There are 10 problems. Each problem is worth 10 points. SHOW your work. $C I R C L E$ your answer. NO CALCULATORS!

1. Show that $\boldsymbol{c}(t)=\left(\sin t, \cos t, e^{t}\right)$ is a flow line of the vector field $\overrightarrow{\boldsymbol{F}}(x, y, z)=(y,-x, z)$.
2. Find the divergence of the vector field

$$
\overrightarrow{\boldsymbol{V}}(x, y, z)=x \overrightarrow{\boldsymbol{i}}+(y+\cos x) \overrightarrow{\boldsymbol{j}}+\left(z+e^{x y}\right) \overrightarrow{\boldsymbol{k}} .
$$

3. Compute the curl of the vector field $\overrightarrow{\boldsymbol{F}}(x, y, z)=y z \overrightarrow{\boldsymbol{i}}+x z \overrightarrow{\boldsymbol{j}}+x y \overrightarrow{\boldsymbol{k}}$.
4. Find the equations of the line tangent to the curve traced out by $\boldsymbol{c}(t)=\left(t^{3}+1, e^{-t}, \cos \left(\frac{\pi t}{2}\right)\right)$ at $t=1$.
5. Express as an integral the arc length of the curve $x^{2}=y^{3}=z^{5}$ between $x=1$ and $x=4$ using a suitable parametrization. (Do not evaluate the integral.)
6. Find $\int_{0}^{1} \int_{1}^{e^{x}}(x+y) d y d x$.
7. Find the volume of the region between $z=x^{2}+y^{2}$ and $z=50-x^{2}-y^{2}$.
8. Prove $\int_{0}^{x} \int_{0}^{t} F(u) d u d t=\int_{0}^{x}(x-u) F(u) d u$.
9. Find $\int_{0}^{1} \int_{x}^{1} e^{y^{2}} d y d x$.
10. Let $D^{*}$ be the parallelogram, in the $x y$-plane, with vertices $(0,0)$, $(2,-1),(3,2)$, and $(1,3)$. Let $D$ be the square

$$
\{(u, v) \mid 0 \leq u \leq 1 \text { and } 0 \leq v \leq 1\} .
$$

Find a one-to-one function $T$ from the $x y$-plane to the $u v$-plane such that $D$ is the image of $D^{*}$ under $T$.

