There are 10 problems. Each problem is worth 10 points. SHOW your work. \boxed{CIRCLE} your answer. **NO CALCULATORS!**

- 1. Show that $\boldsymbol{c}(t) = (\sin t, \cos t, e^t)$ is a flow line of the vector field $\overrightarrow{\boldsymbol{F}}(x, y, z) = (y, -x, z)$.
- 2. Find the divergence of the vector field $\overrightarrow{V}(x, y, z) = x \overrightarrow{i} + (y + \cos x) \overrightarrow{j} + (z + e^{xy}) \overrightarrow{k}$.
- 3. Compute the curl of the vector field $\overrightarrow{F}(x, y, z) = yz \overrightarrow{i} + xz \overrightarrow{j} + xy \overrightarrow{k}$.
- 4. Find the equations of the line tangent to the curve traced out by $\boldsymbol{c}(t) = (t^3 + 1, e^{-t}, \cos(\frac{\pi t}{2}))$ at t = 1.
- 5. Express as an integral the arc length of the curve $x^2 = y^3 = z^5$ between x = 1and x = 4 using a suitable parametrization. (Do not evaluate the integral.)

6. Find
$$\int_0^1 \int_1^{e^x} (x+y) \, dy \, dx$$

7. Find the volume of the region between $z = x^2 + y^2$ and $z = 50 - x^2 - y^2$.

8. Prove
$$\int_0^x \int_0^t F(u) \, du \, dt = \int_0^x (x-u) F(u) \, du$$
.

- 9. Find $\int_0^1 \int_x^1 e^{y^2} dy \, dx$.
- 10. Let D^* be the parallelogram, in the xy-plane, with vertices (0,0), (2,-1), (3,2), and (1,3). Let D be the square

$$\{(u, v) \mid 0 \le u \le 1 \text{ and } 0 \le v \le 1\}.$$

Find a one-to-one function T from the xy-plane to the uv-plane such that D is the image of D^* under T.