1. Define Cauchy sequence. Use complete sentences.

The sequence $\{a_n\}$ is a a *Cauchy sequence* if for all $\varepsilon > 0$, there exists n_0 such that whenever $n, m > n_0$, then $|a_n - a_m| < \varepsilon$.

2. Define *limit point*. Use complete sentences.

The real number p is a *limit point* of the set of real numbers E if, for all $\varepsilon > 0$, there exists $q \in E$ with $q \neq p$ and $|q - p| \leq \varepsilon$.

3. For each natural number n, let U_n be an open set in \mathbb{R} . Is the intersection $\bigcap_{n=1}^{\infty} U_n$ always an open set? If yes, prove the result. If no, give a counterexample.

NO! Let U_n be the open interval $\left(-\frac{1}{n}, \frac{1}{n}\right)$, for each natural number n. We see that each U_n is open, but the intersection $\bigcap_{n=1}^{\infty} U_n$ is equal to $\{0\}$, which is not open.

4. For each natural number n, let U_n be an open set in \mathbb{R} . Is the union $\bigcup_{n=1}^{\infty} U_n$ always an open set? If yes, prove the result. If no, give a counterexample.

YES! If $p \in \bigcup_{n=1}^{\infty} U_n$, then $p \in U_{n_1}$ for some fixed n_1 ; hence, there exists ε such that $N_{\varepsilon}(p) \subseteq U_{n_1}$. It follows that $N_{\varepsilon}(p) \subseteq \bigcup_{n=1}^{\infty} U_n$; and therefore, $\bigcup_{n=1}^{\infty} U_n$ is an open subset of \mathbb{R} .

5. State the theorem which characterizes the closed sets of \mathbb{R} in terms of information about the limit points.

The subset K of \mathbb{R} is closed if and only if K contains all of its limit points.

6. Prove the first version of the Bolzano-Weierstrass Theorem. That is, prove that every bounded infinite subset of \mathbb{R} has a limit point.

Let S be a bounded infinite subset of \mathbb{R} , and let I be a finite closed interval which contains S. Cut I in half. At least one of the resulting two closed subintervals of I contains infinitely many elements of S. Call this interval I_1 . Continue in this manner to build the closed interval I_n , for each natural number n, with the length of I_n equal to $1/2^n$ times the length of I and I_n contains infinitely many elements of S. The nested interval property of \mathbb{R} tells us that the intersection $\bigcap_{n=1}^{\infty} I_n$ is non-empty. Let p be an element of $\bigcap_{n=1}^{\infty} I_n$. We will show that p is a limit point of S. Given $\varepsilon > 0$, there exists n large enough that the length of I_n is less than ε . We know that $p \in I_n$. It follows that $I_n \subseteq N_{\varepsilon}(p)$. Furthermore, there is at least one element q of S with $q \neq p$ and $q \in N_{\varepsilon}(p)$; since $I_n \cap S$ is infinite.

7. Let $\{p_n\}$ be a bounded sequence of real numbers and let $p \in \mathbb{R}$ be such that every convergent subsequence of $\{p_n\}$ converges to p. Prove that the sequence $\{p_n\}$ converges to p.

Suppose that

(6) the sequence
$$\{p_n\}$$
 does NOT converge to p .

In this case, there exists $\varepsilon > 0$ such that

(7) for every
$$n_0 \in \mathbb{N}$$
 there exists $n > n_0$ such that $|p_n - p| \ge \varepsilon$.

Apply (7) to find $n_1 > 1$, with $|p_{n_1} - p| > \varepsilon$. Apply (7) to find $n_2 > n_1$, with $|p_{n_2} - p| > \varepsilon$. Apply (7) to find $n_3 > n_2$, with $|p_{n_3} - p| > \varepsilon$. Continue in this manner to construct a subsequence

(8)
$$p_{n_1}, p_{n_2}, p_{n_3}, \dots$$

of the original sequence $\{p_n\}$ which never gets closer to p than ε . The Bolzano-Weierstrass Theorem (version 2) guarantees that some subsequence of (8) converges. This subsequence of (8) does not converge to p because the subsequence never gets within ε of p. On the other hand, subsequence of (8) is also a subsequence of the original sequence $\{p_n\}$; and therefore, must converge to p by the original hypothesis. This is a contradiction. The original supposition (6) must be false. We conclude that the sequence $\{p_n\}$ does converge to p.

8. Let a_1 be a real number in the open interval (0,1). Define the sequence $\{a_n\}$ by $a_{n+1} = \frac{1}{5}(1-a_n^3)$, for all $n \ge 1$. Prove that the sequence $\{a_n\}$ is a contractive sequence.

Observe that

$$\left|\frac{a_{n+2}-a_{n+1}}{a_{n+1}-a_n}\right| = \left|\frac{\frac{1}{5}(1-\left(\frac{1}{5}(1-a_n^3)\right)^3)-\frac{1}{5}(1-a_n^3)}{\frac{1}{5}(1-a_n^3)-a_n}\right|.$$

Multiply top and bottom by 5 to get

$$= \left| \frac{\left(1 - \left(\frac{1}{5}(1 - a_n^3)\right)^3\right) - \left(1 - a_n^3\right)}{\left(1 - a_n^3\right) - 5a_n} \right| = \left| \frac{1 - \left(\frac{1}{5}(1 - a_n^3)\right)^3 - 1 + a_n^3}{\left(1 - a_n^3\right) - 5a_n} \right|$$
$$= \left| \frac{-\left(\frac{1}{5}(1 - a_n^3)\right)^3 + a_n^3}{\left(1 - a_n^3\right) - 5a_n} \right|.$$

Pull $\frac{-1}{125}$ out of the numerator to get

$$= \left| \frac{-1}{125} \right| \left| \frac{(1-a_n^3)^3 - (5a_n)^3}{(1-a_n^3) - 5a_n} \right|.$$

The numerator is the difference of perfect cubes. (If you don't remember the formula for the difference of perfect cubes, then just divide $A^3 - B^3$ by A - B to find the other factor; use long division. At any rate, $A^3 - B^3 = (A - B)(A^2 + AB + B^2)$.) At this point, we have

$$\left|\frac{a_{n+2} - a_{n+1}}{a_{n+1} - a_n}\right| = \frac{1}{125} \left|\frac{((1-a_n^3) - 5a_n)((1-a_n^3)^2 + (1-a_n^3)5a_n + (5a_n)^2)}{(1-a_n^3) - 5a_n}\right|.$$

The factor on the left of the numerator is exactly equal to the denominator; so

$$\left|\frac{a_{n+2} - a_{n+1}}{a_{n+1} - a_n}\right| = \frac{1}{125} \left| (1 - a_n^3)^2 + (1 - a_n^3) 5a_n + (5a_n)^2 \right|$$
$$= \frac{1}{125} \left| 1 - 2a_n^3 + a_n^6 + 5a_n - 5a_n^4 + 25a_n^2 \right|.$$

Use the triangle inequality to see that

$$\left|\frac{a_{n+2}-a_{n+1}}{a_{n+1}-a_n}\right| \le \frac{1}{125}(|1|+2|a_n^3|+|a_n^6|+5|a_n|+5|a_n^4|+25|a_n^2|).$$

Induction shows that each number a_n is in the open interval (0,1). Indeed, $a_1 \in (0,1)$, and if $a_{n-1} \in (0,1)$, then $a_{n-1}^3 \in (0,1)$; so, $1 - a_{n-1}^3 \in (0,1)$, and $a_n = \frac{1}{5}(1 - a_{n-1}^3) \in (0,1)$. Thus,

$$\left|\frac{a_{n+2} - a_{n+1}}{a_{n+1} - a_n}\right| \le \frac{1}{125}(1 + 2 + 1 + 5 + 5 + 25) = \frac{39}{125}.$$

We have shown that

$$|a_{n+2} - a_{n+1}| \le \frac{39}{125} |a_{n+1} - a_n|,$$

for all n. The number $b = \frac{39}{125}$ is between 0 and 1. Thus, $\{a_n\}$ is a contractive sequence.

9. Let K be a closed non-empty subset of \mathbb{R} and let x be an element of \mathbb{R} , with $x \notin K$. Prove that there exists at least one element y of K which is closest to x. In other words, if $z \in K$, then $|x - y| \leq |x - z|$.

Let $D = \{|x - z| \mid z \in K\}$. The set D is bounded below by 0; so this set has an infimum d in \mathbb{R} . Our job is to show that there is an element y of Kwith |x - y| = d. The fact that d is the infimum of D ensures that for each natural number n, there is $z_n \in K$, with $|x - z_n| < d + \frac{1}{n}$. The sequence $\{z_n\}$ is bounded, since each z_n is always within 1 of x; so the Bolzano-Weierstrass Theorem (version 2) ensures that some subsequence of $\{z_n\}$ converges. Suppose that the subsequence converges to y. It is clear that |x - y| = d. Either the tail end of the subsequence is constant (in which case $y = z_n \in K$ for infinitely many n), or y is a limit point of K. The set K is closed; so K contains all of its limit points. In any event, $y \in K$ and the proof is complete.