\qquad

Quiz for June 14, 2006

a. Let $\left\{\mathcal{O}_{\alpha} \mid \alpha \in A\right\}$ be a set of open subsets of \mathbb{R}. Prove that $\bigcup_{\alpha \in A} \mathcal{O}_{\alpha}$ is an open subset of \mathbb{R}.
b. Give an example of a set of open subsets $\left\{\mathcal{O}_{\alpha} \mid \alpha \in A\right\}$ of \mathbb{R} with $\bigcap_{\alpha \in A} \mathcal{O}_{\alpha}$ not an open subset of \mathbb{R}.

ANSWER:

a. Let p be an element of $\bigcup_{\alpha \in A} \mathcal{O}_{\alpha}$. Thus, p is in $\mathcal{O}_{\alpha_{0}}$ for some $\alpha_{0} \in A$. The set $\mathcal{O}_{\alpha_{0}}$ is open, so there exists $\varepsilon>0$ with $N_{\varepsilon}(p) \subseteq \mathcal{O}_{\alpha_{0}}$. Thus, $N_{\varepsilon}(p) \subseteq \bigcup_{\alpha \in A} \mathcal{O}_{\alpha}$.
b. For each natural number n, let $I_{n}=\left(0,1+\frac{1}{n}\right)$. It is clear that each open interval I_{n} is an open set in \mathbb{R}. It is also clear that $\bigcap_{n \in \mathbb{N}} I_{n}=(0,1]$; which is not an open subset of \mathbb{R}. Indeed, $N_{\varepsilon}(1)$ is not contained in $(0,1]$ for any $\varepsilon>0$.

