exercises

1. The helicoid can be described by

 $\Phi(u, v) = (u \cos v, u \sin v, bv)$, where $b \neq 0$.

Show that H = 0 and that $K = -b^2/(b^2 + u^2)^2$. In Figures 7.7.1 and 7.7.5, we see that the helicoid is actually a soap film surface. Surfaces in which H = 0 are called *minimal surfaces*.

2. Consider the saddle surface z = xy. Show that

$$K = \frac{-1}{(1+x^2+y^2)^2},$$

and that

$$H = \frac{-xy}{(1+x^2+y^2)^{3/2}}.$$

- 3. Show that $\Phi(u, v) = (u, v, \log \cos v \log \cos u)$ has mean curvature zero (and is thus a minimal surface; see Exercise 1).
- 4. Find the Gauss curvature of the elliptic paraboloid

$$z = \frac{x^2}{a^2} + \frac{y^2}{b^2}.$$

5. Find the Gauss curvature of the hyperbolic paraboloid

$$z = \frac{x^2}{a^2} - \frac{y^2}{b^2}.$$

6. Compute the Gauss curvature of the ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{a^2} + \frac{z^2}{c^2} = 1.$$

7. After finding K in Exercise 6, integrate K to show that:

$$\frac{1}{2\pi} \iint_S K \, dA = 2.$$

- **8.** Find the curvature *K* of:
 - (a) the cylinder $\Phi(u, v) = (2 \cos v, 2 \sin v, u)$
 - (b) the surface $\Phi(u, v) = (u, v, u^2)$
- 9. Show that Enneper's surface

$$\Phi(u,v) = \left(u - \frac{u^3}{3} + uv^2, v - \frac{v^3}{3} + u^2v, u^2 - v^2\right)$$

is a minimal surface (H = 0).

- 10. Consider the torus T given in Exercise 4, Section 7.4. Compute its Gauss curvature and verify the theorem of Gauss-Bonnet. [HINT: Show that $\|T_{\theta} \times T_{\phi}\|^2 = (R + \cos \phi)^2$ and $K = \cos \phi/(R + \cos \phi)$.]
- 11. Let $\Phi(u, v) = (u, h(u) \cos v, h(u) \sin v), h > 0$, be a surface of revolution. Show that $K = -h''/h\{1 + (h')^2\}^2$.
- 12. A parametrization Φ of a surface S is said to be **conformal** (see Section 7.4), provided that E = G, F = 0. Assume that Φ conformally parametrizes S. ¹⁹ Show that if H and K vanish identically, then S must be part of a plane in \mathbb{R}^3 .

review exercises for chapter 7

- 1. Integrate f(x, y, z) = xyz along the following paths:
 - (a) $\mathbf{c}(t) = (e^t \cos t, e^t \sin t, 3), 0 < t < 2\pi$
 - (b) $\mathbf{c}(t) = (\cos t, \sin t, t), 0 \le t \le 2\pi$
 - (c) $\mathbf{c}(t) = \frac{3}{2}t^2\mathbf{i} + 2t^2\mathbf{j} + t\mathbf{k}, 0 \le t \le 1$
 - (d) $\mathbf{c}(t) = t\mathbf{i} + (1/\sqrt{2})t^2\mathbf{j} + \frac{1}{3}t^3\mathbf{k}, 0 \le t \le 1$
- 2. Compute the integral of f along the path c in each of the following cases:
 - (a) f(x, y, z) = x + y + yz; $\mathbf{c}(t) = (\sin t, \cos t, t)$, $0 < t < 2\pi$
 - (b) $f(x, y, z) = x + \cos^2 z$; $\mathbf{c}(t) = (\sin t, \cos t, t)$, $0 < t < 2\pi$

¹⁹Gauss proved that conformal parametrization of a surface always exists. The result of this exercise remains valid even if Φ is not conformal, but the proof is more difficult.

- (c) f(x, y, z) = x + y + z; $\mathbf{c}(t) = (t, t^2, \frac{2}{3}t^3)$, $0 \le t \le 1$
- 3. Compute each of the following line integrals:
 - (a) $\int_C (\sin \pi x) dy (\cos \pi y) dz$, where C is the triangle whose vertices are (1, 0, 0), (0, 1, 0), and (0, 0, 1), in that order
 - (b) $\int_C (\sin z) dx + (\cos z) dy (xy)^{1/3} dz$, where C is the path $\mathbf{c}(\theta) = (\cos^3 \theta, \sin^3 \theta, \theta), 0 \le \theta \le 7\pi/2$
- 4. If F(x) is orthogonal to c'(t) at each point on the curve x = c(t), what can you say about $\int_{c} F \cdot ds$?
- 5. Find the work done by the force $\mathbf{F}(x, y) = (x^2 y^2)\mathbf{i} + 2xy\mathbf{j}$ in moving a particle counterclockwise around the square with corners (0, 0), (a, 0), (a, a), (0, a), a > 0.
- **6.** A ring in the shape of the curve $x^2 + y^2 = a^2$ is formed of thin wire weighing |x| + |y| grams per unit length at (x, y). Find the mass of the ring.
- 7. Find a parametrization for each of the following surfaces:

(a)
$$x^2 + y^2 + z^2 - 4x - 6y = 12$$

(b)
$$2x^2 + y^2 + z^2 - 8x = 1$$

(c)
$$4x^2 + 9y^2 - 2z^2 = 8$$

8. Find the area of the surface defined by

$$\Phi$$
: $(u, v) \mapsto (x, y, z)$, where

$$x = h(u, v) = u + v,$$
 $y = g(u, v) = u,$
 $z = f(u, v) = v;$

 $0 \le u \le 1$, $0 \le v \le 1$. Sketch.

9. Write a formula for the surface area of $\Phi: (r, \theta) \mapsto (x, y, z)$, where

$$(r, 0) \mapsto (x, y, 2), \text{ where}$$

$$x = r \cos \theta, \qquad y = 2r \sin \theta, \qquad z = r$$

 $0 \le r \le 1, 0 \le \theta \le 2\pi$. Describe the surface.

- 10. Suppose z = f(x, y) and $(\partial f/\partial x)^2 + (\partial f/\partial y)^2 = c$, c > 0. Show that the area of the graph of f lying over a region D in the xy plane is $\sqrt{1+c}$ times the area of D.
- 11. Compute the integral of $f(x, y, z) = x^2 + y^2 + z^2$ over the surface in Review Exercise 8.
- 12. Find $\iint_S f dS$ in each of the following cases:
 - (a) f(x, y, z) = x; S is the part of the plane x + y + z = 1 in the positive octant defined by $x \ge 0, y \ge 0, z \ge 0$

- (b) $f(x, y, z) = x^2$; S is the part of the plane x = z inside the cylinder $x^2 + y^2 = 1$
- (c) f(x, y, z) = x; S is the part of the cylinder $x^2 + y^2 = 2x$ with $0 \le z \le \sqrt{x^2 + y^2}$
- 13. Compute the integral of f(x, y, z) = xyz over the rectangle with vertices (1, 0, 1), (2, 0, 0), (1, 1, 1), and (2, 1, 0).
- 14. Compute the integral of x + y over the surface of the unit sphere.
- 15. Compute the surface integral of x over the triangle with vertices (1, 1, 1), (2, 1, 1), and (2, 0, 3).
- **16.** A paraboloid of revolution S is parametrized by $\Phi(u, v) = (u \cos v, u \sin v, u^2), 0 \le u \le 2, 0 \le v \le 2\pi$
 - (a) Find an equation in x, y, and z describing the surface.
 - (b) What are the geometric meanings of the parameters u and v?
 - (c) Find a unit vector orthogonal to the surface at $\Phi(u, v)$.
 - (d) Find the equation for the tangent plane at $\Phi(u_0, v_0) = (1, 1, 2)$ and express your answer in the following two ways:
 - (i) parametrized by u and v; and
 - (ii) in terms of x, y, and z.
 - (e) Find the area of S.
- 17. Let $f(x, y, z) = xe^y \cos \pi z$.
 - (a) Compute $\mathbf{F} = \nabla f$.
 - (b) Evaluate $\int_C \mathbf{F} \cdot d\mathbf{s}$, where $\mathbf{c}(t) = (3\cos^4 t, 5\sin^7 t, 0), 0 \le t \le \pi$.
- **18.** Let $\mathbf{F}(x, y, z) = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$. Evaluate $\iint_S \mathbf{F} \cdot d\mathbf{S}$, where S is the upper hemisphere of the unit sphere $x^2 + y^2 + z^2 = 1$.
- 19. Let $\mathbf{F}(x, y, z) = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$. Evaluate $\int_{\mathbf{c}} \mathbf{F} \cdot d\mathbf{s}$, where $\mathbf{c}(t) = (e^t, t, t^2)$, $0 \le t \le 1$.
- **20.** Let $\mathbf{F} = \nabla f$ for a given scalar function. Let $\mathbf{c}(t)$ be a closed curve, that is, $\mathbf{c}(b) = \mathbf{c}(a)$. Show that $\int_{\mathbf{c}} \mathbf{F} \cdot d\mathbf{s} = 0$.
- **21.** Consider the surface $\Phi(u, v) = (u^2 \cos v, u^2 \sin v, u)$. Compute the unit normal at u = 1, v = 0. Compute the equation of the tangent plane at this point.

- 22. Let S be the part of the cone $z^2 = x^2 + y^2$ with z between 1 and 2 oriented by the normal pointing out of the cone. Compute $\iint_S \mathbf{F} \cdot d\mathbf{S}$, where $\mathbf{F}(x, y, z) = (x^2, y^2, z^2)$.
- 23. Let $\mathbf{F} = x\mathbf{i} + x^2\mathbf{j} + yz\mathbf{k}$ represent the velocity field of a fluid (velocity measured in meters per second). Compute how many cubic meters of fluid per second are crossing the xy plane through the square $0 \le x \le 1$, $0 \le y \le 1$.
- 24. Show that the surface area of the part of the sphere $x^2 + y^2 + z^2 = 1$ lying above the rectangle $[-a, a] \times [-a, a]$, where $2a^2 < 1$, in the xy plane is

$$A = 2 \int_{-a}^{a} \sin^{-1} \left(\frac{a}{\sqrt{1 - x^2}} \right) dx.$$

25. Let S be a surface and C a closed curve bounding S. Verify the equality

$$\iint_{S} (\nabla \times \mathbf{F}) \cdot d\mathbf{S} = \int_{C} \mathbf{F} \cdot d\mathbf{s}$$

if F is a gradient field (use Review Exercise 20).

- **26.** Calculate $\iint_S \mathbf{F} \cdot d\mathbf{S}$, where $\mathbf{F}(x, y, z) = (x, y, -y)$ and S is the cylindrical surface defined by $x^2 + y^2 = 1$, $0 \le z \le 1$, with normal pointing out of the cylinder.
- 27. Let S be the portion of the cylinder $x^2 + y^2 = 4$ between the planes z = 0 and z = x + 3. Compute the following:
 - (a) $\iint_{S} x^2 dS$
 - (b) $\iint_S y^2 dS$
 - (c) $\iint_S z^2 dS$

28. Let Γ be the curve of intersection of the plane z = ax + by, with the cylinder $x^2 + y^2 = 1$. Find all values of the real numbers a and b such that $a^2 + b^2 = 1$ and

$$\int_{\Gamma} y \, dx + (z - x) \, dy - y \, dz = 0.$$

29. A circular helix that lies on the cylinder $x^2 + y^2 = R^2$ with pitch p may be described parametrically by

$$x = R\cos\theta, \quad y = R\sin\theta, \quad z = p\theta, \quad \theta \ge 0.$$

A particle slides under the action of gravity (which acts parallel to the z axis) without friction along the helix. If the particle starts out at the height $z_0 > 0$, then when it reaches the height $z, 0 \le z < z_0$, along the helix, its speed is given by

$$\frac{ds}{dt} = \sqrt{(z_0 - z)2g},$$

where s is arc length along the helix, g is the constant of gravity, and t is time.

- (a) Find the length of the part of the helix between the planes $z = z_0$ and $z = z_1$, $0 \le z_1 < z_0$.
- (b) Compute the time T_0 it takes the particle to reach the plane z = 0.

and

the

with

 $\leq 2\pi$.

reters

in the