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example 4 | LetF = % + x5 Compute the integral of the normal compaotient of F around the unit

Square,
sciution This can be done using the divergence theorem. Indeed
. /F-nds://diVFdA.
ap D
i But div I = 0, and so the integral is zero. 4
exercises
1. Let D be the triangle in the xy plane with vertices at 2. Let D be the region in the xy plane lving between the
(=L, 13, (1, ), and (3, 2). Describe the boundary 4D as curves y = x% + 4 and y = 2x2. Describe the boundary
a piecewise smooth curve, oriented counterclockwise, a0l ag a piecewise smooth curve, oriented
counterclockwise.
In Exercises 3 to 6, verify Green's theorem Jor the indicated region I and boundary 30, and finctiont P and o
o
3. D= [, ITxi-1,1], Plx, )= —y, (a) P(x,y):xyZ, Q{x,y)=wyx2
8 O, y) == (b) P(x,y) =x+4y, Ox, 3} =y
O | & D=[=1L1x{~L1L Pry)=x Oy =y © Plx,y)=xy = Q. y)
Ho ‘ (A} P(x,p) =27, Q(x, ) = x
see 5. D=[-L1]x[~1,1], Px,y)=x-—y,
‘ Qx, M =x+y 12, Using the divergence theorem, show that
[HiINT: Use 3 and 4.} Jap F - ds = 0, where Fx, ) = yi — xjand D is the
unit disc. Verify this directly.
1t ’ 6. D= [0, %] X [O, %] . P{x,y)=sinx,
Ofx, 3) = cos y 13. Find the area bounded by one arc of the cycloid
X = a{f —~sinf), y = all - cos 8}, where g > 0, and
7. Let C be the closed, piecewise smooth curve formed by 0= 8 < 2, and the x axis (use Green’s theorem).
traveling in straight lines between the points (=2, 13,
(=2, -3), (1, =1}, (1, 5). and back to (2, 1), in that 14. Under the conditions of Green’s theorem, prove that

order. Use Green’s theorem to evaluate the integral:
(2} POdx+ POdy =

o
[ (2xy)dx+ (xy7) dy P op 00 80
e fﬂg(ﬁ;“@“’(ﬁ‘w}}d‘d”

8. A particle travels across a fat surface, moving due east

for 3 m, then due north for 4 m, and then returns to its sP a0 30 ap
origin, A force field acts on the particle, given by {b) o w P R dy
Flx, y) = (3x + 4y2)i + (10xy)j. (Here we assume that aw -
J points north.} Use Green’s theorem to find the work 5 ' 320 82 p ;
. - P e ()
done on the particle by F. ‘ / /D Bx dy o B 9y id
9. Evahate f o ¥ dx - xdy, where C is the boundary of the 15. Bvaluste the line integral
square {1, 13 x [—1, 1] oriented in the
counterclockwise direction, using Green's theorem.
3.3 3,3

10. Find the area of the disc D of radius R using Green’s /; (227 = %) dx + (x7 + ) dy,
theorem.

11, Verify Green's theorem for the disc D with center (0,0 where C is the unit circle, and verify Green’s theorem

and radius R and the functions: for this case.




438 *  The Integral Theorerns of Viector Analysis

16. Prove the following generalization of Green’s theorem:
Let D be a region in the xy plane with boundary a finite
number of oriented simple closed curves. Suppose that
by means of a finite number of line segments parallel to
the coordinate axes, D can be decomposed into a finite
rumber of simple regions D; with the boundary of each
D; oriented counterclackwise {see Figure 8.1.5). Then if
P and Q are of class C! on I3,

] (E‘Q—-?}—)-)dxdyzf P+ Qdy,
p \dx 8y an

where 8D is the oriented boundary of D. (HINT: Apply
Green’s theorem to each ;)

17. Verify Green's theorem for the integrand of Fxercise 15
(that is, with P == 2x* — ¥ and O = x* + v) and the
annular region D described by a < x4 v < b, with
boundaries oriented as in Figure 8.1.5.

18. Let D be a region for which Green’s theorem holds.
Suppose [ is harmonic; that is,

#f 8f
axz | @y
on ). Prove that

f ?—j—i dx — i3~Jia’y =,
ap 0¥ dx

(a} Verify the divergence theorem for F = xi + yj and
D> the unit disc x2 + 32 < 1.

(b) Evahuate the integral of the normal component of
2xyi — y*j around the ellipse defined by
x2ja? 4y bt =1,

19

200 Let P{x, 3t = —y/(x* + ¥y and
O(x, ¥) = x/(x* 4+ p2). Assuming D ig the unit diss,
investigate why Green’s theorem fzils for this P and Q.

21. Use Green’s theorem to evaluate f o+ L y2 ok xd) de +
x*dy, where C' is the perimeter of the square {§, 1] x
4, 1] in the counterclockwise direction.

22, Verify Theorem 3 by showing that
{V x Fy k= 30/0x — aP/ay.

23. Use Theorem 2 to compute the area inside the eflipse
x?ja® oy fht =,

24. Use Theorem 2 to recover the formula 4 = 1 fj rtdp
for a region in polar coordinates,

25. Sketch the proof of Green's theorem for the region
shown in Figure 8.1.10.

figure 8.1.16Prove
Green's theorem for
this reglon.,

26. Prove the identity

¢v¢>-nds://(¢V2¢+v¢.V¢)dA.
ab 2l

27, Use Green's theorem to find the area of one loop of the
four-leafed rose r = 3 sin 26, (HINT:
xdy —ydy=rida.)

28. Show that if C is a simple ciosed curve that bounds a

region to which Green’s theorem applies, then the area
of the region [ bounded by C is

Am/ xdy:wf ydx.
an 8D

Show how this implies Theorem 2.

Exercises 29 to 37 illustrale the application of Green’s theorem to partial differential equations. (Further applications are
given in the Internet supplement.} They are particularly concerned with solutions to Laplace s equation, that is, with
harmonic functions. For these exercises, let I be an open region in R? with boundary 8D, Letu: DD — Rbea
continuous function that is of class C* on D. Suppose p € D and the closed discs B, = B,(p} of radius p centered at p are

contained in D for 0 < p < R. Define I{p} by

1
I(p)zw/ u ds.
£ Jjar

29. Show that imit,—.¢ 1(0) = 2mu(p.

30. Let n denote the outward unit normal to 8 B o

and du/dn = Vu - n. Show that

/ ?ﬁdm// V2 dA.
35, In 3,




31.

32.

33.

34.

Using Exercise 30, show that
ey =(1/p) [fy Viuad.

Suppese u satisfies Lapiace’s equation: V2 = O on 7).
Use the preceding exercises to show that

i

u(p) = —

uds.
2n R 85,

{This expresses the fact that the value of 1 harmonic
function at a point is the average of its valaes on the
circumference of any disc centered about it}

Use Exercise 32 to show that if # is harmonic (ie., if
V2 = 0), then u(p} car be expressed as an area integral

1

Suppose u is a harmonic function defined on D (ie.,
V2u = § on D) and that « has a Jocal maximum (or
minimumy} at a peint p in D,

(a) Show that % must be constant on some disc centered
at p. (HINT: Use the results of Exercise 25

(b} Suppose that D is path-connected [i.e., for any
points p and g in D, there is a continuous path
€ [0, 1] = D such that ¢(0) = p and e(1) = g] and
that for some p the maximum or minimum at pis
absolute; thus, u(q) < u(p) or uiq) > u{p) for
every q in 0. Show that i must be constant on D.

(The result in this Exercise is called a strong
maximum or minimum principle for harmonic
functions, Compare this with Exercises 46 to 50 in
Section 3.3.)

35,

36.

37.

38.
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A funotion is said to be subharmonic on D if V3 » 0
everywhere in D. It is said to be superharmonic it
Vu < 0.

{(a) Derive a strong maximum principie for
-subharmonic functions.

{b) Derive a strong minimum principie for
superharmonic functions.

Suppose D is the dise {{x, y) | x2 +3% < ljand Cis
the circie {(x, 3) | x® + ¥? = 1}. In the Internet
supplement, we shall show that if £ is a continuous
real-valued function on C, then there is a continuous
function 1 on D U C that agrees with Jon Candis
harmonic on D. That is, £ has a harmonic extension to
the disc. Assuming this, show the following:

{8} 1f'g is a nonconstant continuous finction on DU C
that is subharmonic {but not harmonic) on D, then
there is a continuous fiinction ¥ on D U € that is
harmonic on D such that u agrees with g on C and
¢ < u everywhere on D,

{b) The same assertion holds if “subharmonic” is
replaced by “superharmonic™ and “g < u” by
l-ﬁq > u"!

Let D be as in Exercise 36, Let f: D — R be
continuous. Show that a solution to the equation
Vi =10 satisfving u#(x) = f(x) forall x € 3D is
unique. '

Use Green’s theorem to prove the change of variables
formula in the following special case:

i 3(x, ¥)
/jD dxdym./‘/o* !mﬂ(u, U);dudv

for a transformation (z, v) > (x(u, v), y(u, v)).

8.2 Stokes’ Theorem

Stokes’ theorem relates the line integral of a vector field around a simple closed curve
C in R’ to an integral over a surface § for which C is the boundary. In this regard it is
very much like Green’s theorem.

Stokes’ Theorem for Graphs

Let us begin by recalling a few facts from Chapter 7. Consider a surface § that is the
graph of a function f(x, ), so that S is parametrized by

X =u
y=u

2= flu.v) = fx,3)




