(a)
$$\omega = 2x dx + y dy$$

 $\eta = x^3 dx + y^2 dy$

(b)
$$\omega = x dx - y dy$$

 $\eta = y dx + x dy$

(c)
$$\omega = x dx + y dy + z dz$$

 $\eta = z dx dy + x dy dz + y dz dx$

(d)
$$\omega = xy \, dy \, dz + x^2 \, dx \, dy$$

 $\eta = dx + dz$

(e)
$$\omega = e^{xyz} dx dy$$

 $\eta = e^{-xyz} dz$

2. Prove that

)r

11

$$(a_1 dx + a_2 dy + a_3 dz) \wedge (b_1 dy dz + b_2 dz dx + b_3 dx dy)$$

= $\left(\sum_{i=1}^{3} a_i b_i\right) dx dy dz$.

3. Find $d\omega$ in the following examples:

(a)
$$\omega = x^2y + y^3$$

(b)
$$\omega = y^2 \cos x \, dy + xy \, dx + dz$$

(c)
$$\omega = xy \, dy + (x + y)^2 \, dx$$

(d)
$$\omega = x dx dy + z dy dz + y dz dx$$

(e)
$$\omega = (x^2 + y^2) dy dz$$

(f)
$$\omega = (x^2 + y^2 + z^2) dz$$

(g)
$$\omega = \frac{-x}{x^2 + y^2} dx + \frac{y}{x^2 + y^2} dy$$

(h)
$$\omega = x^2 y \, dy \, dz$$

4. Let C be the line segment from the point (-2, 0, 1) to (3, 6, 9). Let $\omega_1 = y dx + x dy + xy dz$, $\omega_2 = z dx + y dy + 2x dz$, and f(x, y, z) = xy. Calculate the following:

(a)
$$\int_C f\omega_1$$
 (b) $\int_C f\omega_2$ (c) $\int_C \omega_1 + \omega_2$

5. Let C be parameterized by $c(t) = (t^2 + 4t, t + 1),$ $t \in [0, \pi]$. Let $\omega_1 = y dx + x dy, \omega_2 = y^2 dx + x^2 dy,$ and f(x, y) = x. Calculate the following:

(a)
$$\int_C f\omega_1$$
 (b) $\int_C f\omega_2$ (c) $\int_C \omega_1 + \omega_2$

6. Let V: $K \to \mathbb{R}^3$ be a vector field defined by $V(x, y, z) = G(x, y, z)\mathbf{i} + H(x, y, z)\mathbf{j} + F(x, y, z)\mathbf{k}$, and let η be the 2-form on K given by

$$\eta = F dx dy + G dy dz + H dz dx.$$

Show that $d\eta = (\text{div } \mathbf{V}) \, dx \, dy \, dz$.

7. If $V = A(x, y, z)\mathbf{i} + B(x, y, z)\mathbf{j} + C(x, y, z)\mathbf{k}$ is a vector field on $K \subset \mathbb{R}^3$, define the operation Form₂: Vector Fields \rightarrow 2-forms by

$$Form_2(\mathbf{V}) = A \, dy \, dz + B \, dz \, dx + C \, dx \, dy.$$

(a) Show that Form₂($\alpha V_1 + V_2$) = α Form₂(V_1) + Form₂(V_2), where α is a real number.

(b) Show that Form₂(curl V) = $d\omega$, where $\omega = A dx + B dy + C dz$.

8. Using the differential form version of Stokes' theorem, prove the vector field version in Section 8.2. Repeat for Gauss' theorem.

9. Interpret Theorem 16 in the case k = 1.

10. Let $\omega = (x + y) dz + (y + z) dx + (x + z) dy$, and let S be the upper part of the unit sphere; that is, S is the set of (x, y, z) with $x^2 + y^2 + z^2 = 1$ and $z \ge 0$. ∂S is the unit circle in the xy plane. Evaluate $\int_{\partial S} \omega$ both directly and by Stokes' theorem.

11. Let T be the triangular solid bounded by the xy plane, the xz plane, the yz plane, and the plane 2x + 3y + 6z = 12. Compute

$$\iint_{\partial T} F_1 \, dx \, dy + F_2 \, dy \, dz + F_3 \, dz \, dx$$

directly and by Gauss' theorem, if

(a)
$$F_1 = 3y$$
, $F_2 = 18z$, $F_3 = -12$; and

(b)
$$F_1 = z$$
, $F_2 = x^2$, $F_3 = y$.

12. Evaluate $\iint_S \omega$, where $\omega = z \, dx \, dy + x \, dy \, dz + y \, dz \, dx$ and S is the unit sphere, directly and by Gauss' theorem.

13. Let R be an elementary region in \mathbb{R}^3 . Show that the volume of R is given by the formula

$$v(R) = \frac{1}{3} \iint_{\partial R} x \, dy \, dz + y \, dz \, dx + z \, dx \, dy.$$

14. In Section 4.2, we saw that the length $l(\mathbf{c})$ of a curve $\mathbf{c}(t) = (x(t), y(t), z(t)), a \le t \le b$, was given by the formula

$$l(\mathbf{c}) = \int d\mathbf{s} = \int_{a}^{b} \left(\frac{ds}{dt}\right) dt$$

where, loosely speaking, $(ds)^2 = (dx)^2 + (dy)^2 + (dz)^2$, that is,

$$\frac{ds}{dt} = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2}.$$

Now suppose a surface S is given in parametrized form by $\Phi(u, v) = (x(u, v), y(u, v), z(u, v))$, where

 $(u, v) \in D$. Show that the area of S can be expressed as

$$A(S) = \iint_D dS,$$

where formally $(dS)^2 = (dx \wedge dy)^2 + (dy \wedge dz)^2 + (dz \wedge dx)^2$, a formula requiring interpretation. [HINT:

$$dx = \frac{\partial x}{\partial u} du + \frac{\partial x}{\partial v} dv,$$

and similarly for dy and dz. Use the law of forms for the basic 1-forms du and dv. Then dS turns out to be a function times the basic 2-form du dv, which we can integrate over D.]

review exercises for chapter 8

- 1. Let $\mathbf{F} = 2yz\mathbf{i} + (-x + 3y + 2)\mathbf{j} + (x^2 + z)\mathbf{k}$. Evaluate $\iint_S (\nabla \times \mathbf{F}) \cdot d\mathbf{S}$, where S is the cylinder $x^2 + y^2 = a^2$, $0 \le z \le 1$ (without the top and bottom). What if the top and bottom are included?
- 2. Let W be a region in \mathbb{R}^3 with boundary ∂W . Prove the identity

$$\iint_{\partial W} [\mathbf{F} \times (\nabla \times \mathbf{G})] \cdot dS = \iiint_{W} (\nabla \times \mathbf{F}) \cdot (\nabla \times \mathbf{G}) \, dV$$
$$- \iiint_{W} \mathbf{F} \cdot (\nabla \times \nabla \times \mathbf{G}) \, dV.$$

- 3. Let $\mathbf{F} = x^2y\mathbf{i} + z^8\mathbf{j} 2xyz\mathbf{k}$. Evaluate the integral of \mathbf{F} over the surface of the unit cube.
- 4. Verify Green's theorem for the line integral

$$\int_C x^2 y \ dx + y \, dy,$$

when C is the boundary of the region between the curves y = x and $y = x^3$, $0 \le x \le 1$.

- 5. (a) Show that $\mathbf{F} = (x^3 2xy^3)\mathbf{i} 3x^2y^2\mathbf{j}$ is a gradient vector field
 - (b) Evaluate the integral of F along the path $x = \cos^3 \theta$, $y = \sin^3 \theta$, $0 \le \theta \le \pi/2$.
- **6.** Can you derive Green's theorem in the plane from Gauss' theorem?
- 7. (a) Show that $\mathbf{F} = 6xy(\cos z)\mathbf{i} + 3x^2(\cos z)\mathbf{j} 3x^2y(\sin z)\mathbf{k} \text{ is conservative (see Section 8.3).}$

- (b) Find f such that $\mathbf{F} = \nabla f$.
- (c) Evaluate the integral of F along the curve $x = \cos^3 \theta$, $y = \sin^3 \theta$, z = 0, $0 \le \theta \le \pi/2$.
- **8.** Let $\mathbf{r}(x, y, z) = (x, y, z), r = ||\mathbf{r}||$. Show that $\nabla^2(\log r) = 1/r^2$ and $\nabla^2(r^n) = n(n+1)r^{n-2}$.
- 9. Let the velocity of a fluid be described by $\mathbf{F} = 6xz\mathbf{i} + x^2y\mathbf{j} + yz\mathbf{k}$. Compute the rate at which fluid is leaving the unit cube.
- 10. Let $\mathbf{F} = x^2 \mathbf{i} + (x^2 y 2xy)\mathbf{j} x^2 z\mathbf{k}$. Does there exist a \mathbf{G} such that $\mathbf{F} = \nabla \times \mathbf{G}$?
- 11. Let **a** be a constant vector and $\mathbf{F} = \mathbf{a} \times \mathbf{r}$ [as usual, $\mathbf{r}(x, y, z) = (x, y, z)$]. Is **F** conservative? If so, find a potential for it.
- 12. Show that the fields F in (a) and (b) are conservative and find a function f such that F = V f.
 - (a) $\mathbf{F} = (y^2 e^{xy^2})\mathbf{i} + (2y e^{xy^2})\mathbf{j}$
 - (b) $\mathbf{F} = (\sin y)\mathbf{i} + (x\cos y)\mathbf{i} + (e^z)\mathbf{k}$
- 13. (a) Let $f(x, y, z) = 3xye^{z^2}$. Compute ∇f .
 - (b) Let $\mathbf{c}(t) = (3\cos^3 t, \sin^2 t, e^t), 0 \le t \le \pi$. Evaluate

$$\int_{\mathbf{c}} \nabla f \cdot d\mathbf{s}.$$

 (c) Verify directly Stokes' theorem for gradient vector fields F = ∇f. as

the

st a

and

or

- 15. Evaluate the integral $\iint_S \mathbf{F} \cdot d\mathbf{S}$, where $\mathbf{F} = x\mathbf{i} + y\mathbf{j} + 3\mathbf{k}$ and where S is the surface of the unit sphere $x^2 + y^2 + z^2 = 1$.
- 16. (a) State Stokes' theorem for surfaces in \mathbb{R}^3 .
 - (b) Let **F** be a vector field on \mathbb{R}^3 satisfying $\nabla \times \mathbf{F} = \mathbf{0}$. Use Stokes' theorem to show that $\int_C \mathbf{F} \cdot d\mathbf{s} = 0$ where C is a closed curve.
- 17. Use Green's theorem to find the area of the loop of the curve $x = a \sin \theta \cos \theta$, $y = a \sin^2 \theta$, for a > 0 and $0 \le \theta \le \pi$.
- 18. Evaluate $\int_C yz \ dx + xz \ dy + xy \ dz$, where C is the curve of intersection of the cylinder $x^2 + y^2 = 1$ and the surface $z = y^2$.
- 19. Evaluate $\int_C (x+y) dx + (2x-z) dy + (y+z) dz$, where C is the perimeter of the triangle connecting (2, 0, 0), (0, 3, 0), and (0, 0, 6), in that order.
- **20.** Which of the following are conservative fields on \mathbb{R}^3 ? For those that are, find a function f such that $\mathbf{F} = \nabla f$.
 - (a) $\mathbf{F}(x, y, z) = 3x^2y\mathbf{i} + x^3\mathbf{j} + 5\mathbf{k}$
 - (b) $\mathbf{F}(x, y, z) = (x + z)\mathbf{i} (y + z)\mathbf{j} + (x y)\mathbf{k}$
 - (c) $\mathbf{F}(x, y, z) = 2xy^3\mathbf{i} + x^2z^3\mathbf{i} + 3x^2yz^2\mathbf{k}$
- 21. Consider the following two vector fields in \mathbb{R}^3 :

(i)
$$\mathbf{F}(x, y, z) = y^2 \mathbf{i} - z^2 \mathbf{j} + x^2 \mathbf{k}$$

(ii) $\mathbf{G}(x, y, z) = (x^3 - 3xy^2)\mathbf{i} + (y^3 - 3x^2y)\mathbf{j} + z\mathbf{k}$

- (a) Which of these fields (if any) are conservative on R³? (That is, which are gradient fields?) Give reasons for your answer.
- (b) Find potential for the fields that are conservative.
- (c) Let α be the path that goes from (0, 0, 0) to (1, 1, 1) by following edges of the cube $0 \le x \le 1$, $0 \le y \le 1$, $0 \le z \le 1$ from (0, 0, 0) to (0, 0, 1) to (0, 1, 1) to (1, 1, 1). Let β be the path from (0, 0, 0) to (1, 1, 1) directly along the diagonal of the cube. Find the values of the line integrals

$$\int_{\alpha} \mathbf{F} \cdot d\mathbf{s}, \qquad \int_{\alpha} \mathbf{G} \cdot d\mathbf{s}, \qquad \int_{\beta} \mathbf{F} \cdot d\mathbf{s}, \qquad \int_{\beta} \mathbf{G} \cdot d\mathbf{s}.$$

- 22. Consider the *constant* vector field $\mathbf{F}(x, y, z) = \mathbf{i} + 2\mathbf{j} \mathbf{k}$ in \mathbb{R}^3 .
 - (a) Find a scalar field $\phi(x, y, z)$ in \mathbb{R}^3 such that $\nabla \phi = \mathbf{F}$ in \mathbb{R}^3 and $\phi(0, 0, 0) = 0$.
 - (b) On the sphere Σ of radius 2 about the origin, find all the points at which
 - (i) ϕ is a maximum, and
 - (ii) φ is a minimum.
 - (c) Compute the maximum and minimum values of ϕ on Σ .
- **23.** Let **F** be a C^1 vector field and suppose $\nabla \cdot \mathbf{F}(x_0, y_0, z_0) > 0$. Show that for a sufficiently small sphere S centered at (x_0, y_0, z_0) , the flux of **F** out of S is positive.
- **24.** Let $B \subset \mathbb{R}^3$ be a planar region, and let $O \in \mathbb{R}^3$ be a point. If we connect all points in B to O, we get a cone, say C, with vertex O and base B. Show that

Volume
$$(C) = \frac{1}{3} \operatorname{area}(B) h$$
,

where h is the distance of O from the plane of B, using the following steps.

figure 8.R.1

- 1. Let O be the origin of the coordinate system. Define $\mathbf{r}(x, y, z) := (x, y, z)$. Evaluate the flux of \mathbf{r} through the boundary of C, that is, $\iint_{\partial C} \mathbf{r} \cdot \mathbf{n} \, dA$, where \mathbf{n} is the outward unit normal to ∂C .
- 2. Evaluate the total divergence $\iiint_C \nabla \cdot \mathbf{r} \, dV$.
- 3. Use Gauss' theorem, which states that the total divergence of a vector field within a region enclosed by a surface is equal to the flux of that vector field through the surface:

$$\iiint_C \nabla \cdot \mathbf{r} \, dV = \iint_{\partial C} \mathbf{r} \cdot \mathbf{n} \, dA.$$