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The Integral Theorems of Vector Anclysis

Since the eighteenth century, solutions to the wave equation have been well studied
{one learns these in most courses on differential equations). To indicate the wavelike
nature of the solutions, for example, observe that for any function f,

¢(I1x»ysz}=.f(x_z)

sotves the wave equation V¢ — (8¢ /31%) = 0. This solution just propagates the graph
of f like a wave; thus, we might conjecture that sotutions of Maxwell’s equations are
wavelike in natare. Historically, all of this was Maxwell’s great achievement, and it soen
led to Hertz's discovery of radio waves.

Mathematics again shows ifs uncanny ability not only to describe but to predict
natural phenomena.

exercises

In Exercises 1 to 4, verify the divergence theorem for the given region W, boundary 3W oriented owiward, and vector field F.

1.

10

E
11, Find the flux of the vector field F = (x — 32} + yj+x°k
out of the rectanguiar solid {0, 1] x [1, 2] x [1, 4].

W =1{0,13 x [0, 1] x {0, 1]
Fexi4+yj+2zk

by 2+ <z<landx =0
(c} x2+y25251311dx5{}
Repeat Exercise 9for F = (x — yii+{y—2)j +

{z — x)k. [The solution to part (b) only is in the Study
Guide to this text.}

W as in BExercise 1, and F == zpi + xzj + xpk 12, Evaluate [[,F-dS, where F = 3xp%i + 3x?yj + 2%k
and S is the surface of the unit sphere.
W= {(x,y,2) 1 x° +y*+27 < 1} (the unit ball),
F = xi+yj+zk 13. Let ¥ be the pyramid with top vertex (0, 0, 1}, and base
vertices at {0, 6, 03, (1,6, 0), (0, 1, 0), and {1, 1, 0). Let
. WasimExercise 3, and F = —yi+ xj+ zk S be the two-dimensional closed surface bounding ¥,
oriented outward from W. Use Gauss’ theorem to
. Use the divergence theorem to calculate the flux of calculate f IS F . dS, where:
F={(x~pi+{y—2)j-+{z—x)koutof the unit
sphere. F(x, v, 2) = {x°v, 337z, 92%x).
LetF = x*i+ J’_3j + z7k. Evaiuae the surface integral 14. Let ¥ be the three-dimensional solid enclosed by the
of I over the unit sphere. surfaces x = 3%, x = 9,2 = 0, and x = z. Let § be the
. . ‘ boundary of W Use Gauss’ theorem to find the flux of
Evaluate ﬂaW F-d8, where F = xi + yi + zkand W is F(x, y, 2} = (3x — 5v)i + {4z — 2v)j + (8yz)k across
the unit cube {in the first octant). Perform the calculation S f fS F-ds.
directly and check by using the divergence theorem.
‘ 15. EBvaluate jfaw F-ndd, where F(x, y,2) =
Repeat Exercise 7 for xi 4 yj— zkand ¥ is the unit cube in the first octant,
(a) Feibjtk P?rform the caloulation directly and check by using the
() F=x%+ 2% + 22k divergence theorem.
. 16. Evaluate th face integral F-ndA, where
Let F = yi + zf + xzk. Evaluate Jfaw F - d8 for each of 6 Fv:? nae —e i;u;r ?ce " e?igra J;fazsk . . A. Wh face
the following regions ¥ (7, Z). =1 +§l * ng +y7)"kand i is the su
ofthecylinderx“ + 3y~ = 1,0 =<z =< 1.
(@) x2+yp <z <}
17. Prove that

// (Vf)-Fdxdydz = /] S F-ndS :
W aw
— // fv.Fdxdydz
Bf
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18.

19,

20.

21.

22,

23,

Prove the identity
VA (ExG)=G-(VxF ~F(VxG).

Show that [{f,.(1/r%) drdydz = [ -n/rh) ds,
where r = xi+ yj+ zk.

Fix vectors vy, ..., v € B and numbers (“charges™)
415 -, g4 Define the function ¢ by ¢(x, y, 2) = Zk

i=1
g /(47 lr — v ), where r = (x, y, z). Show that for a
closed surface S and £ = — V¢,

//‘E'deQ,
A

where @ is the total charge inside S. (Assume that
Gauss’ law from Theorem 10 applies and that none of
the charges are on §.)

Prove Green’s identities

]/ j'Vg-ndS:ff (Vg + V7.V av

W W

and

/ f (fVg—gV /) -ndS = f f (fV2g~eVif)av.
o i

Suppose F satisfies div F = 0 and curl F = 0 on all of
R3. Show that we can write F = V[, where V2 f = (.

Let p be a continuous function on B3 such that

2{q) = 0 except for q in some region W, Let q € ¥ be
denoted by g = (x, », z}. The potential of p is defined
to be the function

_ £(q)
e = f//w TR

where [lp — g is the distance between p and q.

{a) Using the method of Theorem 10, show that

JLros= o

for those regions ¥ that can be partitioned into a
finite union of symmetric elementary regions.

(b) Show that ¢ satisfies Poisson’s equation

V2¢ = p,

[HINT: Use part {a).] (Notice that if p is a charge density,
then the integral defining ¢ may be thought of as the
sum of the potential at p caused by point charges
distributed over ¥ according to the density p.)

24,
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8.4 Gauss' Theorem °

Suppose F is tangent to the closed surface S = 9 of a
region W. Prove that

/f (divE)d ¥ = 0.
. W

Use Gauss’ law and symmetry to prove that the electric
field due to a charge ¢ evenly spread over the surface of
a sphere is the same outside the surface as the field from
2 point charge O located at the center of the sphere.
What is the fieid inside the sphere?

Reformulate Exercise 25 in terms of gravitational fields.

Show how Gauss’ law can be used to solve part (b) of
Exercise 29 in Section 8.3.

Let 8 be a closed surface. Use Gauss’ theorem to show
that if ¥ is 2 C? vector field, then we have
[V xFyds=6 .

Let S be the surface of region . Show that

//r-ndS = 3 volume (7).
g .

Explain this geometrically,

- For a steady-state charge distribution and

divergence-free current distribution, the electric and
magnetic fields E(x, v, z) and H(x, y, z) satisfy

VxE=0, V-He=0,
and Vx =]

Ved=0 V-E=pg,

Here p = plx, v, 2} and J(x, ¥, z) are assumed to be
known. The radiation that the fields produce through a
surface S is determined by a radiation fux density
vector fieid, called the Popnsing vector field,

P=ExH.

(a) If §'is a closed surface, show that the radiation
fux-—that is, the flux of P through S~-is given by

Jfra=-fff o

where V7 is the region enclosed by .
(b} Examples of such fields are

E(x,y,2) = zj + vk and
H(x, y,z) = —xyi+ xj + yzk.

In this case, find the flux of the Poynting vector
through the hemispherical shell shown in
Figure 8.4.9. (Notice that it is an open surface,)




The im‘regrgﬁheorems of Vector Anatysis

figrire 8.4.9 The surface for Exercise 30,

X

(¢) The fields of part (b) produce a Poynting vector figure 8.4.10 The surface for Exercise 30(c).
field passing through the toroidal surface shown in
Figure 8.4.10. What is the flux through this torus?

8.5 Differential Forms

Thetheory of differential forms provides an elegant way of formulating Green’s, Stokes’,
and Gauss® theorems as one statement, the fundamental theorem of calculus. The birth
of the concept of a differential form is another dramatic example of how mathematics
speaks to mathematicians and drives its own development. These three theorems are, in
reality, generalizations of the fundamental theorem of calcuius of Newton and Leibniz
for functions of one variable,

nfr
] F100) dx = f(B) - f(a)

to two and three dimensions,

Recall that Bernhard Riemann created the concept of n-dimensional spaces. If the
fundamental theorem of calculus was truly fiundamental, then it should generalize to
arbitrary dimensions. But wait! The cross product, and therefore the curl, does not -
generalize to higher dimensions, as we remarked in footnote 3, in Section 1.3, Thus, &
some new idea is needed.

Recall that Hamilton searched for almost 15 years for his quaternions, which ulti-
mately led to the discovery of the cross product. What is the nonexistence of & cross
product in higher dimensions telling us? If the fundamental theorem of calculus is the °
cote concept, this suggests the existence of a mathematical language in which it can be
formulated in n-dimensions. In order to achieve this, mathematicians realized that they -
were forced to move away from vectors and on to the discovery of dual vectors and an
entirely new mathematical object, a differential form. In this new language, all of the -
theorems of Green, Stokes, and Gauss have the same elegant and extraordinarily simple -
form. .

Simply and very briefly stated, an expression of the type P dx+ () dy is a 1-form, o
a differential one-form on aregion in the xy plane, and F dx dy is a 2-form. Analogously, -
we can define the notion of an »-form. There is an operation &, which takes »n-forms 0.
n + 1-forms. It is like a generalized cur} and has the property that for w = P dx+ O @




