PRINT Your Name:

Quiz for June 14, 2006

- a. Let $\{\mathcal{O}_{\alpha} \mid \alpha \in A\}$ be a set of open subsets of \mathbb{R} . Prove that $\bigcup_{\alpha \in A} \mathcal{O}_{\alpha}$ is an open subset of \mathbb{R} .
- b. Give an example of a set of open subsets $\{\mathcal{O}_{\alpha} \mid \alpha \in A\}$ of \mathbb{R} with $\bigcap_{\alpha \in A} \mathcal{O}_{\alpha}$ not an open subset of \mathbb{R} .

ANSWER:

- a. Let p be an element of $\bigcup_{\alpha \in A} \mathcal{O}_{\alpha}$. Thus, p is in \mathcal{O}_{α_0} for some $\alpha_0 \in A$. The set \mathcal{O}_{α_0} is open, so there exists $\varepsilon > 0$ with $N_{\varepsilon}(p) \subseteq \mathcal{O}_{\alpha_0}$. Thus, $N_{\varepsilon}(p) \subseteq \bigcup_{\alpha \in A} \mathcal{O}_{\alpha}$.
- b. For each natural number n, let $I_n = (0, 1 + \frac{1}{n})$. It is clear that each open interval I_n is an open set in \mathbb{R} . It is also clear that $\bigcap_{n \in \mathbb{N}} I_n = (0, 1]$; which is not an open subset of \mathbb{R} . Indeed, $N_{\varepsilon}(1)$ is not contained in (0, 1] for any $\varepsilon > 0$.