
Math 554, Exam 3 Solutions, Summer 2004
Write your answers as legibly as you can on the blank sheets of paper provided.
Use only one side of each sheet. Take enough space for each problem. Turn in
your solutions in the order: problem 1, problem 2, . . . ; although, by using enough
paper, you can do the problems in any order that suits you.

There are 9 problems. Problems 1 through 5 are worth 6 points each. Problems 6
through 9 are worth 5 points each. The exam is worth a total of 50 points.

If I know your e-mail address, I will e-mail your grade to you. If I don’t already
know your e-mail address and you want me to know it, then send me an e-mail.

I will leave your exam outside my office door by noon tomorrow, you may pick it
up any time between then and the next class.

I will post the solutions on my website shortly after the class is finished.

1. Define Cauchy sequence. Use complete sentences.

The sequence {an} is a a Cauchy sequence if for all ε > 0 , there exists n0 such
that whenever n, m > n0 , then |an − am| < ε .

2. Define limit point. Use complete sentences.

The real number p is a limit point of the set of real numbers E if, for all ε > 0 ,
there exists q ∈ E with q 6= p and |q − p| ≤ ε .

3. For each natural number n , let Un be an open set in R . Is the

intersection
∞⋂

n=1
Un always an open set? If yes, prove the result. If no,

give a counterexample.

NO! Let Un be the open interval (− 1
n
, 1

n
) , for each natural number n . We see

that each Un is open, but the intersection
∞⋂

n=1
Un is equal to {0} , which is not

open.

4. For each natural number n , let Un be an open set in R . Is the union
∞⋃

n=1
Un always an open set? If yes, prove the result. If no, give a

counterexample.

YES! If p ∈
∞⋃

n=1
Un , then p ∈ Un1 for some fixed n1 ; hence, there exists ε such

that Nε(p) ⊆ Un1 . It follows that Nε(p) ⊆
∞⋃

n=1
Un ; and therefore,

∞⋃

n=1
Un is an

open subset of R .

5. State the theorem which characterizes the closed sets of R in terms
of information about the limit points.

The subset K of R is closed if and only if K contains all of its limit points.
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6. Prove the first version of the Bolzano-Weierstrass Theorem. That is,
prove that every bounded infinite subset of R has a limit point.

Let S be a bounded infinite subset of R , and let I be a finite closed interval which
contains S . Cut I in half. At least one of the resulting two closed subintervals
of I contains infinitely many elements of S . Call this interval I1 . Continue in
this manner to build the closed interval In , for each natural number n , with the
length of In equal to 1/2n times the length of I and In contains infinitely many
elements of S . The nested interval property of R tells us that the intersection
∞⋂

n=1
In is non-empty. Let p be an element of

∞⋂

n=1
In . We will show that p is a

limit point of S . Given ε > 0 , there exists n large enough that the length of In

is less than ε . We know that p ∈ In . It follows that In ⊆ Nε(p) . Furthermore,
there is at least one element q of S with q 6= p and q ∈ Nε(p) ; since In ∩ S is
infinite.

7. Let {pn} be a bounded sequence of real numbers and let p ∈ R be such
that every convergent subsequence of {pn} converges to p . Prove that
the sequence {pn} converges to p .

Suppose that

(6) the sequence {pn} does NOT converge to p .

In this case, there exists ε > 0 such that

(7) for every n0 ∈ N there exists n > n0 such that |pn − p| ≥ ε .

Apply (7) to find n1 > 1 , with |pn1 − p| > ε . Apply (7) to find n2 > n1 , with
|pn2 − p| > ε . Apply (7) to find n3 > n2 , with |pn3 − p| > ε . Continue in this
manner to construct a subsequence

(8) pn1 , pn2 , pn3 , . . .

of the original sequence {pn} which never gets closer to p than ε . The Bolzano-
Weierstrass Theorem (version 2) guarantees that some subsequence of (8) converges.
This subsequence of (8) does not converge to p because the subsequence never gets
within ε of p . On the other hand, subsequence of (8) is also a subsequence of
the original sequence {pn} ; and therefore, must converge to p by the original
hypothesis. This is a contradiction. The original supposition (6) must be false. We
conclude that the sequence {pn} does converge to p .

8. Let a1 be a real number in the open interval (0, 1) . Define the
sequence {an} by an+1 = 1

5 (1 − a3
n) , for all n ≥ 1 . Prove that the

sequence {an} is a contractive sequence.

Observe that
∣
∣∣
∣
an+2 − an+1

an+1 − an

∣
∣∣
∣ =

∣
∣∣
∣
∣

1
5(1 − (

1
5 (1 − a3

n)
)3

) − 1
5(1 − a3

n)
1
5
(1 − a3

n) − an

∣
∣∣
∣
∣
.
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Multiply top and bottom by 5 to get

=

∣
∣
∣
∣∣
(1 − (

1
5 (1 − a3

n)
)3) − (1 − a3

n)
(1 − a3

n) − 5an

∣
∣
∣
∣∣
=

∣
∣
∣
∣∣
1 − (

1
5 (1 − a3

n)
)3 − 1 + a3

n

(1 − a3
n) − 5an

∣
∣
∣
∣∣

=

∣
∣
∣
∣∣
− (

1
5 (1 − a3

n)
)3 + a3

n

(1 − a3
n) − 5an

∣
∣
∣
∣∣
.

Pull −1
125

out of the numerator to get

=
∣
∣∣
∣
−1
125

∣
∣∣
∣

∣
∣∣
∣
(1 − a3

n)3 − (5an)3

(1 − a3
n) − 5an

∣
∣∣
∣ .

The numerator is the difference of perfect cubes. (If you don’t remember the
formula for the difference of perfect cubes, then just divide A3−B3 by A−B to find
the other factor; use long division. At any rate, A3−B3 = (A−B)(A2+AB+B2) .)
At this point, we have

∣
∣∣
∣
an+2 − an+1

an+1 − an

∣
∣∣
∣ = 1

125

∣∣
∣ ((1−a3

n)−5an)((1−a3
n)2+(1−a3

n)5an+(5an)2)
(1−a3

n)−5an

∣∣
∣ .

The factor on the left of the numerator is exactly equal to the denominator; so

∣
∣
∣
∣
an+2 − an+1

an+1 − an

∣
∣
∣
∣ = 1

125

∣
∣(1 − a3

n)2 + (1 − a3
n)5an + (5an)2

∣
∣

= 1
125

∣
∣1 − 2a3

n + a6
n + 5an − 5a4

n + 25a2
n

∣
∣ .

Use the triangle inequality to see that

∣
∣
∣∣
an+2 − an+1

an+1 − an

∣
∣
∣∣ ≤ 1

125
(|1| + 2|a3

n| + |a6
n| + 5|an| + 5|a4

n| + 25|a2
n|).

Induction shows that each number an is in the open interval (0, 1) . Indeed,
a1 ∈ (0, 1) , and if an−1 ∈ (0, 1) , then a3

n−1 ∈ (0, 1) ; so, 1 − a3
n−1 ∈ (0, 1) , and

an = 1
5(1 − a3

n−1) ∈ (0, 1) . Thus,

∣
∣∣
∣
an+2 − an+1

an+1 − an

∣
∣∣
∣ ≤ 1

125
(1 + 2 + 1 + 5 + 5 + 25) = 39

125
.

We have shown that
|an+2 − an+1| ≤ 39

125
|an+1 − an|,

for all n . The number b = 39
125 is between 0 and 1 . Thus, {an} is a contractive

sequence.
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9. Let K be a closed non-empty subset of R and let x be an element of
R , with x /∈ K . Prove that there exists at least one element y of K
which is closest to x . In other words, if z ∈ K , then |x− y| ≤ |x− z| .

Let D = {|x − z| | z ∈ K} . The set D is bounded below by 0 ; so this set
has an infimum d in R . Our job is to show that there is an element y of K
with |x − y| = d . The fact that d is the infimum of D ensures that for each
natural number n , there is zn ∈ K , with |x − zn| < d + 1

n . The sequence {zn}
is bounded, since each zn is always within 1 of x ; so the Bolzano-Weierstrass
Theorem (version 2) ensures that some subsequence of {zn} converges. Suppose
that the subsequence converges to y . It is clear that |x − y| = d . Either the tail
end of the subsequence is constant (in which case y = zn ∈ K for infinitely many
n ), or y is a limit point of K . The set K is closed; so K contains all of its limit
points. In any event, y ∈ K and the proof is complete.


