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solution

8.3 Conservative Flelds ©

Lete: [1,2] — R be given by x == ¢! 3 == sin{w/¢). Compute the integral

fF-ds = /Zxcosydx—xzsinydy,
where F = (2x cos p)}i — (x?sin y)j.

The endpoints are e(1} = (1,0) and ¢(2) = {e, 1). Because 3(2x cos )/ 3y =
8(—x?siny)/8x, F is irrotational and hence a gradient vector field (as we saw in Ex-
ample 3). Thus, by Theorem 7, we can replace ¢ by any piecewise C! curve having the
same endpoints, in particular, by the polygonal path from (1, 0) to (e, 0) to (e, 1). Thus,
the line integral must be equal to

g H
fF-ds:/ 2tcoso.¢ir+/ —esint dt = (€ — 1) + e’(cos 1 — 1)
¢ I 0

=e*cosi—1.
Alternatively, using Theorem 3 of Section 7.2, we have®

J2xcosyae — s sinyay = 95w = o) - se(ty = éreos1 -1,
[ [4

because f(x, y) = x?cosy is a potential function for F. Evidently, this technigue is
simpler than computing the integral directly, &

We conclude this section with a theorem that is quite similar in spirit to Theorem 7.
Theorem 7 was motivated partly as a converse to the resuit that curl Vi = 0 forany C!
function f: B* — Re—or, if curl F = 0, then ¥ = Vf. We also know [formula (9) in
the table of vector identities in Section 4.4] that div(curl G) = 0 for any C? vector field
G. We can ask about the converse statement: If diy F e 0, is F the curl of a vector field
(7 The following theorem answers this in the affirmative.

~Theorem 8 If F is a C' vector ficld on all of R® with div F = 0, then there -

Jexistsa Clvector field Gwith F=curl G,

The proofis outlined in Exercise 20, We should warn you at this point that, unlike the
F in Theorem 7, the vector field F in Theorem & is not allowed to have an exceptional
point. For example, the gravitationai force feld F = ~(GmMr/r*) has the property
that div F = 0, and yet there is no G for which F = curl G (see Exercise 29). Theorem
8 does not apply, because the gravitational force field F is not defined at 0 e R

exercises

1. Determine whickh of the following vector fields ¥ in the 2. Repeat Exercise 1 for the following vector fieids:

plane is the gradient of a scalar function f. If such an f

exists, find it.

(&) Flx,y)=xi+yj
(b} ¥(x,y) = xyi+ xyj
(e} Fx,y} = (x? + 37+ 2xyj

(8) F(x, y) = (cosxy — xysinxy)i— (x? sinxy}j

(b) Flx, y) = (x+/x%p2 + D)+ (p4/x25% + D

(e} Flx,y) = (2x cos y + cos )i — (x sin y + x sin y)j




#

A TLN

1.

1.

12.

The Integral Theorems of Vector Analysis

. For each of the following vector fields F, determine (i) if

there exists a function g such that Vg = F, and (ii) if
there exists a vector field G such that curl G = F. {Itis
not necessary to find g or G.)

(@ Flx,y,2)={4xz—x, —4yz,z~1y)

(b) F(x, y,2) = (& siny, & cos y, 2%)

(¢} Fix, y,z) = (log(z* + 1) + y* 2xy, F&

(d) F(x,y, z) = (x? +xsinz, yeosz — 2xy,
cosz -+ sinz)

For each of the following vector fieids F, determine (i) if
there exists a function g such that Vg = F, and (i) if
there exists a vector field G such that curl G = F. (It is
naot necessary to find g or G)

(a) Flx,y,z) == (" cosy, —¢* siny, )
_ ~2xypz

®) Fx.y.2) = (g 7 5iets)

(©) B(x,y,2) = (x*y%2%, ye*, xy cos2)

{d) F(x,p z) = (625y5, Gy 5%, 4x3y3)

Show that any two potential functions for a vector field
on R? differ at most by a constant.

. () LetF(x, ) = {xy, ¥*) and let ¢ be the path y = 2x?

joining (0, 0) to (1, 2) in R*. Evaluate [, F-ds.

(b) Does the integral in part (z) depend on the path
joining (6, 0) to (1, 2)7

. LetF(x, y, z} = (2xyz + sinx)i + x2zj + x?yk. Finda

function 7 such that F = V£,

Evaluate fc F . ds, where c(f) = (cos® 1, sin’ 7, 3,
0 <t <wn,and Fisasin Exercise 7,

If 7(x) is a smooth function of one variable, must

F(x, y) = f(x)i + f(»)j be a gradient?

(2} Show that F = —r/||ri? is the gradient of
flx,p,2)y=1/r.

(b) What is the work done by the force F = —r /il in
moving a particle from a point rp € R® “to co,”
where r(x, v, z) = (x, y, 2)?

LetF(x, y, 2} = xyi + yj + zk. Can there exista

function f such that F = Vf?

Let ¥ = Fii + F3j + Fak and suppose each £ satisfies

the homogeneity condition

Fylex, ty, tz) = tFi(x, y, z). b==1,23.
Suppose also V x F = §. Prove that F = V[, where

2f(x, v,y =xF(x, v, )4y, v, 23+ F3(x, v, 2).

{HNT: Use Review Exercise 31, Chapter 2.]

i3,

14.

15,

16.

17.

18.

19.

Let F(x, v, z) = (&" siny)i + {&” cos p)j + z°k.
Evatuate the integral fc F - ds, where

e(t) = (I, 3, exp /1), 0 < i < 1,

Let a fluid have the velocity field F(x, y, 2) =
xyi+ yzj -+ xzk What is the circulation around the unit
circle i the xy plane? Interpret your answer.

The mass of the earth is approximately 6 x 107
that of the sun is 330,000 times as much. The
gravitational constant is 6.7 x 1078 em?/s? « g, The
distance of the earth from the sun is about 1.5 x 1012 ¢,
Compute, approximately, the work necessary to increase
the distance of the earth from the sun by 1 cm.

gand

{a) Show that fc(x dy — y dx)f(x? 4+ y7) = 2o, where
€ 1s the unit cirgle,

Conclude that the associbated vector field

[—y/(x* + 7Dl + /(3 + ¥ s not a
conservative field.

Show, however, that 8P /oy = 30 /dx. Does this
contradict the corollary to Theorem 77 If not, why
not?

(b)

(c)

Determine if the following vector fieids F are gradient
fields. If there exists a fuction f suchthat Vf = F,
find f.

(@ F(x,y,2) = Qxyz, xz,x7y)

(b) F(x, y) = (xcosy, xsiny)

(c) F(x,y,z) = (x2e, xyz, &)

(@) F(x, ) = (2x cosy, —x* siny)

Determire if the following vector fieids F are gradient
fields. If there exisis a function f such that V f = F,
find f.

{(a) Fex,y) ={(2x 4 ¥* — ysinx, Zxyz + cos x)

(0) F(x,y,2) = (6x72%, 5572, 4y*z%)

(e) F(x,») = (" + 130 + 1)

(d)y Flx, p) = (e g 2xy, el 4oaylz b

Show that the following vector fields are conservative.
Calculate {,. F - ds for the given curve,

() F = (xp? + 32291 + (x + y)x2j; C is the curve
consisting of line segments from (1, 1) to (0, 2) to
(3,0

2x 2p(x% 4 1) . . :

b} F= i— -j; C ametrized by

(b} i 1l IR j; C is par :
xmp =1 y=f 0] :

() F = [cos{xy?) — xp? sin(xy")}i — 2x7y sin (X}’Z}ji_f
C is the curve {¢, &), —1 < < 0. ;
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20. Prove Theorem 8. [HINT: Define G = G1i+ G2j + G3k
by

z ¥
Gi{x,y,z) = / Fo(x, y, 1) df — / Falx,t,0) dt
0 40
4
Golx, v,2) = mf Fi{x,y, ) dt
Q

and Ga(x, y, z) = 0.]

21. Is each of the following vector fields the curl of some
other vector field? If so, find the vector field.

(a) F=xi+yj+zk
) F={x?+1Di+{z~2mj+yk

22, LetF = xzi — yzj + yk Verify that V.- F= 0. Find 2 G
such that F == ¥V x G.

23. Repeat Exercise 22 for F = y%i + 22§ + x°k,

24, LetF = xe¥i -~ (x cosz)j — ze’'k. Find a G such that
F=VxG.

25, LetF = (x cos y)i — (siny)j + (sinx)k. Find a G such
that F =V x G,

26, By using different paths from (0, 0, 0) to (x, y, z), show

that the function [ defined in the proof of Theorem 7 for

“condition (ii) implies condition (iii)” satisfies

af/ox = Fyand 8f /0y = 2.

27.

28.

29,

5

B.4 Gauss' Theorem | 461 °

Let F be the vector field on R? given by ¥ = —yi -+ xj.
(2) Show that F is rotational, that i3, F is not
irrotational.

(b) Suppose F represents the velocity vector field of a
fluid. Show that if we place a cork in this fluid, it
will revolve in a plane parallel to the xy plane, ina
circular frajectory about the z axis,

(c) In what direction does the cork revolve?

Let G be the vector field on B\ {z axis} defined by

G —¥ i 4 x
= 1
x2+y2 x2+y

7

(a) Show that G is irrotational.

(b) Show that the resuit of Exercise 27(b) holds for G
also.

{¢) How can we resolve the fact that the trajectories of
F and G are both the same {circular about the z axis}
yet ¥ is rotationa¥and G is not? {HiNT: The property
of being rotational is a local condition, that is, a
property of the finid in the neighborhood of 2 point.]

Let F = —{GmMr/r®) be the gravitational force fisid
defined on T3\ [0].

(2) Showthatdiv¥ = 0.

(b) Show that F s£ curl G for any CT vector field G on
E*\(0}.

8.4 Gauss Theorem

example |

Gauss’ theorem states that the flux of a vector field out of a closed surface equals the
integral of the divergence of that vector field over the volume enclosed by the surface.
The result parailels Stokes’ theorem and Green’s theorem in that it relates an integral
over 4 closed geometric object {curve or surface) to an integral over a contained region
(surface or volume).

Elementary Regions and Their Boundaries -

We shalf begin by asking you to review the various elementary regions in space that
were introduced when we considered the volume integral; these regions are illustrated in
Figures 5.5.2 and 5.5.4. As these figures indicate, the boundary of an elementary region
in R is a surface made up of a finite number (at most six, at Jeast two) of surfaces that
can be described as graphs of functions from R* to R. This kind of surface is called a
closed surface. The surfaces Sy, Sz, . . ., Sy composing such a closed surface are called
its faces.

The cube in Figure 8.4.1(a) is an elementary region, and in fact a symmetric elementary
region, with six rectangies composing its boundary. The sphere in Figure 8.4.1(b) is the
boundary of a solid ball, which is also a symmetric elementary region.




