the same formula we derived (in Chapter 2) for the plane tangent to S at the point $(x_0, y_0, z_0) \in S$.

It is also useful to consider piecewise smooth surfaces, that is, surfaces composed of a certain number of images of smooth parametrized surfaces. For example, the surface of a cube in \mathbb{R}^3 is such a surface. These surfaces are considered in Section 7.4.

example 5

Find a parametrization for the hyperboloid of one sheet:

$$x^2 + y^2 - z^2 = 1.$$

solution

Because x and y appear in the combination $x^2 + y^2$, the surface is invariant under rotation about the z axis, and so it is natural to write

$$x = r\cos\theta, \qquad y = r\sin\theta.$$

Then $x^2 + y^2 - z^2 = 1$ becomes $r^2 - z^2 = 1$. This we can conveniently parametrize by

$$r = \cosh u$$
, $z = \sinh u$.

Thus, a parametrization is

$$x = (\cosh u)(\cos \theta),$$
 $y = (\cosh u)(\sin \theta),$ $z = \sinh u,$

where
$$0 \le \theta < 2\pi, -\infty < u < \infty$$
.

exercises

In Exercises 1 to 3, find an equation for the plane tangent to the given surface at the specified point.

1.
$$x = 2u$$
, $y = u^2 + v$, $z = v^2$, $at(0, 1, 1)$

3.
$$x = u^2$$
, $y = u \sin e^v$, $z = \frac{1}{3}u \cos e^v$, $at (13, -2, 1)$

2.
$$x = u^2 - v^2$$
, $y = u + v$, $z = u^2 + 4v$, $at(-\frac{1}{4}, \frac{1}{2}, 2)$

4. At what points are the surfaces in Exercises 1 and 2 regular?

In Exercises 5 and 6, find all points (u_0, v_0) , where $S = \Phi(u_0, v_0)$ is **not** smooth (regular).

5.
$$\Phi(u, v) = (u^2 - v^2, u^2 + v^2, v)$$

6.
$$\Phi(u, v) = (u - v, u + v, 2uv)$$

7. Match the following parameterizations to the surfaces shown in the figures.

(a)
$$\Phi(u, v) = ((2\sqrt{1+u^2})\cos v, (2\sqrt{1+u^2})\sin v, u)$$

(b)
$$\Phi(u, v) = (3\cos u \sin v, 2\sin u \sin v, \cos v)$$

(c)
$$\Phi(u, v) = (u, v, u^2)$$

(d)
$$\Phi(u, v) = (u \cos v, u \sin v, u)$$

trized (3) is

!vk,

)

 $u_0, v_0)$

cannot of the

, 0, 1),

ırface,

ı para- $∈ \mathbb{R}^3$.

(2)

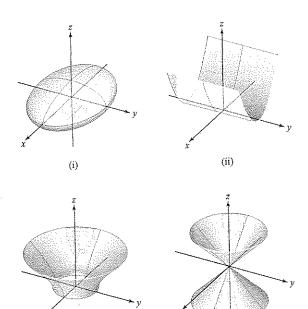
zation

point

u and

(3)

⁹Recall from one-variable calculus that $\cosh u = (e^u + e^{-u})/2$ and $\sinh u = (e^u - e^{-u})/2$. We easily verify from these definitions that $\cosh^2 u - \sinh^2 u = 1$.



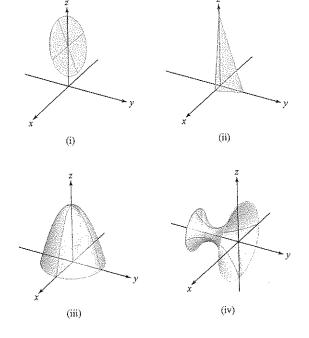
- **8.** Match the following parametrizations to the surfaces shown in the figures.
 - (a) $\Phi(u, v) = (u \cos v, u \sin v, 4 u \cos v u \sin v);$ $u \in [0, 1], v \in [0, 2\pi]$

(iv)

(b) $\Phi(u, v) = (u \cos v, u \sin v, 4 - u^2)$

(iii)

- (c) $\Phi(u, v) = (u, v, \frac{1}{3}(12 8u 3v))$
- (d) $\Phi(u, v) = ((u^2 + 6u + 11)\cos v, u, (u^2 + 6u + 11)\sin v)$



9. Find an expression for a unit vector normal to the surface

$$x = \cos v \sin u$$
, $y = \sin v \sin u$, $z = \cos v$

at the image of a point (u, v) for u in $[0, \pi]$ and v in $[0, 2\pi]$. Identify this surface.

10. Repeat Exercise 9 for the surface

$$x = 3\cos\theta\sin\phi$$
, $y = 2\sin\theta\sin\phi$, $z = \cos\phi$
for θ in $[0, 2\pi]$ and ϕ in $[0, \pi]$.

11. Repeat Exercise 9 for the surface

$$x = \sin v, \qquad y = u, \qquad z = \cos v$$

for $0 \le v \le 2\pi$ and $-1 \le u \le 3$.

12. Repeat Exercise 9 for the surface

$$x = (2-\cos v)\cos u, \quad y = (2-\cos v)\sin u, \quad z = \sin v$$

for $-\pi \le u \le \pi, -\pi \le v \le \pi$. Is this surface regular?

- 13. (a) Develop a formula for the plane tangent to the surface x = h(y, z).
 - (b) Obtain a similar formula for y = k(x, z).
- 14. Find the equation of the plane tangent to the surface $x = u^2$, $y = v^2$, $z = u^2 + v^2$ at the point u = 1, v = 1.
- 15. Find a parametrization of the surface $z = 3x^2 + 8xy$ and use it to find the tangent plane at x = 1, y = 0, z = 3. Compare your answer with that using graphs.
- 16. Find a parametrization of the surface $x^3 + 3xy + z^2 = 2$, z > 0, and use it to find the tangent plane at the point x = 1, y = 1/3, z = 0. Compare your answer with that using level sets.
- 17. Consider the surface in \mathbb{R}^3 parametrized by

$$\begin{aligned} & \Phi(r,\theta) = (r\cos\theta,r\sin\theta,\theta), \quad 0 \le r \le 1 \\ & \text{and} \quad 0 \le \theta \le 4\pi. \end{aligned}$$

- (a) Sketch and describe the surface.
- (b) Find an expression for a unit normal to the surface.
- (c) Find an equation for the plane tangent to the surface at the point (x_0, y_0, z_0) .
- (d) If (x_0, y_0, z_0) is a point on the surface, show that the horizontal line segment of unit length from the z axis through (x_0, y_0, z_0) is contained in the surface and in the plane tangent to the surface at (x_0, y_0, z_0) .

urface

IS U

in

 $\cos \phi$

= sin v

ular?

e = 1

y and: 3.

ent our

ace.

at the

z face 18. Given a sphere of radius 2 centered at the origin, find the equation for the plane that is tangent to it at the point $(1, 1, \sqrt{2})$ by considering the sphere as:

- (a) a surface parametrized by $\Phi(\theta, \phi) = (2\cos\theta\sin\phi, 2\sin\theta\sin\phi, 2\cos\phi);$
- (b) a level surface of $f(x, y, z) = x^2 + y^2 + z^2$; and
- (c) the graph of $g(x, y) = \sqrt{4 x^2 y^2}$.
- 19. (a) Find a parametrization for the hyperboloid $x^2 + y^2 z^2 = 25$.
 - (b) Find an expression for a unit normal to this surface.
 - (c) Find an equation for the plane tangent to the surface at $(x_0, y_0, 0)$, where $x_0^2 + y_0^2 = 25$.
 - (d) Show that the lines $(x_0, y_0, 0) + t(-y_0, x_0, 5)$ and $(x_0, y_0, 0) + t(y_0, -x_0, 5)$ lie in the surface *and* in the tangent plane found in part (c).
- 20. A parametrized surface is described by a differentiable function Φ: R² → R³. According to Chapter 2, the derivative should give a linear approximation that yields a representation of the tangent plane. This exercise demonstrates that this is indeed the case.
 - (a) Assuming $\mathbf{T}_u \times \mathbf{T}_v \neq \mathbf{0}$, show that the range of the linear transformation $\mathbf{D}\Phi(u_0, v_0)$ is the plane spanned by \mathbf{T}_u and \mathbf{T}_v . [Here \mathbf{T}_u and \mathbf{T}_v are evaluated at (u_0, v_0) .]
 - (b) Show that $\mathbf{w} \perp (\mathbf{T}_u \times \mathbf{T}_v)$ if and only if \mathbf{w} is in the range of $\mathbf{D}\Phi(u_0, v_0)$.
 - (c) Show that the tangent plane as defined in this section is the same as the "parametrized plane"

$$(u,v) \mapsto \Phi(u_0,v_0) + \mathbf{D}\Phi(u_0,v_0) \begin{bmatrix} u - u_0 \\ v - v_0 \end{bmatrix}.$$

- **21.** Consider the surfaces $\Phi_1(u, v) = (u, v, 0)$ and $\Phi_2(u, v) = (u^3, v^3, 0)$.
 - (a) Show that the image of Φ_1 and of Φ_2 is the xy plane.
 - (b) Show that Φ_1 describes a regular surface, yet Φ_2 does not. Conclude that the notion of regularity of a surface S depends on the existence of at least one regular parametrization for S.
 - (c) Prove that the tangent plane of S is well defined independently of the regular (one-to-one)

parametrization (you will need to use the inverse function theorem from Section 3.5).

- (d) After these remarks, do you think you can find a regular parametrization of the cone of Figure 7.3.7?
- 22. The image of the parametrization

$$\Phi(u, v) = (x(u, v), y(u, v), z(u, v))$$

= $(a \sin u \cos v, b \sin u \sin v, c \cos u)$

with $b < a, 0 \le u \le \pi, 0 \le v \le 2\pi$ parametrizes an ellipsoid.

(a) Show that all points in the image of Φ satisfy:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

(the Cartesian equation of an ellipsoid).

- (b) Show that the image surface is regular at all points.
- 23. The image of the parametrization

$$\Phi(u, v) = (x(u, v), y(u, v), z(u, v))$$

= $((R + r \cos u) \cos v, (R + r \cos u) \sin v, r \sin u)$

with $0 \le u, v \le 2\pi, 0 < r < 1$ parametrizes a torus (or doughnut) S.

(a) Show that all points in the image (x, y, z) satisfy:

$$(\sqrt{x^2 + y^2} - R)^2 + z^2 = r^2$$

- (b) Show that the image surface is regular at all points.
- **24.** Let Φ be a regular surface at (u_0, v_0) ; that is, Φ is of class C^1 and $\mathbf{T}_u \times \mathbf{T}_v \neq \mathbf{0}$ at (u_0, v_0) .
 - (a) Use the implicit function theorem (Section 3.5) to show that the image of Φ near (u_0, v_0) is the graph of a C^1 function of two variables. If the z component of $T_u \times T_v$ is nonzero, we can write it as z = f(x, y).
 - (c) Show that the tangent plane at $\Phi(u_0, v_0)$ defined by the plane spanned by \mathbf{T}_u and \mathbf{T}_v coincides with the tangent plane of the graph of z = f(x, y) at this point.

7.4 Area of a Surface

Before proceeding to general surface integrals, let us first consider the problem of computing the area of a surface, just as we considered the problem of finding the arc length of a curve before discussing path integrals.